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Abstract

In this paper, we propose methodologies to analyze data derived from retroviral insertional mutagenesis screens. The data has been
generated by analyzing virally induced tumors in mice. The goal is to find the Common Insertion Sites (CISs), 1.e. regions in the genome that
have a significantly increased viral insertion rate across multiple tumors. Ideally, significance estimates of CISs should be established taking
into account both the noise, arising from the random nature of the insertion process, as well as the bias, stemming from preferential insertion
sites present in the genome and the data retrieval methodology.

We propose a novel method that finds CISs in a noisy and biased environment using a predefined significance level. We show that the
proposed Gaussian Kernel Convolution method is flexible enough to incorporate corrections for the effects of noise and bias while maintaining
the predefined significance level.

Since the locus of a CIS is frequently in the vicinity of, or within a cancer gene, detecting CISs allows for the discovery of candidate cancer
genes. For this purpose a specialized MATLAB GUI visualizing the data is developed.

The data

Viral inserts may target cancer genes causing
tumors to develop. In the tumor tissue one will
encounter the insert that induced the

Figure 4 shows the thresholded data. The
threshold can be determined by considering the
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Figure 3 shows a schematic depiction of the
significance analysis of the insertion data. To
acquire the null-distribution the position of the N
insertions are permuted. The GKC is applied to
the resulting permuted insertion profile and the
neights of all peaks are recorded. When this
orocess is repeated often, a distribution of the
neaks in random data results, hence the null-
distribution is acquired.

the data stemming from Retroviral Insertional
Mutagenesis Screens. The scale space approach,
proposed in this study, proves to enable the
detection of narrow as well as broad CISs.
Together with the density plots the scale space
diagrams provide a valuable visualization tool for
the biologist.
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