
1

3D-COSTAR: User Guide

Mottaqiallah Taouil1 Said Hamdioui1

1Delft University of Technology
Faculty of EE, Mathematics and CS

Mekelweg 4, 2628 CD Delft, The Netherlands
{m.taouil, s.hamdioui}@tudelft.nl

Erik Jan Marinissen2

2IMEC vzw
3D Integration Program

Kapeldreef 75, 3001 Leuven, Belgium
erik.jan.marinissen@imec.be

Sudipta Bhawmik3

3Qualcomm
5000 Somerset Corp. Blvd.

Bridgewater, NJ, USA
sbhawmik@qualcomm.com

I. INTRODUCTION

One of the major challenges that has to be addressed in order to make 2.5D technology commercially successful is overall

cost optimization. A 2.5D-SIC consists of two or more active dies stacked on a passive silicon interposer that forms the

interconnection between the active dies and to the external world. As is the case for any IC, TSV-based 2.5D-SICs must be

tested in order to guarantee the outgoing product quality and reliability. Hence, test cost is indispensable. Inherent to their

manufacturing process, 2.5D-SICs provide several test moments such as before stacking, during manufacturing of partial stacked

IC, after the complete manufactured stack, etc. This results into a large space of test flows; each with its own cost. Determining

the optimal and most efficient test flow requires the analysis of all test flows, as different design and/or manufacturing parameters

may impact the cost differently. Therefore, an appropriate cost model is required. The cost model should be able to evaluate

the cost of each test flow, while considering all relevant incurred costs in the production chain of the 2.5-SIC. In this document,

we present 3D-COSTARthat is able to perform this. In order to use this tool, whether for reports, scientific publications or

other documents, the following two publications must be referenced:

• M. Taouil, S. Hamdioui, E.J. Marinissen, “Quality versus cost analysis for 3D Stacked ICs,” IEEE 32nd VLSI Test

Symposium, pp.1-6, 13-17 April 2014.

• M. Taouil, S. Hamdioui, E.J. Marinissen, S. Bhawmik, “Using 3D-COSTAR for 2.5D test cost optimization,” IEEE

International 3D Systems Integration Conference, pp.1-8, 2-4 Oct. 2013

II. INTERFACE

Currently, 3D-COSTAR is only accessible through our web-server available at http://www.ce.ewi.tudelft.nl/3dcostar. A single

input file, compliant to 3D-COSTAR’s format, must be uploaded through the web-interface as depicted in Figure 1. The

executable is automatically activated once the input file is uploaded through the web-server. After 3D-COSTAR finishes the

evaluation and execution of the uploaded input file, a zipped file will be made available for download containing all the

produced output results. The download link will only be shortly available.

input_file 3D-COSTAR

Engine

3D-COSTAR

Sweep analysis

Outputs

Debug

Cost (breakdown)

Web-

Interface

output_file

Fig. 1. 3D-COSTAR Interface

The zipped output file contains several files/folders:

• A log file log file.txt showing providing feedback to the user. If the provided input file contains errors they can be found

in this file.

• A file containing the cost and cost breakdown analysis for the main experiment. This default output file is described in

Section V.

http://www.ce.ewi.tudelft.nl/3dcostar

• A folder called sweep is created that contains the remaining information such as cost breakdown, escapes etc. per

experiment. The sweep input and outputs are described in Section V. An additional file sweep summary.txt is generated

that contains a summary output of the sensitivity experiments.

• A debug file called dump file.txt. This file is optionally generated and contains debug information and detailed outputs

related to the cost classes.

III. INPUT FILE

3D-COSTAR runs experiments using a single ASCII input file. This file contains inputs either directly related to cost classes

or to sweep analysis. Figure 2 shows the general architecture of classes the input files of 3D-COSTAR contain, which can

evaluate 2.5D-/3D- and 5.5D-SICs. The tool has five input classes which symbolize the costs involved in the whole SIC

production flow; these include emphdesign, manufacturing, packaging, test, and logistics. Input parameters of these classes

can be recognized by their prefix. For example, parameters from the manufacturing class start with the prefix M. The cost

classes are described first and a general overview with some of the inputs are shown in Figure III-G. Thereafter, a subsection

is dedicated to the inputs that control the sweep analysis in Section III-G.

3D cost model

Manufacturing

- product cost ($)

- product quality (ppm)

- cost breakdown

PackagingTest

- wafer

- TSV

- # dies / wafer

- die yield

- interconnect yield

- stacked-die yield

- etc.

- test cost die

- test cost TSV

- test flow

- test order

- fault coverage

- etc.

- packaging cost

Design

- transport cost for

tiers between wafer

fab, test house, 3D

and packaging fab

Logistics

- design cost

Fig. 2. 3D-COSTAR: Cost Classes Organization.

A. Background and Terminology

Figure 3(a) shows the conventional 2D test flow for planar wafers [1]; it consists of two test moments: a wafer test prior to

packaging and a final test after packaging. The wafer test can be cost-effective when the yield is low as it prevents unnecessary

assembly and packaging costs, while the final test is used to guarantee the final quality of the packaged chips. 2.5D/3D-SICs,

however, provide additional test moments; e.g., additional test moments can be defined for each partial stack. Moreover, at

each moment a distinction can be made between different tests such as die tests and interconnect tests. In general, four test

moments can be distinguished for a 2.5D-SICs consisting of n dies and n− 1 stacking operations as depicted in Figure 3(b):

(1) n pre-bond wafer tests, (2) n-2 mid-bond tests, (3) one post-bond test prior packaging and (4) one final test. Note that the

mid-bond, post-bond and final tests could contain several sub-tests for the different dies and interconnects.

Wafer 1

Wafer

 test

Assembly &

 Packaging

Final test

Wafer 1

Pre-bond

wafer test

Assembly &

 Packaging

Final test

Wafer 2

Pre-bond

wafer test

 Stacking

 1+2

Wafer 3

Pre-bond

wafer test

 Stacking

 (1+2)+3

 Mid-bond

 test

 Mid-bond

 test

...

Wafer n

Pre-bond

wafer test

 Stacking

 (1+2 ...)+ n

Post-bond

 test

...

(a) (b)

2D Test flow 2.5D/3D Test flow

Fig. 3. 2D versus 2.5D/3D D2W test flows.

2

Manufacturing

Pre-bond
- M_cost_wafer

- M_yield_die

- M_diesPerWafer

- M_yield_TSV

Stacking

- M_stackOp

 - Bonding type

 - Orientation

- M_yield_die_stackOp

- M_yield_int_stackOp

- M_cost_stackOp

General

- M_productionVolume

- M_dieCount

- M_dieLabelList

Fig. 4. Manufacturing.

Most parameters of the input file are either of type integer, double, an array of integers or an array of doubles. In order to

distinguish between them we use the following notations i value, d value, ai value[x] and ad value[x], respectively. For the

arrays, the term x denotes the array length. In case arrays are initialized with all the same value, the user has the option to

initialize them by using the letter a standing for array (i.e., a i value is equivalent to ai value[x]). In this case, it is sufficient

now to specify only item as all the entries are equal. Examples of this will be given later. Note that all parameters and inputs

are case-sensitive. Next, the inputs of all the five classes are described.

B. Design

The tool considers only a single direct parameter for design, referred to as non-recurring engineering costs. This parameter

is specified as follows:

> D_nreCost <d_value> > D_nreCost 0.0

These design costs are shared among the production volume.

C. Manufacturing

The manufacturing parameters have the prefix M (Manufacturing) and consist of several subgroups as depicted in Figure 4.

In general, there are three global input parameters:

> M_productionVolume <i_value> > M_productionVolume 10

> M_dieCount <i_value> > M_dieCount 4

> M_dieLabelList <ai_value[n]> > M_dieLabelList 1 2 3 4

The keyword M productionVolume specifies the number of final shipped ICs (after testing), i.e., the considered good 3D-

SICs shipped to the customers. In the example, this values is set to 10. In general, the number must be positive. The keyword

M dieCount specifies the number of dies that the stack contains, which must be positive. For the remainder of this document,

we assume the stack size to be 4. In addition, we use the symbol n to denote this stack size. To identify the position of the

dies in the stack a label list of dies should be provided. The keyword M dieLabelList takes as argument a list of integers equal

to the stack size, where each position identifies the label of the die in the stack. This identification is for important for the

stacking order (2.5D-SIC, 3D-SIC or 5.5D-SIC) and the yields that belong to the dies etc. In the given example, the dies are

simply labeled from 1 to 4.

The next group of parameters are related to the manufacturing of dies prior to be bonded. Each wafer comes with a certain

cost. This cost can be specified in the keyword M cost wafer. For all the dies in the stack, a value must be specified. Each

index in the array corresponds to the die specified on the position in M dieLabelList. This holds in general for all arrays

related to dies. In the example below, die with label 1 has a wafer cost of 500, while the other dies (i.e., those with label 2,

3 and 4) have a cost of 5000. Cost units can be specified in any quantity (e.g., $, e, etc.).

> M_cost_wafer <ad_value> > M_cost_wafer 500.0 5000.0 5000.0 5000.0

Similarly, the number of dies per wafer and the die yield are specified in the keywords M yield die and M diesPerWafer.

> M_yield_die <ad_value[n]> > M_yield_die 0.8165 0.7670 0.4006 0.8006

> M_diesPerWafer <ai_value[n]> > M_diesPerWafer 622 1278 1605 1605

3

There exists an option to estimate the die yields and the number of dies per wafer by providing the die area. This option is

controlled through the M enableArea keyword. For each zero entry in this array, the yields and GDWs provided in M yield die

and M diesPerWafer are taken, otherwise (i.e., a non-zero value) it ignores the corresponding entries in M yield die and

M diesPerWafer and instead uses the binomial yield formula [2] and GDW counting algorithm in [3] to compute the yield

and number of gross dies per wafer respectively. To calculte the GDW using the algorithm in [3] requires two arguments: (a)

die length, (b) die width and (c) effective wafer radius.

> M_enableArea <ai_value[n]> > M_enableArea 1 0 1 0

> M_dieSize_length <ad_value[n]> > M_dieSize_length 10.0 0.0 5.0 0.0

> M_dieSize_width <ad_value[n]> > M_dieSize_width 10.0 0.0 5.0 0.0

> M_radiusEff <ad_value[n]> > M_radiusEff a 147.0

In the particular example above, dies with label 2 and 4 keep the GDW values specified by M diesPerWafer (as their

corresponding value in M enableArea is zero), while the GDW for die 1 and 3 will be ignored in that array. The die length

and width are specified by the keywords M dieSize width and M dieSize width respectively. In this example, the die areas

for the dies with label 1 and 3 are equal to 100 mm2 and 25 mm2 respectively. The effective wafer radius is specified by

the keyword M radiusEff. For simplicity, we use the letter a here, to denote that all entries have a wafer radius of 147 mm

(a 300 mm wafer with 3 mm edge clearance). Again, the values for the dies with label 2 and 4 will be ignored here.

Similarly, dies 2 and 4 keep the die yields specified in M yield die, while the yields for die 1 and 3 will be ignored

in that array. To determine the yield using the equation in [2] three parameters are needed: (a) the die area, (b) the defect

density and (c) the defect clustering parameter. The die area is obtained from its length and width as explained above. The

defect density is specified by the keyword M defectDensity and the clustering parameter by M clustering. The units of the

keywords M dieSize length, M dieSize width, M radiusEff and M defectDensity must match. For example, these terms could

be specified in mm, mm, mm and mm−2 respectively. Example values for the defect density and clustering parameters are

provided below.

> M_defectDensity <ad_value[n]> > M_defectDensity 0.005 0.00 0.01 0.00

> M_clustering <ad_value[n]> > M_clustering a 0.5

3D-COSTAR requires that all arrays must be fully specified, even if some elements within the array are not used. 3D-

COSTAR ignores the actual values of these unused items, but needs them for correct indexing.

3D-COSTAR provides two functions that related the die yield and test escape equations and is used as follows.

> M_testEscapeEquation <0 or 1> > M_testEscapeEquation 1

When M testEscapeEquation is set to 0, the yield equation in [2] is used to calculate the test escapes in the pre-bond phase

as expressed in Equation 1. It defines the relation between test escapes TE, actual or ingoing yield Yin and outgoing yield

Yout; TE, the test escape rate, describes the ratio of faulty dies that pass the test. The ingoing yield is the actual yield (which

is an estimated number), the outgoing yield is the fraction of dies that is considered to be good after testing (includes both

good dies and test escapes). Equation 2 [2] shows an example of the relation between test escapes, ingoing yield and the fault

coverage (FC). By combining equations 1 and 2, the outgoing yield as a function of the ingoing yield and fault coverage is

obtained in Equation 3.

TE =
Yout − Yin

Yout

(1)

TE(FC) = 1− Y
1−FC
in (2)

Yout(FC) =
Yin

1− TE
=

Yin

Y
1−FC
in

= Y
FC
in (3)

However, Equation 2 assumes an infinite defect clustering parameter which has the tendency to report too pessimistic number

of test escapes [4]. Therefore, when M testEscapeEquation is set to 1 the clustering parameter for more accurate and realistic

estimation can be used. In that case, the outgoing yield changes into [4]:

Yout(FC) =

(

1 +
FC ·A · d0

α

)

−α

(4)

This parameter can only be used when the M enableArea is set to 1.

The next parameters are related to the stacking operation and stacking order. In order to represent the stack, a number of

stacking operations must be provided. The keyword that is used is M stackingOp. The number of stacking operations depends

on the stack size and equals n-1. For our example, three stacking operations must be specified (as n=4). To differentiate

between the stacking operations a stacking id must be directly concatenated to this keyword. After that, the user must provide

the two die labels of the dies that are going to be stacked together separated from each other by a hyphen symbol (-). The die

4

1

32 4

2.5D-SIC

1

32

4

5.5D-SIC3D-SIC

3

2

4

1

31

2

3

1 2

1

2 3

Fig. 5. Different stacking orders and configurations.

label on the left side presents the lower die in the stacking operation and the die on the right side of the hyphen the top die.

Subsequently, a vertical line — is used to specify thereafter the bonding type and stacking operation. The currently supported

bonding types are either be D2D (for die-to-die stacking) or W2D (for die to wafer stacking). The stacking orientations can be

either Face-to-Face (F2F), Face-to-Back (B2B), Face-to-Back (F2B, bottom die face, top die back), and Back-to-Back (B2F,

bottom die back, top die face). Examples are given next.

> M_stackOp<id> <die_label>-<die_label> | <bonding_type>, <orientation_type>

3D-SIC: 2.5D-SIC: 5.5D-SIC:

> M_stackOp1 1-2 | W2D, B2F > M_stackOp1 1-2 | W2D, F2F > M_stackOp1 3-4 | D2D, F2F

> M_stackOp2 2-3 | W2D, B2F > M_stackOp2 1-3 | W2D, F2F > M_stackOp2 1-2 | W2D, B2F

> M_stackOp3 3-4 | W2D, B2F > M_stackOp3 1-4 | W2D, F2F > M_stackOp3 1-3 | W2D, F2F

We provide three stacking examples, for a normal 3D-SIC, for a 2.5D-SIC and for a 5.5D-SIC as shown in Figure 5. The

numbers in the dies denote the die label and the ones between two dies (in blue) present the stacking order.

The 3D-SIC contains four stacked dies stacked in a linear fashion from the bottom to the top. In the figure, the numbers

between two dies (in blue) present the stacking order. In the box above, the equivalent input representation are provided. First

die label 2 is stacked on die label 1, using die to wafer stacking with a B2F stacking orientation. Subsequently, die label 3 is

stacked on die label 2 in the same manner. The tool internally understands that die 2 is actually a partial stack that contains

both the dies with label 1 and 2. Similarly, die label 4 is stacked on die label 3 (i.e, partial stack with the dies with label 1,

2, and 3).

The stacking order for the 2.5D-SIC is different as compared to the 3D-SIC. In this case, dies with labels 2, 3 and 4 are

stacked in sequence directly on bottom die 1 (passive silicon interposer) using Face-to-Face stacking.

In the last case, we consider a 5.5D-SIC. Here, in the first stacking operations die with label 4 is stacked on 2. Subsequently,

a new partial stack is created with the dies with labels 3 and 4 using D2D stack with a B2F orientation. Finally, in the third

stacking operations both partial stacks are stacked on each other (denoted by the stacking operation of die 3 stacked on die

1). The tool internally figures out which dies are valid for which partial stacks.

Each stacking operation involves two kinds of yields, i.e., yields that are related to the dies (stacked-die yields) and yields

that are related to interconnects. We will first describe the stacked die yields. The number of keywords for stacked die yields

should be equal in size as the number of stacking operations, i.e., 3 in our case. Similarly as in M stackOp<id> an id is

used to differentiate between these n−1 stacking operation. The stacked die yields should be specified with the keyword

M yield die stackOp<id>. For each existing die in the stack a valid yield must be specified. Nevertheless, the input array

should always be of length n even if some dies are not part of the stack. We will use in the example below a yield value of

1.00 to identify the ignored entries.

> M_yield_die_stackOp<id> <ad_double[n]>

3D-SIC: 2.5D-SIC: 5.5D-SIC:

> M_yield_die_stackOp1 0.98 0.98 1.00 1.00 > M_yield_die_stackOp1 0.98 0.98 1.00 1.00 > M_yield_die_stackOp1 1.00 1.00 0.98 0.98

> M_yield_die_stackOp2 0.98 0.98 0.98 1.00 > M_yield_die_stackOp2 0.98 0.98 0.98 1.00 > M_yield_die_stackOp2 0.98 0.98 1.00 1.00

> M_yield_die_stackOp3 0.98 0.98 0.98 0.98 > M_yield_die_stackOp3 0.98 0.98 0.98 0.98 > M_yield_die_stackOp3 0.98 0.98 0.98 0.98

For the 3D-SIC, in the first stacking operations only die with labels 1 and 2 are being stacked. Therefore, the tool will ignore

any value specified on index 3 and 4 of MC stacked die yield1. As the 3D-SIC and 2.5D-SIC have the same dies involved in

each stack, their stacked die yield pattern is the similar. However, for the 5.5D-SIC, in the first stacking operation dies with

label 3 and 4 are stacked and only the values belonging to these dies are considered. The user is free to specify any yield

5

values in the range (0,1].

The interconnects, consist similarly as the dies out a pre-bond component and a mid-bond/post-bond/final component. In the

pre-bond phase, we refer to the interconnections as TSVs (they are not entirely formed yet) and in the remaining phases, we

consider them parts of interconnect. Note that the interconnects could be TSVs + micro-bumps or only micro-bums (in case of

F2F stacking). For the pre-bond phase, the keyword M yield TSV is used to denote the yield in each die. 3D-COSTAR reads

and uses all specified values. In case a die does not have TSVs, a yield of 1.0 must be specified.
> M_yield_TSV <ad_value[n]>

> M_yield_int_stackOp<id> <ad_double[n-1]>

3D-SIC: 2.5D-SIC: 5.5D-SIC:

> M_yield_TSV 0.99 0.99 0.99 1.00 > M_yield_TSV 1.00 1.00 1.00 1.00 > M_yield_TSV 1.00 1.00 0.99 1.00

> M_yield_int_stackOp1 0.98 1.00 1.00 > M_yield_int_stackOp1 0.98 1.00 1.00 > M_yield_int_stackOp1 0.98 1.00 1.00

> M_yield_int_stackOp2 0.98 0.98 1.00 > M_yield_int_stackOp2 0.98 0.98 1.00 > M_yield_int_stackOp2 1.00 0.98 1.00

> M_yield_int_stackOp3 0.98 0.98 0.98 > M_yield_int_stackOp3 0.98 0.98 0.98 > M_yield_int_stackOp3 0.98 0.98 0.98

The interconnect yields are specified in a similar manner as the stacked die yields. However, there are some slight differences.

First, interconnects are labeled automatically internally in 3D-COSTAR according to the stacking order. For example, for the

5.5D-SIC, the first index in the interconnect belongs to the interconnection between dies 3 and 4 as these two dies are stacked

first. A second difference is the array length; the length of M yield int stackOp<id> is 1 less as the number of interconnects

is n−1.

There is a cost involved in each 3D stacking operation. This cost can be specified by the keyword M cost stackOp. This

cost should include all costs related to this step, such as aligning, heating and cohesive material cost. Each entry represents

the cost related to that stacking operation. As an example, we ascribe a cost of 0.05 for the first stacking operation, 0.15 for

the second one, and 0.12 for the final stacking operation. Again the cost can be specified in any unit as desired as long as

they are expressed in the same unit as the other cost values.

> M_cost_stackOp <ad_double[n-1]> > M_cost_stackOp 0.05 0.10 0.12

D. Packaging

The packaging parameter considers two sets of inputs; its cost and yield. The cost for packaging is denoted by the keyword

P cost. A single value of type double either zero or positive is expected here. For example, we can attribute a cost of 1.00 ($

or e) to it.

> P_cost <double> > P_cost 1.00

For each die and interconnect in the stack, a packaging yield can be attributed. The array lengths equal to the number of

dies and number of interconnects respectively. For the dies, the values of each index belong to their die label. While for the

interconnects this is dependent on the stacking order. The first index, belongs to the interconnect between the two dies specified

in MC stacking1, the ith element to the interconnection between the two dies specified at MC stacking< i >.

> P_yield_die <ad_double[n]> > P_yield_die 1 0.9 1 0.67

> P_yield_int <ad_double[n-1]> > P_yield_int 0.89 0.9 0.87

E. Test

The inputs from the test class have the prefix T and are grouped into pre-bond, mid-/post-bond, final, test sequence, and

probing as depicted in Figure 6. Each of these groups is described next.

Both dies and TSVs may be tested in a pre-bond test prior to stacking. 3D-COSTAR supports a fault coverage related

to wafer manufacturing defects (M yield die) and TSV defects M yield TSV using the keywords T fc die prebond and

T fc TSV prebond respectively. If a die does not contain TSVs/micro-bumps a fault coverage of zero must be specified.

In addition, for each test a cost can be attributed to it using TC prebond die cost and TC prebond TSV cost for the dies and

TSVs respectively.

> T_fc_die_prebond <ad_value[n]> > T_fc_die_prebond 0.9 0.7 0.988 0.80

> T_cost_die_prebond <ad_value[n]> > T_cost_die_prebond 1.00 0.50 1.40 0.00

> T_fc_TSV_prebond <ad_value[n]> > T_fc_TSV_prebond 0.9 0.9 0.99 0.00

> T_cost_TSV_prebond <ad_value[n]> > T_cost_TSV_prebond a 0.99

After the pre-bond test, the next opportunity for dies and interconnects to be tested is the mid-/post-bond phase. The defects

that can be tested for are either related to stacking defects (M yield die) or previous defects from the wafer manufacturing that

escaped during pre-bond testing (M yield die stackOp). In case dies have not been tested in the pre-bond phase, they may be

tested now with a higher test quality. Similarly as for M yield die stackOp, some dies might not exist for partial stacks. In

the examples below the fault coverages for such cases have been set to 0.

6

TEST

Mid/Post-bond
- T_fc_die_stackOp

- T_cost_die_stackOp

- T_fc_int_stackOp

- T_cost_int_stackOp

Final
- T_fc_die_packaged

- T_cost_die_packaged

- T_fc_int_packaged

- T_cost_int_packaged

Pre-bond
- T_fc_die_prebond

- T_cost_die_prebond

- T_fc_TSV_prebond

- T_cost_TSV_prebond Test sequence

- T_testOrder

- T_parallelTest_die

- T_parallelTest_int

Probing

- T_probedDie_stackOp

Fig. 6. Test.

> T_fc_die_stackOp<id> <ad_double[n]>

> T_cost_die_stackOp<id> <ad_double[n]>

3D-SIC: 2.5D-SIC: 5.5D-SIC:

> T_fc_die_stackOp1 0.99 0.99 0.00 0.00 > T_fc_die_stackOp1 0.99 0.99 0.00 0.00 > T_fc_die_stackOp1 0.00 0.00 0.99 0.99

> T_fc_die_stackOp2 0.99 0.99 0.99 0.00 > T_fc_die_stackOp2 0.99 0.99 0.99 0.00 > T_fc_die_stackOp2 0.99 0.99 0.00 0.00

> T_fc_die_stackOp3 0.99 0.99 0.99 0.99 > T_fc_die_stackOp3 0.99 0.99 0.99 0.99 > T_fc_die_stackOp3 0.99 0.99 0.99 0.99

> T_cost_die_stackOp1 1.00 1.00 0.00 0.00

> T_cost_die_stackOp2 1.00 1.00 1.00 0.00

> T_cost_die_stackOp3 1.00 1.00 1.00 1.00

In the example above, the test cost has been only provided for the 3D-SIC due to space shortage. Non-existing fault coverages

must be set to zero. Note the mid-bond phase is represented by id¡n−1 and the post-bond phase id=n−1 (see also Figure 3).

Similarly, the keyword T fc int stackOp<id> is used to denote the fault coverage of interconnect testing for mid-bond and

post-bond tests.
> T_fc_int_stackOp<id> <ad_double[n-1]>

> T_cost_int_stackOp<id> <ad_double[n-1]>

3D-SIC: 2.5D-SIC: 5.5D-SIC:

> T_fc_int_stackOp1 0.99 0.00 0.00 > T_fc_int_stackOp1 0.99 0.00 0.00 > T_fc_int_stackOp1 0.99 0.00 0.00

> T_fc_int_stackOp2 0.99 0.99 0.00 > T_fc_int_stackOp2 0.99 0.99 0.00 > T_fc_int_stackOp2 0.99 0.99 0.00

> T_fc_int_stackOp3 0.99 0.99 0.99 > T_fc_int_stackOp3 0.99 0.99 0.99 > T_fc_int_stackOp3 0.99 0.99 0.99

> T_cost_int_stackOp1 0.05 0.00 0.00

> T_cost_int_stackOp2 0.05 0.05 0.00

> T_cost_int_stackOp3 0.05 0.05 0.05

Again, special note must be taking to correct indexing. The values of T fc int stackOp1 belong to the testing of interconnects

after the first stacking operation (mid-bond tests). The first value after the keyword presents the interconnect between the first

two stacked dies etc. For the 3D-SIC, the first number belongs to the interconnects between die 1 and 2, while for the 5.5D-SIC

this number the interconnect between die 3 and 4.

Finally, after assembly and packaging a screen test can be applied (final test). Again, fault coverages can be specified for

each die and interconnect in the stack. Note that these tests can detect faulty dies/interconnects during all phases, i.e., pre-bond

(pre-bond die and TSV yield), mid/post-bond (stacked-die and interconnect yield) and due to packaging. In the example below,

all the n dies are tested with a fault coverage of 99.5% and the interconnects with 100% fault coverage at a cost of 1.0$ and

0.1$ respectively. Also in these arrays the die indexes correspond to their label order, and the interconnects based on their

stacking position.

> T_fc_die_packaged <ad_value[n]> > T_fc_die_packaged a 0.995

> T_cost_die_packaged <ad_value[n]> > T_cost_die_packaged a 0.995

> T_int_die_packaged <ad_value[n-1]> > T_int_die_packaged a 0.1

> T_cost_die_packaged <ad_value[n-1]> > T_cost_die_packaged a 1.0

The next group of parameters are related to the test sequence, i.e., the order in which dies are tested and whether some of

7

the dies tested in parallel. The keyword T testOrder is used to specify the order of die testing. The keyword takes as argument

all existing interconnects and dies of the final stack. Interconnects are prefixed with i and dies width d.

> T_testOrder <die and int id’s> > T_testOrder i1 d4 i2 i3 d1 d2 d3

For the given example above and the 5.5D-SIC of Figure 5, first interconnect one is tested (i.e., the interconnnect between

dies 3 and 4), subsequently die 4 followed by interconnect 2 (i.e., between die 1 and 2) followed by interconnect 3 (i.e.,

between die 1 and 3) followed by the dies 1, 2 and 3. This order is used in both the mid/post-bond and final test phase. In

case a partial stack does not contain certain dies or interconnects, they will be ignored by 3D-COSTAR. For example, in the

first stacking operation of the 5.5D-SIC only dies 3 and 4 and interconnect 1 are part of the stack. In this case, the test order

will be interconnect 1, die 4 followed by die 3.

3D-COSTAR also supports testing of ICs simultaneously. This does not refer to scanning multiple dies using huge concate-

nated chains. Rather, it means that individual dies could be tested simultaneously, such as memories. Imagine for example that

dies 3 and 4 of the 5.5D-SIC are memory dies each with their own BIST engine. They can be tested in parallel. Dies and

interconnects that are tested in parallel have to be provided in sets separated by comma’s.

> T_testOrder <die and int id’s> > T_testOrder i1 d4 i2 i3 d1 d2 d3

> T_parallelTest_die <sets of dies> > T_parallelTest_die {3,4}

> T_parallelTest_int <sets of int> > T_parallelTest_int {1,3}{2}

3D-COSTAR will automatically search the die with the largest test cost and only attribute that cost. For example, if the

test cost of die 4 is larger than die 3 in the example above in keyword T parallelTest die, it will be equivalent as if die

3 is tested with zero cost. Multiple sets can be provided by having The argument of the keywords T parallelTest die and

T parallelTest int can be left empty in case each die or interconnect test is performed sequentially.

The last set of test parameters are related to probing. The tool automatically keeps track of the number of times a die is

probed during testing. In the pre-bond phase, the tool automatically tracks if dies are tested on not based on the fault coverages

for dies and interconnects. In the mid/post-bond phase, for each partial stack the user has to specify a single die which is

probed as given by the following example.

> T_probedDie_stackOp<id> <i_value>

> T_probedDie_stackOp1 3

> T_probedDie_stackOp2 1

> T_probedDie_stackOp3 1

For example, for the 5.5D-SIC of Figure 5 the values in the example denote that die 3 is probed during the test after the first

stacking operation; similarly, during the tests after the second and third stacking operation die 1 is probed. After packaging,

ICs are typically tested through the package interface. Probing does not apply in this case. There is no support for probe yield

in the current version.

F. Logistics

The parameters in the logistics class start with the prefix L. In order to understand this class we first explain Figure 7. There

are 11 arrows that represent movement of tiers between five possible companies. The companies are the following: in Design

company, Wafer fab, Test house, Stacking fab, and Packaging. In the worst case, logistic costs can to be attributed the worst

case scenario in which each activity (manufacturing, test, 3D stacking and packaging) is separated from another. Each letter

next to the arrow depicts the cost to move from one company to another one. It covers the following cost movements:

• Lwd: Cost between the Design company and Wafer fab

• Lwt: Cost of moving tiers from Wafer fab to Test house (e.g., needed for pre-bond test)

• Lts,d: Cost of moving tiers from Test house to Stacking fab (e.g., to transport pre-bond wafers or dies)

• Lts,s: Cost of moving tiers from Test house to Stacking fab (e.g., to transport partial stacks)

• Lst: Cost of moving tiers from Stacking fab to Test house (e.g., for mid-bond or post-bond tests)

• Ltp: Cost of moving tiers from Test house to Packaging fab (e.g., after post-bond test)

• Lpt: Cost of moving tiers from Packaging fab to Test house (e.g., for final/packaged test)

• Ltd: Cost of moving tiers from Test house to the Design company (e.g., after final test)

• Lws: Cost of moving tiers from Wafer fab to Stacking fab (e.g., to perform stacking in case no pre-bond test is used)

• Lsp: Cost of moving tiers from Stacking fab to Packaging fab (e.g., no post-bond test)

• Lpd: Cost of moving tiers from Packaging fab to Design (e.g., no final test)

• Lss: Cost of moving tiers between 2 different Stacking fabs or possibly within the same 3D fab. (e.g. no mid-bond test)

8

Wafer

fab

Test

house

Stacking

fab

Design

Packaging

Ldw

Lwt Lws

Lts,d Lts,s

Lst

Ltp Lsp

Lss

Lpd
Ltd

Lpt

Logistics

Fig. 7. Logistics Input.

Depending on the test flow, some of the costs are not applicable. For example, in case a pre-bond test is skipped (arrow

between wafer fab and stacking fab), the cost associated with the arrow wafer fab to test house for that particular die is ignored.

Furthermore, for some companies some of these values are zero. For example, if a company performs both the testing and

stacking in-house, costs associated with arrows Lts,s and Lst could be set to zero. In the same order as the list presented

above, the following keywords represent these cost in 3D-COSTAR.

> L_cost_company2waferfab <d_value>

> L_cost_waferfab2tester <ad_value[n]>

> L_cost_tester2fab3D_wafer <ad_value[n]>

> L_cost_tester2fab3D_stack <ad_value[n-2]>

> L_cost_fab3D2tester <ad_value[n-1]>

> L_cost_tester2packaging <d_value>

> L_cost_packaging2tester <d_value>

> L_cost_tester2company <d_value>

> L_cost_waferfab2fab3D <ad_value[n]>

> L_cost_fab3D2packaging <d_value>

> L_cost_packaging2company <d_value>

> L_cost_fab3D2fab3D <ad_value[n-2]>

All the cost in this class have to be specified per die, even if wafers are transported. In case (partial) stacks are transported,

the logistics cost will depend on the number of transports dies/wafers from by the bottom layer of the partial stack and the

particular cost values in L cost *.
Note that the arrays have different lengths based on whether dies or stacks are transported. For example, for the keyword

L cost company2waferfab we assume a single double value as an input. As there are n wafers in the pre-bond phase, each

element can have a different cost in L cost waferfab2tester, L cost waferfab2fab3D and L cost tester2fab3D wafer. The tool

requires full arrays of length n to be specified and filters the unused values, based on whether a die/wafer is tested or not, out.

It achieves this by looking at the fault coverage of the dies and TSVs.
The length of the array L cost tester2fab3D stack equals n−2, and considers the movement of partial stacks. The length

of this array does not equal n−1, as the last stack has to be moved to the packaging house (L cost tester2packaging). This

also applies to L cost fab3D2fab3D.
The last argument in this class is L dieBased. This arguments specifies whether tiers are transported per die (denoted by

y) or wafer (n) and only is valid for the cases where applicable. For example, a D2D stack can only be transported by dies

as the wafers are already sliced for the stacking operation. However, the movements from the test house to stacking fab for

pre-bond wafer is affected by this parameter in case the dies enter the stack as individual dies.

> L_dieBased <y/n> > L_dieBased y

There is currently no support for logistic yields.

G. Sweep Analysis

This section describes how to perform sweep analyses. The global keyword here that controls the number of variablesSweep.

This variable takes two arguments. The argument -t specifies the total number of sweep variables. The second argument, -dim,

9

specifies the number of dimensions this sweeps have. An example will make the difference between the more clear. Lets

consider for now three variables using two dimensions.

> MSens -t <i_value> -dim <i_value> > MSens -t 5 -d 2

Some variables are correlated with each other (e.g., test cost and test coverage) and can be combined in a single dimension.

The example below gives more details. The tool expects for each variable the dimension (-dim) it belongs too, which keyword

is being looped (keyword), the begin (-b) and end (-e) value of this variable and its step size (-s).

MSens<i_value> -dim <i_value> keyword -b <d_value> -e <d_value> -s <d_value>

MSens1 -dim 1 T_fc_die_prebond[1] -b 0 -e 1 -s 0.1

MSens2 -dim 1 T_cost_die_prebond[1] -b 0 -e 5 -s 0.50

MSens3 -dim 2 P_cost -b 1.5 -e 2.25 -s 0.125

MSens4 -dim 2 M_yield_int_stackOp[1][1] -b 0.6 -e 0.9 -s 0.05

MSens5 -dim 2 M_yield_die_stackOp[1][3] -b 0.6 -e 0.9 -s 0.05

In the example above, the keywords T fc die prebond[1] and T cost die prebond[1] are sweeped along the same dimension,

i.e., their values are applied simultaneously during experiments.

The total number of sweeps per dimension equals ⌊ e+s−b
s

⌋. In this example, a total of 11 (for the first dim) * 7 (for the

second dim) = 77 are performed. There are basically three types of keywords. The first group consist of single entries, such

as P cost. The second group consists of one-dimensional arrays, such as T cost die prebond. In case the array is related to

a die, a valid die label between [] brackets must be placed, i.e., it must exist in M dieLabelList. In case the array is related

to interconnects, a valid interconnect id must be placed (i.e., a value between 1 and (M dieCount-1). The last group consists

of two-dimensional variables such as M yield die stackOp and M yield int stackOp. In these types of variables, two index

values must be placed. The first index identifies the stacking operation (a number between 1 and (M dieCount-1), while the

second index identifies the interconnect and/or die label. The tool validates all entries, but does currently not check if the same

variable is entered multiple times. In addition, sensitivity analysis will only be printed when one or two dimensions are used.

IV. INPUT VALIDATION

A. Direct specified inputs

Table I shows the boundary values of the input variables. For each keyword (shown in the first column), the min and max

values are provided (second and third column). Additional comments that are of value are provided in the last column.

B. Limitations and Considerations

There are some limitations and considerations in using the inputs:

• The minimum and maximum values where ∞ is involved in Table I are actually limited by the data size.

• Some keywords require arrays as arguments. 3D-COSTAR does not check the length of these arrays. In case too few

elements are specified unexpected behavior can occur, such as a program crash.

• 3D-COSTAR does not check the inputs in the order as specified in the order in the table. The keywords may be placed

in any order. In addition, keywords that are unnecessary are not checked.

• Insufficient error printing in case die labels are wrong. Only the keyword will be printed, but not the index location.

• All arrays must be fully specified, even if they are not used. This is necessary for correct indexing. For example, inputs costs

related to die and wafer transport must always be fully specified, even if some of the arrow in Figure 7 are inapplicable.

• The values that are specified in sweep variables are not checked against the min and max values of Table I. However, if

the sweep variable is part of a single or two dimensional array the indexes it has are checked.

• Lines that contain random data are ignored and not considered.

• If a keyword is specified multiple time, only the first encounter will be considered. No error will be printed.

V. OUTPUTS

3D-COSTAR generates in general three output files:

1) Main output file, this file contains for example:

• the cost per shipped IC.

• the test quality per shipped IC in defects per million.

• the cost break down.

2) Debug file

3) Output files related to sensitivity if applicable

10

TABLE I
RESTRICTIONS ON INPUTS AND TYPE CHECKING

Keyword min max Additional Restrictions/Comments

D nreCost >0.0 ∞ —

M productionVolume 1 ∞ —
M dieCount 1 ∞ —
M dieLabelList -∞ ∞ Each entry must have a unique value
M cost wafer 0.0 ∞ —
M yield die >0.0 1 Applies only for entries where M enableArea is 0
M diesPerWafer 1 ∞ Applies only for entries where M enableArea is 0
M enableArea 0 1 —
M radiusEff >0.0 ∞ Applies only for entries where M enableArea is 1
M dieSize width >0.0 ∞ Applies only for entries where M enableArea is 1
M dieSize length >0.0 ∞ Applies only for entries where M enableArea is 1
M defectDensity 0.0 ∞ Applies only for entries where M enableArea is 1
M clustering >0.0 ∞ Applies only for entries where M enableArea is 1
M yield TSV >0.0 1 —
M testEquation 0.0 1 The argument must be either 0 or 1
M stackOp<i> j-k | ...

i 1 M dieCount -1
j,k -∞ ∞ Both specified dies j and k must exist in M dieLabeList and j != k

M yield die stackOp<i> > 0.0 ∞ 1 ≤ i ≤ M dieCount -1
M yield int stackOp<i> > 0.0 ∞ 1 ≤ i ≤ M dieCount -1
M cost stackOp >0.0 ∞ —

P cost >0.0 ∞ —
P yield die >0.0 1 —
P yield int >0.0 1 —

T fc die prebond 0.0 1 —
T cost die prebond 0.0 ∞ Costs are ignored when fault coverage is zero
T fc TSV prebond 0.0 1 —
T cost TSV prebond 0.0 ∞ Costs are ignored when fault coverage is zero
T fc die stackOp<i> 0.0 1 —
T cost die stackOp<i> 0.0 ∞ Costs are ignored when fault coverage is zero
T fc int stackOp<i> 0.0 1 —
T cost int stackOp<i> 0.0 ∞ Costs are ignored when fault coverage is zero
T fc die packaged 0.0 1 —
T cost die packaged 0.0 ∞ Costs are ignored when fault coverage is zero
T fc int packaged 0.0 1 —
T cost int packaged 0.0 ∞ Costs are ignored when fault coverage is zero
T test order n.a. n.a. Each die or interconnect must have a valid id and all dies and interconnects must be specified

Each interconnect index should satisfy 1 ≤ i ≤ M dieCount -1
The die entries should be in M dieLabelList

T parallelTest die n.a. n.a. Dies must be defined in M dieLabelList and can exist in 1 set only
T parallelTest int n.a. n.a. Interconnects must be valid and can exist in 1 set only
T probeDie stackOp<i> n.a. n.a. The probed die must be defined in M dieLabelList, this keyword applies only for mid-bond and post-bond phases.
L dieBased n.a. n.a. Must have as argument either y or n
L * 0.0 ∞ All the other keywords from the logistics class have the same min and max boundary

A. Main Output File

The output file consists of several parts. It first reports the accounting of the number of probes. Here, the tool generates

a small report that shows which ICs were probed and how frequently they were probed. Thereafter, the output report shows

the overall design cost and the design cost per shipped IC. After that, manufacturing information is showed both for die and

interconnects. Similarly, costs are shown for test, packaging and logistics cost. Finally, overall cost per shipped IC, test escapes

and cost break down are provided. The main output file is generated in all case (even if sensitivity analysis are performed).

An example of such a file is provided on the web-page.

B. Debug File

The debug file that is generated along with the default output file is called dump stack.txt and contains detailed information.

Debug file are only generated if requested by the user. The keyword verbose takes as argument y (yes) or n (no) and based

on the value debug files are generated or not.

> verbose <y/n> > verbose y

The content of a debug file can be divided in two parts:

• The first part is related to the inputs. All inputs are printed in a different from to correct and test if 3D-COSTAR understands

the inputs correctly. The parameters that are related to this part are depicted in Figure 8.

• The second part is related to the outputs and gives an in-depth analysis of the cost breakdown. It shows for all phases

precisely how many dies are required for the particular stack, how often dies are tested in each phase, how many dies

are transported etc.

11

Debug: Input parameters

Manufacturing
- Pre-bond

 - die entrance

 - dies per wafer

 - yield wafer/TSVs

- Mid-bond

 - stacking sequence

 - bonding/orientation

 - interconnects/die

Design
- NRE cost

Test
- Test Cost TSV/die

 - pre-bond

 - mid/post-bond

 - final

- Fault coverage TSV/die

 - pre-bond

 - mid/post-bond

 - final

- Parallel testing of dies

- Test sequences

Packaging
- Cost

- Yield dies/interconnects

Logistics
- Cost

- Die/Wafer based

Sensitivity
- Sweep variables

- Sweep values

Fig. 8. Debug of Inputs.

C. Sensitivity Output File

Finally, the last outputs are related to sensitivity analysis. 3D-COSTARwill generate for each input combination of the sweep

variables an output file where its name is a string concatenation of the the sweep variables and their values. The tool creates all

sweep experiments (main files and optionally debug files) in a sub-folder sweep for each input combination. In addition, if the

number of dimensions is one or two, a comma-separated values (CSV) file (sweep summary.txt) will be created that contains a

one-dimensional or two-dimensional array respectively with the results of the sensitivity analysis. In case the dimension equals

2, the file will contain an array in which the row elements belong to the variables of the first dimensions, while the columns

to the second dimension. The sweep summary.txt summarizes all total cost outputs, test escape rates, and cost breakdown.

REFERENCES

[1] E. J. Marinissen and Y. Zorian, “Testing 3D Chips Containing Through-Silicon Vias,” in Test Conference, 2009. ITC 2009. International, nov. 2009, pp.
1 –11.

[2] V. Agrawal, Essentials of Electronic Testing for Digital, Memory, and Mixed-Signal VLSI Circuits, ser. Frontiers in Electronic Testing. Springer, 2000.
[Online]. Available: http://books.google.nl/books?id=CgnLg99GumMC

[3] D. de Vries, “Investigation of Gross Die per Wafer Formulas,” Semiconductor Manufacturing, IEEE Transactions on, vol. 18, no. 1, pp. 136 – 139, feb.
2005.

[4] J. De Sousa and V. Agrawal, “Reducing the complexity of defect level modeling using the clustering effect,” in DATE, 2000, pp. 640–644.

12

http://books.google.nl/books?id=CgnLg99GumMC

	Introduction
	Interface
	Input File
	Background and Terminology
	Design
	Manufacturing
	Packaging
	Test
	Logistics
	Sweep Analysis

	Input Validation
	Direct specified inputs
	Limitations and Considerations

	Outputs
	Main Output File
	Debug File
	Sensitivity Output File

	References

