
Predicting causes and effects in regulatory networks

Problem description
Connecting regulators with the genes that they regulate is difficult. While various large 
scale data sources are nowadays available (expression, literature, chip-chip, protein 
interactions, etc.), each of these is in itself an incomplete view of the regulatory network.

Our goal is to integrate them. We build a network that is able to predict how a 
perturbation in a gene S will affect other genes T. 
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Using this predictor, we want to be able to:
- given measured effects (Ti), determine most likely causal perturbation (S)

- identify possible unmeasured effects (Gi) in the network (e.g. protein state changes)

- find genes which form a robust group of markers (Ti) for a certain perturbation (S)
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Various (high-througput) genome-scale data sources, containing information on different types 
of cellular networks, are used to determine the connectivity between source and target gene: 

score of P(S,T)

Classifier

We train a predictive rule which takes the connectivity data between S and T into account to 
determine a score for P(S,T), describing how likely it is that a perturbation of S will affect T. 

This rule is trained by using knockout microarray expression data, for which we both know the 
perturbed gene as well the genes that show an effect. 
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Knockout

- calculate probability of a gene
  to be affected by a defined knockout
- uses message passing based 
   Monte Carlo method

2) Network simulation

- optimize network construction
   based on training set of knockouts
- evolutionary strategy (CMA-ES) 
   optimizing ROC-based score

3) Network optimization
Network construction and 

data integration parameters

4) Validation on test set of knockouts
- using cross validation

Validation

Discussion
Building genome-wide, simulation models of cellular networks is difficult, as 
learning the activity of each of the millions of possible interactions easily leads to 
large numbers of false positives.

We simplify the problem, by learning a more general rule on how to integrate 
various data sources, using them to determine the regulatory activity of the 
interactions, thereby enabling predictions of causes/effects in regulatory networks.

We hope to transfer this knowledge to other species, enabling us to make 
maximally use of the available information in inferring regulatory networks. 

We perform in silico-validatioin. We leave
a set of gene perturbation microarray 
experiments out of the data that is used for
making predictions. Next, we check if the
predictions that we make are validated by 
this left-out data

The prediction method can handle path 
constraints, e.g. only considering effect 
propagations that end in a protein-DNA 
interaction (i.e. expression-changing). 
This allows for training/validation using 
microarray results.
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Effect prediction within the yeast MAPK pathway
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Causal gene prediction when genomic location is approximately known
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Perturbation cause prediction
a) A significant fraction of the measured effects can be predicted, from among all genes in the yeast network. 
Surprisingly, the network simulator is a much better predictor of effects, compared to replicate perturbations 
(i.e perturbations of the same gene obtained from different datasets) being used to predict the effects of each 
other. 

b) Similarly, a predictor based just on high quality network topology (shortest paths) also performs 
worse compared to the network simulation. That the network topology still plays a significant role is however 
shown by the low performance of the permuted network simulation, for which the genes were permuted across
the network.

Part of the non-predicted effects are due to indirect effects such as stress response. For instance, the most
often affected gene in the knockout measurements is HSP30 (a stress response gene) . This is corroborated
by gene overexpression effects being easier to predict then gene knockout effects.

Perturbation effect prediction
a) Based on observed effects, the method can predict the most likely causal genes. We find that 
regulatory causal genes are much easier to predict compared to non-regulatory genes, likely due 
to the fact that only regulatory effects are encoded in the network topology. 

b) A common usage pattern for these type of predictions will be one in which causal genes have to be 
determined from among a certain subselection of genes (e.g. genes affected by mutations). In these 
cases, performance can become significantly higher.  Also, in this plot we show the difference in 
performance for a network optimized for causal prediction, and a network optimized for effect prediction. 
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Effect predictions in the KEGG MAPK pathway. Blue lines indicate pathway edges, and their thickness 
indicates regulatory influence (inferred by the algorithm). Arrow lines show predictions (i.e. ranking in 
top 250) that were validated (p-value < 0.001), with the color indicating the number of false 
positives ranking higher within the MAPK pathway (ranging from 0 to 8, 69% <= 3).

Note that the algorithm predicts feed-forward, feedback and even cross-talk effects accurately. This is 
possible by simulating the pathway not on its own, but within its complete cellular context.

Dense neighborhoods
While pathway maps often suggest relatively simple interaction topologies, in reality, the number
of interactions that have been measured among even a relatively limited number of genes is often
rather large, complicating accurate perturbation effect predictions. This underlines the need for the 
use of multiple information sources to determine the regulatory activity of these interactions.

In the figures to the left, we show the neighborhood of two genes within the MAPK pathway. One 
is a transcription factor (SWI4), the other (STE20) is a kinase. The node color indicates if an effect 
has  been observed in microarray studies, after perturbation of respectively SWI4 or STE20
(green: p-value < 0.001, orange: p-value < 0.05). The thickness of node borders indicate if the 
network simulation predicts an pertubation effect or not. 

Only the highest quality interactions are shown (STRING score > 900), with their predicted 
regulatory activity being indicated by their color. 

Using 10-fold cross-validation, the algorithm was validated on unseen gene perturbation microarray experiments.
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