Discovering cancer pathways by inferring combinatorial association logic

Jeroen de Ridder ${ }^{1,2,}{ }^{*}$, Jan Bot ${ }^{1}$, Jaap Kool ${ }^{3}$, Anthony Uren ${ }^{3}$, Lodewyk Wessels ${ }^{1,2}$, Marcel Reinders ${ }^{1}$
*J.deRidder@TUDelft.nl
${ }^{1}$ Information \& Communication Theory Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands. ${ }^{2}$ Division of Molecular Biology, ${ }^{3}$ Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands

Summary

In this study, 43 tumors that were induced by retroviral insertional mutagenesis are expression profiled, resulting in a dataset for which both the initiating events (the viral integration sites) as well as the consequent expression profiles are available.

To capture complex associations that arise due to interaction among insertion target genes, we infer small Boolean logic networks that explicitly incorporate operators to model the potential parallel alternatives ('exclusive-or' gates) as well as the potential cooperation between mutations ('and' gates).

Co-occurrence and mutual exclusiveness

Combinatorial Association Logic (CAL)

Observation 1 - limited number of networks
\rightarrow Due to the risk of overtraining, only small networks are considered \rightarrow Due to symmetry, many networks are not considered
 Solve for each topology seperately

Observation 2 - optimize approximate t - score

$$
\hat{t}-\text { score }=\sum_{i \in \text { all tumors }} \mathbf{w}_{i}\left(\mathbf{y}_{i} \cdot \mathbf{y}_{i}^{\text {opt }}\right)
$$

$\mathbf{y}^{\mathrm{opt}} \longrightarrow$ Best possible solution (independent of network topology or inputs)
$\mathbf{w} \longrightarrow$ Tumor weights, found by minimizing difference between t and \hat{t} Efficiently optimized by branch-and-bound

Estimating weights

$$
\mathbf{w}=\min _{\mathbf{w}}\|t-\hat{t}\|_{2}
$$

