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/ The notion of scale plays an important role in how high-throughput biomolecular measurements are analyzed and interpreted. At one level of functional \
S ell-

mor after the primary tumor was surgically removed.

cale, for instance, all genes involved in the cell cycle may be considered as a functional unit, whereas a more fine grained scale would capture more specific c
cycle related events. Capturing components that manifest themselves as functional units across different scales may reveal key biological mechanisms.

We propose to improve classification of gene expression data by exploiting relevant structure in the data at multiple scales. The method is based on concepts of
scale space analysis in machine vision, used for scale independent detection of features in images.

This multiscale framework was applied to a large gene expression dataset of patients diagnosed with ovarian cancer, measured as part of the Cancer Genome Atlas
(oject (TCGA). Our goal was to build a classifier that accurately discriminates between patients with local recurrence and distant recurrence (metastasis) of thj
tu
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Scale in expression data
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Constructing scale space trees
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Scale space representation of TCGA data
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Indentifying sighature transcription factors
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