Algoritmiek, bijeenkomst 3

Mathijs de Weerdt

Today
= Introduction
= Greedy
= Divide and Conquer (very briefly)
= Dynamic programming

Slides with thanks to Kevin Wayne and Pearson Education
(made available together with the book “Algorithm Design” by Kleinberg & Tardos)

Planning komende “bijeenkomsten”

Bijeenkomst:

31-3. Greedy. Bespreken opgaven met Mathijs via Skype.

21-4. Divide & Conquer, Network Flow. Tomas. (& Bespreken DFS)
5-5? Divide & Conquer. Bespreken opgaven met Paul/Tomas.

19-5. Dynamic programming. Bespreken opgaven met Mathijs. Skype.
2-6. Network Flow. Bespreken opgaven met Tomas via Skype.

16-6. Eigen les. Vragenuur. Challenges (in Utrecht)

10 30-6. Exam

© 0N o ;oA

DomJudge: wachtwoord
Tussendoor vragen in het forum.

Skype id:

mathijs.de.weerdt

%
TUDelft

Beoordeling

Beoordeling Algoritmiek cursus:
« 5 programmeeropdrachten tijdens cursus
« Eigen les voorbereiden, geven in eigen klas, presenteren aan elkaar

« Toets met open vragen

%
TUDelft

Als je baas een app s

Deeleconomie

Chauffeurs bij Uber en koeriers bij Foodora en Deliveroo krijgen hun
opdrachten via een algoritme. ,Soms is het wel een gemis dat je niet
gewoon met mensen kunt overleggen”

»" Wouter van Noort © 28 oktober 2016

Jan doet het nu ongeveer drie maanden. De
zelfstandig financieel adviseur, vijftiger, wilde
vooral kijken of chauffeur zijn voor Uber iets voor
hem was. ,,Het is superflexibel”, zegt hij,,Je zet de
app aan en je kunt de weg op en geld verdienen.”
Jan, die niet met zijn achternaam in de krant wil,
wil dit werk waarschijnlijk blijven doen zodat hij
minder tijd hoeft te besteden aan zijn financiéle
adviespraktijk.

Als hij zijn app aanzet, bepaalt het algoritme van
Uber welke ritten hij krijgt. Er is wel een optie om
te weigeren, maar als hij dat te vaak doet, vervalt
de omzetgarantie die Uber chauffeurs normaal
gesproken biedt. ,,En zonder die omzetgarantie kun
je er moeilijk van rondkomen.” In Rotterdam, waar
hij werkt, is die omzetgarantie op de meeste
momenten 20 euro per uur. In steden waar de
gemiddelde verdiensten hoger zijn, geeft Uber geen
omzetgarantie.

.. . . - lllustratie Tomas Schats @
Zijn ‘acceptatieratio’ moet minimaal 70 procent

zijn. De afstand van de rit krijgt hij pas na het

NRC, 28 oktober 2016 1@U De|ft

Kunstmatige intelligentie
gaat regeren

Technologie
Wie alle data beheert, kan de samenleving runnen, met kunstmatige
intelligentie. Google, Apple en Facebook liggen voor op Washington.

£ Wouter van Noort ® 4 november 2016

Niet toevallig is Barack Obama deze
verkiezingsmaand gasthoofdredacteur van het
toonaangevende technologieblad Wired Magazine.
Technologie, en in het bijzonder kunstmatige
intelligentie, gaat de komende jaren ongelooflijk
veel veranderen, voorspelt de Amerikaanse
president. En daar kan zijn opvolger maar beter
goed op letten.

Obama waarschuwt onder meer voor de gevolgen
van zelflerende computers die op de
aandelenbeurzen zonder menselijk toezicht hun
gang gaan en volstrekt onvoorspelbare
koersbewegingen zullen veroorzaken. Het risico
van ongekende volatiliteit op de financiéle markten
en zelfs manipulatie ligt volgens hem op de loer.
Zelfrijdende auto’s op basis van kunstmatige

Een model van de menselijke hersenen,
] ;]) gemaakt van draden en stekkers.
intelligentie gaan de komende jaren zorgen voor Foto Getty Images ta

een revolutie in het vervoer, denkt hij. En als

computers die uit zichzelf slimmer worden
bepaalde banen overbodig gaan maken, moeten overheden serieus gaan nadenken over het
verschaffen van een basisinkomen aan alle burgers, volgens Obama.

NRC, 4 november 2016 1(-&U Delft

Learning Objectives: Algorithmic Paradigms

After this course you are able to design, analyze and implement algorithms
in the following paradigms:

= Greedy.

= Divide-and-conquer.

= Dynamic programming.

By giving examples of problems and algorithms that solve them optimally.

We focus on algorithms and techniques that are useful in practice.
We also guarantee their correctness and optimality.

You will further develop your skills regarding
» critical thinking,

« implementing,

* proving correctness,

« proving time complexity, and

» problem-solving.

]
TUDelft

4 Greedy algorithms

Greedy

The efficient wine expert
=He would like C bottles of a specific champagne for new year’s eve.
=There are n shops in the neighborhood who sell this.

=For each shop i, price p, and the amount available ¢, are given.

Determine where he should buy the C bottles.

Q. What would be a good greedy strategy to minimize costs?
Visit the shops in order of increasing price p..

Visit the shops in order of decreasing price p..

Visit the shops in order of increasing capacity c..

Visit the shops in order of decreasing capacity c..

I don’ t know.

oA =

]
TUDelft

Greedy Buying Algorithm

Q. What is the tightest worst-case upper bound on the running time?
1.0(1)

2.0(log n)
3.0(n)

4.0(n log n)
5.0(n?)

6.I don’ t know.

]
TUDelft

Selecting Breakpoints

Amsterdam Rome

Selecting breakpoints.
= Road trip from Amsterdam to Rome along fixed route of length L.
= Refueling stations at certain points b,, by, ..., b,, along the way.
= Let distances 0, = (b;;; — b))
= Fuel capacity (distance) = C.
= Goal: makes as few refueling stops as possible.

Q. What is a good strategy?

%
TUDelft

10

Selecting Breakpoints

Selecting breakpoints.

Road trip from Amsterdam to Rome along fixed route.
Refueling stations at certain points b,, b, ..., b, along the way.
Let distances 3, = (b, — ,..1)

Fuel capacity = C.

Goal: makes as few refueling stops as possible.

Greedy algorithm. Go as far as you can before refueling.

|
I
Amsterdam > C > « C > « C > Rome

%
TUDelft

1

Selecting Breakpoints: Greedy Algorithm

Q. What is the tightest worst-case upper bound on the run time?
1.0(1)

2.0(log n)

3.0(n)

4.0(n log n)

5.0(n?)

6.1 don’ t know.

]
TUDelft

12

Selecting Breakpoints: Greedy Algorithm

Implementation. O(n log n)

]
TUDelft

13

Selecting Breakpoints: Correctness

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
= Assume greedy is not optimal.
= What we will do:
— Reason about some specific optimal solution that is as similar to the
solution produced by the Greedy algorithm as possible.
— Show that an optimal solution exists that is even more similar.

= Contradiction! So greedy is optimal.

|
90 91 gz 9r i

Greedy: !
|

|

|

|

|

oPT: I

14

Selecting Breakpoints: Correctness

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

Assume greedy is not optimal.

let0=g, <g;< ...<g, =L denote set of breakpoints chosen by greedy.
let0=fy<f,< ... <f,=Ldenote set of breakpoints in the optimal
solution with f, = g,, f;=9;, ..., f. = g, for largest possible value of r.

Note: g,,, = f,,; by greedy choice of algorithm, so g,,; > f..;

Contradiction! So greedy is optimal.

|
9o 91 gz 9r i

Greedy: !
|

|

|

|

|

oPT: I

15

Selecting Breakpoints: Correctness

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

Assume greedy is not optimal.

let0=g, <g;< ...<g, =L denote set of breakpoints chosen by greedy.
let0=fy<f,< ... <f,=Ldenote set of breakpoints in the optimal
solution with f, = g,, f;=9;, ..., f. = g, for largest possible value of r.

Note: g,,, = f,,; by greedy choice of algorithm, so g,,; > f..;

Q. Where is the contradiction?

90 91 92 gr
Greedy:

oPT: I

16

Selecting Breakpoints: Correctness

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
= Assume greedy is not optimal.
= let0=g, <g;< ...<g, =L denote set of breakpoints chosen by greedy.
= let0o=f,<f,< ... <f,=Ldenote set of breakpoints in the optimal
solution with f, = g,, f;=9;, ..., f. = g, for largest possible value of r.
= Note: g,,; = f,,; by greedy choice of algorithm, so g,.; > f,.;

90 91 92 9r 9r+1

|
|
|
Greedy: i
|
|
|
|
|

oPT: I

fo fy f, A f,

why doesn't “optimal” drive a
little further?

17

Selecting Breakpoints: Correctness

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
= Assume greedy is not optimal.
= let0=g, <g;< ...<g, =L denote set of breakpoints chosen by greedy.
= let0o=f,<f,< ... <f,=Ldenote set of breakpoints in the optimal
solution with f, = g,, f;=9;, ..., f. = g, for largest possible value of r.
= Note: g,,; = f,,; by greedy choice of algorithm, so g,.; > f,.;

90 91 92 9r 9r+1

|
|
|
Greedy: i
|
|
|
|
|

oPT: I

fo f, f, f,] f,

another optimal solution has
one more breakpoint in common
= contradiction

18

More problems with a greedy solution

Known greedy algorithms:
= Dijkstra (see if you understand the proof) (Ch 4.4)

= Interval Scheduling (Ch 4.1)
= Minimizing maximum lateness (Ch 4.2)
= Minimal Spanning Trees (Ch. 4.5)

]
TUDelft

19

4.1 Interval Scheduling

Interval Scheduling

Interval scheduling (activity selection)

= Job j starts at s, and finishes at f,.

= Two jobs compatible if they don't overlap.
Select as many compatible intervals as possible.

11

> Time

]
TUDelft

21

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's
compatible with the ones already taken.

Q. In which order should we consider the jobs?

0N WP

m

[Earliest start time] Consider jobs in ascending order of start time s,.
[Earliest finish time] Consider jobs in ascending order of finish time f,.
[Shortest interval] Consider jobs in ascending order of interval length f, — s,.

. [Fewest conflicts] For each job, count the number of conflicting jobs c,.

Schedule in ascending order of conflicts c,.
I don’ t know.

d
e

012345678

22

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's
compatible with the ones already taken.

earliest start time? "

shortest interval?

fewest conflicts?

]
TUDelft

23

Interval Scheduling: Greedy Algorithm

]
TUDelft

24

4.2 Scheduling to Minimize Maximum Lateness

Scheduling to Minimizing Maximum Lateness

Minimizing lateness problem.
= Single resource processes one job at a time.
Job j requires t; units of processing time and is due at time d;.

If j starts at time s;, it finishes at time f; = s; + t,.
Lateness: ¢; = max {0, fj - dj 1.
Goal: schedule all jobs to minimize maximum lateness L = max /;.

.-<— Jjob number
2 < time required

Ex:
1 3 «—— deadline
d,=3 dy = 1 L=4
1 2 3 4 5 6
d1=1 d2:3 L=2
1 2 3 4 5 6

]
TUDelft

Minimizing Maximum Lateness: Greedy Algorithms

..— o rumber

2 < time required

- 1 3 «—— deadline d. =3 dy =1 L=4
- =

Q. In which order should we consider the jobs?

A.

[Shortest processing time first] Consider jobs in ascending order of
processing time t; (least work first).

[Earliest deadline first] Consider jobs in ascending order of deadline d,

(nearest deadline).
[Smallest slack] Consider jobs in ascending order of slack d; — t; (least
time to start to make deadline).

. I don’ t know.

]
TUDelft

27

Minimizing Maximum Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

= [Shortest processing time first] Consider jobs in ascending order of
processing time t; (least work first).

1 10 counterexample
d: 100 10

J

= [Smallest slack] Consider jobs in ascending order of slack d; - t;
(least time to start to make deadline).

10

BN
210

counterexample

]
TUDelft

28

Minimizing Maximum Lateness: Greedy Algorithm

Greedy algorithm. Earliest deadline first.

]
TUDelft

29

Minimizing Maximum Lateness: Greedy Algorithm

Greedy algorithm. Earliest deadline first.

moEnom — -

2 <+« time required

6 9 14 15 «—— deadline

max lateness = 1

|
d1:6 d2=8 d3=9 d4:9 d5:14 d6:15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Observation. The greedy schedule has no idle time.

]
TUDelft

30

Minimizing Maximum Lateness: No Idle Time

Observation. There exists an optimal schedule with no idle time.

d=4 d=6 | d=12 ‘
0 1 2 3 4 5 6 7 8 9 10 11
d=4 d=6 d=12
0 1 2 3 4 5 6 7 8 9 10 11

Prove that earliest-deadline-first greedy algorithm is optimal by exchange
argument:

= Take an optimal schedule that is as much as Greedy as possible.

= Change more into greedy schedule without losing optimality...

= A contradiction!

]
TUDelft

31

Minimizing Maximum Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that:
d; < d; but j scheduled before i.

l inversion \

Observation. Greedy schedule has no inversions.

]
TUDelft

32

Minimizing Maximum Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that:
d; < d; but j scheduled before i.

inversion

.

f';

Q. Suppose two adjacent, inverted jobs j and i with d; < d; are swapped,
what happens to the maximum lateness?

A.The maximum lateness cannot become smaller.
B.The maximum lateness cannot become larger.
C.The maximum lateness stays the same.

D.I don't know.

]
TUDelft

33

Minimizing Maximum Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that:
d; < d; but j scheduled before i.

inversion

.

f'
Claim. Swapping two adjacent, inverted jobs reduces the number of
inversions by one and does not increase the maximum lateness.

Pf.
= . forallk =i, j
= .. fori
= .. forj

]
TUDelft

34

Minimizing Maximum Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that:
d; < d; but j scheduled before i.

inversion

|7

f'
Claim. Swapping two adjacent, inverted jobs reduces the number of
inversions by one and does not increase the maximum lateness.

Pf. Let ¢ be the lateness before the swap, and let ¢ ' be it afterwards.
u flk= fkfora” kii,j
(lateness other jobs the same)

, p ', = fi-d, (definition)
" 'i <t d i :
= f-d. inishes at time f,
(new lateness for i smaller) jj dJ E; <d) 2
< .—Ad. . .
= If job j is late: C C
= /, (definition)

]
TUDelft

35

Minimizing Maximum Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that:
d; < d; but j scheduled before i.

l inversion J

before swap J

Observation. If a schedule (with no idle time) has an inversion, then it has
one with a pair of inverted jobs scheduled consecutively (adjacent jobs).

Pf.

= Suppose there is an inversion.

= There is a pair of jobs i and j such that: d; < d, but j scheduled before i.

= Walk through the schedule from j to i.

= Increasing deadlines (= no inversions), at some point deadline decreases.

]
TUDelft |

Minimizing Lateness: Analysis of Greedy Algorithm

Theorem. Greedy schedule S is optimal.
Pf. (by contradiction)
Idea of proof:
= Suppose S is not optimal.
= Take a optimal schedule S* that is as much like greedy.
= Change to look like greedy schedule (less inversions) without losing
optimality.

]
TUDelft

37

Minimizing Lateness: Analysis of Greedy Algorithm

Theorem. Greedy schedule S is optimal.

Pf. (by contradiction)

Suppose S is not optimal.

Define S* to be an optimal schedule that has the fewest number of
inversions (of all optimal schedules) and has no idle time.

Clearly S#S*.

Q. How can we arrive at a contradiction?

]
TUDelft

38

Minimizing Lateness: Analysis of Greedy Algorithm

Greedy has no
inversions.

Theorem. Greedy schedule S is optimal.
All schedules

Pf. (by contradiction) without

. . inversions have
Suppose S is not optimal. same lateness
Define S* to be an optimal schedule that has the fewest number of (only diff is jobs

with equal

inversions (of all optimal schedules) and has no idle time. deadlines).
Clearly S#S*. Case analysis: /
= If S* has no inversions, then the same lateness. Contradiction.
= If S* has an inversion, let i-j be an adjacent inversion.
— swapping i and j does not increase the maximum lateness and strictly
decreases the number of inversions
— this contradicts definition of S*

So S is an optimal schedule. -

%
This proof can be found
on La;;(;oméci%le. o TUDelft

39

4.5 Minimum Spanning Tree

Minimum Spanning Tree

Minimum spanning tree. Given a connected graph G = (V, E) with edge
weights ¢, an MST is a subset of the edges T < E such that
- Tis a tree
- T connects all vertices, and
- the sum of edge weights is minimized

R 7 < /
PO S .

G = (V, E) T, ZeeT Ce = 50
Q. How to find such a minimum spanning tree efficiently?

O
6

]
TUDelft

41

L

Greedy Algorithms

. How to find a minimum spanning tree efficiently?

For each vertex add cheapest edge, then join subtrees by adding
cheapest edge.

Add the cheapest edge to T that has exactly one endpoint in T,

Add edges to T in ascending order of cost unless doing so would create
a cycle.

. Start with all edges from G in T. Delete edges in descending order of

cost unless doing so would disconnect T.
All of the above.

None of the above.

I don’ t know.

%
TUDelft

42

Greedy Algorithms

Kruskal's algorithm. Start with T =¢. Consider edges in ascending order
of cost. Insert edge e in T unless doing so would create a cycle.

Reverse-Delete algorithm. Start with T = E. Consider edges in
descending order of cost. Delete edge e from T unless doing so would
disconnect T.

Prim's algorithm. Start with some root node s and greedily grow a tree T
from s outward. At each step, add the cheapest edge e to T that has
exactly one endpoint in T.

(Boruvka, 1926). Was first. (For each vertex add cheapest edge, then join
subtrees by adding cheapest edge.)

Remark. All these algorithms produce an MST. We will prove this for the
first three above using two general properties: the cut property and the

cycle property. TUDelft

43

Greedy Algorithms

Simplifying assumption. All edge costs c, are distinct. (Lengths in example
are related to their visual representation.)

Q. Let S be any subset of nodes, and let e be the min cost edge with
exactly one endpoint in S. Should e be in an MST?

Yes

No

It depends.

. I don’ t know.

el

]
TUDelft

Greedy Algorithms

Simplifying assumption. All edge costs c, are distinct. (Lengths in example
are related to their visual representation.)

Q. Let S be any subset of nodes, and let e be the min cost edge with
exactly one endpoint in S. Should e be in an MST?
A. Yes (in very one) =» cut property

e\CD/O

e isinevery MST

]
TUDelft

45

Greedy Algorithms

Simplifying assumption. All edge costs c, are distinct.

oo

mmonw»

Let C be any cycle, does a MST exist that has all of C’' s edges?
No.
Which one should be not in the MST (Lengths in example are related to

their visual representation.)?

&a
c
b

- 0O O O T

]
TUDelft

46

Greedy Algorithms

Simplifying assumption. All edge costs c, are distinct.

Q. Let C be any cycle, does a MST exist that has all of C' s edges?

A. No.
Q. Which one should be not in the MST (Lengths in example are related to

their visual representation.)?
A. The max cost =» cycle property

f

f is not in the MST

]
TUDelft

47

Greedy Algorithms

Simplifying assumption. All edge costs c, are distinct.

Cut property. Let S be any cut, and let e be the min cost edge with exactly
one endpoint in S. Then the MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost edge
belonging to C. Then the MST does not contain f.

T4 <~

e isin the MST f is not in the MST

]
TUDelft

48

Cut and cutset

Def. A cut is a subset of nodes S. (Note: compare to s-t cut.)

]
TUDelft

49

Cut and cutset

Def. A cut is a subset of nodes S. (Note: compare to s-t cut.)

Def. A cutset D of a cut S is the subset of (cut)edges with exactly one
endpoint in S.

Cut S = {4,5,8}
Cutset D= b-6,5-7, 3-4, 3-5,7-8

]
TUDelft

50

Cycle-Cut Intersection

Q. Consider the intersection of a cycle and a cutset. How many edges are
there in such an intersection?

1

2

odd

. even

I don't know.

moOwerE

Cycle C=1-2,2-3,3-4,4-5, 5-6, 6-1
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8
Intersection = 3-4, 5-6

]
TUDelft

51

Cycle-Cut Intersection

Claim. A cycle and a cutset intersect in an even number of edges.

Cycle C=1-2,2-3, 3-4,4-5, 5-6, 6-1
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8
Intersection = 3-4, 5-6

Pf. Walk along cycle from a node s€S: for every edge leaving S, there
should (first) be an edge to a node in S before returning to s.

37,
TUDelft

52

Cut property

Simplifying assumption. All edge costs c, are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge
with exactly one endpoint in S. Then the MST T* contains e.

Pf.
Q. What proof technique to use?

]
TUDelft

53

Cut property

Simplifying assumption. All edge costs c, are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge
with exactly one endpoint in S. Then the MST T* contains e.

Pf. (by contradiction)
= Suppose e does not belong to T*, and let's see what happens.

= This is a contradiction.
= Thus e belongs to T*

.e;"_"; """""
TL™ elft

Cut property

Simplifying assumption. All edge costs c, are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge
with exactly one endpoint in S. Then the MST T* contains e.

Pf. (by contradiction)
= Suppose e does not belong to MST T*, and let's see what happens.
= Adding e to T* creates a cycle C in T*.
= Edge e is both in the cycle C and in the cutset D correspondingto S =
there exists another edge, say f, that is in both C and D. (use claim)
» T'=T*u {e}-{f}is also a spanning tree.
= Since c, < ¢, cost(T') < cost(T*).
= This is a contradiction with T* being MST.
= Thus e belongs to T*

.e;"_"; """""
TLT elft

This proof can be found on page 145.

Cycle property

Simplifying assumption. All edge costs c, are distinct.

Cycle property. Let C be any cycle in G, and let f be the max cost edge
belonging to C. Then the MST T* does not contain f.

Pf. (3 min)
Q. What proof technique to use?

]
TUDelft

56

Cycle property

Simplifying assumption. All edge costs c, are distinct.

Cycle property. Let C be any cycle in G, and let f be the max cost edge
belonging to C. Then the MST T* does not contain f.

Pf. (by contradiction) (1 min)
= Suppose f belongs to T*, and let's see what happens.

= This is a contradiction.
= Thus f does not belong to T* -

Cycle property

Simplifying assumption. All edge costs c, are distinct.

Cycle property. Let C be any cycle in G, and let f be the max cost edge
belonging to C. Then the MST T* does not contain f.

Pf. (by contradiction)
= Suppose f belongs to T*, and let's see what happens.
= Deleting f from T* creates a cut S in T*,

= This is a contradiction.
= Thus f does not belong to T* -

Cycle property

Simplifying assumption. All edge costs c, are distinct.

Cycle property. Let C be any cycle in G, and let f be the max cost edge
belonging to C. Then the MST T* does not contain f.

Pf. (by contradiction)
= Suppose f belongs to T*, and let's see what happens.
= Deleting f from T* creates a cut S in T*,
= Let S be all vertices connected in T* to one endpoint of f.
= Edge fis both in the cycle C and in the cutset D correspondingto S =
there exists another edge, say e, that is in both C and D. (use claim)
» T'=T*u {e}-{f}is also a spanning tree.
= Since c, < ¢, cost(T') < cost(T*).
= This is a contradiction.
= Thus f does not belong to T* -

T
This proof can be found on page 147-148. (NB. An alternative proof using the cut property is also possible.)

Generic MST Algorithm (blue rule, red rule)

Blue rule: Cut property. Let S be any subset of nodes, and let e be the min
cost edge with exactly one endpoint in S. Then the MST T* contains e.
Color e blue.

Red rule: Cycle property. Let C be any cycle in G, and let f be the max cost
edge belonging to C. Then the MST T* does not contain f. Color f red.

Generic greedy algorithm. D>
Apply these rules until all edges are colored.

]
TUDelft

60

Prim's Algorithm: Proof of Correctness

Prim's algorithm. [Jarnik 1930, Dijkstra 1957, Prim 1959]
= Initialize S = {any node}. Apply cut property to S.
= Add min cost edge in cutset corresponding to S to MST, and respective
explored node u to S.

Implementation is similar to which algorithm you have already seen?
BFS
DFS
Dijkstra S
. Topological Sorting

I don’ t know.

mMooO®>O

%
TUDelft

61

Implementation: Prim's Algorithm

Implementation. Use a priority queue a la Dijkstra.

= Maintain set of explored nodes S.
= For each unexplored node v, maintain attachment cost a[v] = cost of

cheapest edge e[v] to a node in S.
= O(n?) with an array; O(m log n) with a binary heap.

Prim(G, c) {
foreach (v € V) a[v] « o; e[v] « ¢
foreach (v € V) insert v into Q
Initialize set of explored nodes S « ¢, T « ¢

while (Q is not empty) ({

u < delete min element from Q

S« S U {u}

T <« T U { e[u] } (unless e[u] = ¢)

foreach (edge e = (u, v) incident to u)

if ((v ¢ S) and (c, < al[v]))

decrease priority a[v] to c,
ef[u] « e

i

Kruskal's Algorithm: Proof of Correctness

Kruskal's algorithm. [Kruskal, 1956]
= Consider edges in ascending order of weight.
= (Case 1: If adding e to T creates a cycle, discard e according to cycle
property.
= (Case 2: Otherwise, insert e = (u, v) into T according to cut property
where S = set of nodes in u's connected component in T.

Case 1 Case 2

63

Implementation: Kruskal's Algorithm

Implementation. Use the union-find data structure.
= Build set T of edges in the MST.
= Maintain set for each connected component.

find(v)?

Union-Find

Union-Find.
Efficient data structure to do two operations on
= Union: merge two components
= Find: give the representative of the component

Q. How to implement efficiently?

]
TUDelft

Union-Find

Union-Find.
= Represent component by tree

= Union (by rank): merge two components
— assign each node a rank
— place root with lowest rank under highest
— increase rank of new root if equal rank

= Find: give the representative
- path compression

(eg find(g))

- btw, do not update rank

Implementation: Kruskal's Algorithm

Implementation. Using the union-find data structure.
= O(m log n) for sorting and O(m a(m, n)) for union-find.

\ %(_J

m < n2 = log m is O(log n) essentially a constant

O(m)

O(a(m, n))

O(1)

5. Divide & conquer

Divide & conquer

History

“divide ut regnes” | “divide et impera
(divide and rule)

Often used in politics and as military strategy
(Julius Caesar, Machiavelli, Napoleon)

General idea
1. Break a problem into subproblems,
2. solve each subproblem
a. usually recursively,
b. if small enough, solve as base case,
3. then combine results.

Correctness proof by induction.
Examples

* recursive algorithms on trees
* merge sort, quicksort

%
TUDelft

69

Linear Time: O(n)

Merge. Combine two sorted listsa = a,,a,,..,a, with B = b;,b,,..,b,_
into sorted whole.

A A

Merged result <

/// |bj B

i=1, 3 =1

while (both lists are nonempty) ({
if (a; < b;) append a; to output list and increment i
else append b; to output list and increment j

}

append remainder of nonempty list to output list

Claim. Merging two lists of size n takes O(n) time.
Pf. After each comparison, the length of output list increases by 1.

Call graph of Mergesort

(8) (8)
(4) (4) (4) (4)
(2) (@) (2) (2) (2) (@) (2) (@)
®© 000 ©®© OO O© OO © OOO

Call graph of Mergesort of a string of length 16
(the nodes contain size of substring; nodes typically represent different substrings)

71

6. Dynamic programming

Today
Dynamic Programming (Ch.6.1-6.4)
= Binary choice: weighted interval scheduling
= Multi-way choice: word segmentation
= Extra variable: knapsack

Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing some local
criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve
each sub-problem independently, and combine solution to sub-problems to
form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping
sub-problems, and build up solutions to larger and larger sub-problems.

1.4

//\\

1..1 2.4 1.2 3.4 1.3 4.4

% M recursive matrix chain

optimal multiplication order
22 34 23 TH TP 2P [G3¢AA T 23 12 93 (Cormen et al., p.345)
3.3, 44 2.2 3.3 2.2"°3:3 Tele2.2

]
TUDelft

73

Dynamic Programming Applications

Areas.

Bioinformatics.

Control theory. (E.g. heating)

Information theory.

Operations research.

Computer science: theory, graphics, Al, systems,

Some famous dynamic programming algorithms.

Viterbi for hidden Markov models.

Unix diff for comparing two files.

Smith-Waterman for sequence alignment.

Bellman-Ford for shortest path routing in networks.
Cocke-Kasami-Younger for parsing context free grammars.

]
TUDelft

74

6.1 Dynamic Programming: Binary Choice

Weighted Interval Scheduling

Weighted interval scheduling problem.
- Job j starts at s;, finishes at f;, and has weight v; .
= Two jobs compatible if they don't overlap.
= Goal: find maximum weight subset of mutually compatible jobs.

Q. How to efficiently solve this problem?

weight = 2 a

weight = 1 b

weight = 1 C

weight = 3

weight = 4

weight = 1

weight = 1 | | g

weight = 2 h . Time

Weighted interval scheduling problem.

Q.
A

. Consider all possible subsets of jobs that are all compatible, and take

. . weight = 2
Weighted Interval Scheduling weicht 11
weight 1

wei:h’rz 3

weight = 4
1

1

2

weight =
weight -

Job j starts at s;, finishes at f;, and has weight v;
Two jobs compatible if they don't overlap. 0
Goal: find maximum weight subset of mutually compatible jobs.

weight =2

How to efficiently solve this problem with weights?

the maximum set.
Consider jobs in ascending order of finish time and add if compatible
with already selected jobs.

Consider jobs in descending order of finish time and add if compatible
with already selected jobs.

Consider jobs in ascending order of start time and add if compatible
with already selected jobs.

Consider jobs in descending order of start time and add if compatible
with already selected jobs.
I don't know.

]
TUDelft |

Weighted Interval Scheduling: Greedy

Recall. Greedy algorithm works if all weights are 1.
= Consider jobs in ascending order of finish time.
= Add job to subset if it is compatible with previously chosen jobs.

C. Ascending order of finish time used for weighted interval scheduling

weight = 999 b

weight = 1 a

> Time

]
TUDelft

78

Weighted Interval Scheduling: Greedy

B. Descending order of weight
Fails

weight = 2

weight = 1 a
each

> Time

10

11

]
TUDelft

79

Weighted Interval Scheduling: Greedy

D. Descending order of relative weight (weight per time unit)
Fails (by a factor 2 at most).

weight = 6 b

weight = 9 a

> Time

]
TUDelft

Weighted Interval Scheduling: Brute Force

A. All possible subsets of jobs

Q. How many possible selections of jobs are there at most?
A.O(n log n)

B.O(n2)

C.0(n3)

D.O(2M)

E.O(n')

F.I don’t know.

]
TUDelft

81

Weighted Interval Scheduling: Brute Force

include 57 ves (right) or no (Ieft)? .. .6
include 4? yes (right) or no (left)? . @ ’e

include 3? © (3) (3) (3)
include 2? (2) (2) (2) (2) (2) (2) (2) (2)
include 1? © 00000 OO0 © OO ® OO

Note: recursion! (Is common with back-tracking).
1.Some combinations can be infeasible...
2.5o0me subproblems are identical

]
Z TUDelft

v

82

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <...<f,.
Def. p(j) = largest index i < j such that job i is compatible with j.
(predecessor)

Q. pB)=7? p(7) =7 p2) =2

weight = 2 1

weight = 1 2

weight = 1 3

weight = 3 4

weight = 4

weight = 1

weight = 1 | 7

weight = 2 . Time

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <...<f,.

Def. p(j) = largest index i < j such that job i is compatible with j.
(predecessor)

Q. pB)=7? p(7) =7 p2) =2

A. p(8) =5, p(7) =3, p(2) = 0.

weight = 2 1

weight = 1 2

weight = 1 3

weight = 3 4

weight = 4 5 |

weight = 1

weight = 1 | 7

weight = 2 8 > lime

Weighted Interval Scheduling: Recursion

Q. Suppose optimal weight of selection up to three (OPT(3)) and four
(OPT(4)) are known, what to do with job 5 with p(5)=37
Select if OPT(3) = OPT(4)
Select if OPT(3) + vs = OPT(4)
Select if OPT(4) + vs = OPT(3) R -
ecursion.

. I don’t know. (5) so assume optimal value of
subproblems is known.

(4) /
(3) (3) (3)
(2) (@) (2) (2) (2) (@)

o0 WP

]
N TUDelft

85

Example: Weighted Interval Scheduling: Brute Force’

Notation. OPT(j) = value of optimal solution to the problem consisting of
job requests 1, 2, ..., j (ordered by finishing time).

= Case 1: OPT selects job 5.
— can't use incompatible job 4
— must include optimal solution to problem consisting of remaining
compatible jobs, so OPT(3) ~

optimal substructure

= Case 2: OPT does not select job 5. d

— must include optimal solution to problem consisting of remaining
compatible jobs, so OPT(4)

OPT(5)=max { vs+ OPT(3), OPT(4)}

]
TUDelft

86

General: Weighted Interval Scheduling: Brute Force’

Notation. OPT(j) = value of optimal solution to the problem consisting of
job requests 1, 2, ..., j (ordered by finishing time).

= Case 1: OPT selects job j.
— can't use incompatible jobs { p(G) + 1, p(G) + 2, ..., j-1}
— must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., p(j) ~

optimal substructure

v/
= Case 2: OPT does not select job j.

— must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., j-1

]
TUDelft

87

General: Weighted Interval Scheduling: Brute Force’

Notation. OPT(j) = value of optimal solution to the problem consisting of
job requests 1, 2, ..., j (ordered by finishing time).

= Case 1: OPT selects job j.
— can't use incompatible jobs { p(G) + 1, p(G) + 2, ..., j-1}
— must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., p(j) ~

optimal substructure

v/
= Case 2: OPT does not select job j.

— must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., j-1

0 if j=0
OPT(j)=
(/) {max{ v, + OPT(p(j)), OPT(j-1)} otherwise

7 AN

Case 1 Case 2

88

Weighted Interval Scheduling: Brute Force’

Brute force algorithm (with smart skipping of predecessors).

89

Weighted Interval Scheduling: Brute Force’

Q. What is the worst-case tight upper bound of this algorithm?
A.O(n log n)
B.O(n2)
C.0(n3)
D.O(2M

E.O(n!)

F.I don’ t know.

]
TUDelft

90

Weighted Interval Scheduling: Brute Force’

Q. What is the worst-case tight upper bound of this algorithm?
A.O(n log n)
B.O(n?)

C.0(n3)
D.O(2")

E.O(n!)

F.I don’t know.

v

p(1)=0,p() = j-2

return max(v; + Compute-Opt(p(]j)), Compute-Opt(j-1))

91

Weighted Interval Scheduling: Brute Force’

Q. What is the worst-case tight upper bound of this algorithm?
A. T(0)=0(1) and T(n) = T(n-1) + T(n-2) + O(1)
NB: worst-case is T(n-2), because if p(j)=j-1 there is only one subproblem
Observation. Number of recursive calls grow like Fibonacci sequence =
exponential.
Observation. Recursive algorithm has many (redundant) sub-problems.

v

p(1)=0,p() = j-2

return max(v; + Compute-Opt(p(])), Compute-Opt (j-1))

92

Weighted Interval Scheduling: Brute Force’

Q. What can we do to obtain polynomial run time?

]
TUDelft

93

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as
needed.

]
TUDelft

94

Weighted Interval Scheduling: Memoization

p(1)=0,p() = j-2

]
TUDelft

95

Weighted Interval Scheduling: Memoization

Q. What is the worst-case tight upper bound of this algorithm?
A.O(n log n)

B.O(n2)

C.0(n3)

D.O(2M

E.O(n!")

F.I don’ t know.

96

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
Proof.
Q. How many iterations in initialization?

Q. How many iterations in one invocation?

Q. How many invocations?

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
Proof.
Q. How many iterations in initialization?
= Sort by finish time: O(n log n).
= Computing p(:) : O(n log n) (e.g. O(n) if by decreasing start time)
Q. How many iterations in one invocation?

Q. How many invocations?

Sort jobs by finish times so that £f; < £, < ...

Compute p(1), p(2), .., p(n)

for j =1 ton
M[j] = empty
M[O0] = O

M-Compute-Opt (j) {
if (M[j] is empty)
M[j] = max(vj + M-Compute-Opt(p(j)), M-
Compute-Opt (j-1))
return M[j]
}

<

£

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
Proof.
Q. How many iterations in initialization?
= Sort by finish time: O(n log n).
= Computing p(:) : O(n log n) (e.g. O(n) if by decreasing start time)
Q. How many iterations in one invocation?
. M-Compute-Opt (j): each invocation takes O(1) time and either
— (i) returns an existing value M[7]
— (i) fills in one new entry M[3] and makes two recursive calls
Q. How many invocations?

Sort jobs by finish times so that £f; < £, < ...

Compute p(1), p(2), .., p(n)

for j =1 ton
M[j] = empty
M[O0] = O

M-Compute-Opt (j) {
if (M[j] is empty)
M[j] = max(vj + M-Compute-Opt(p(j)), M-
Compute-Opt (j-1))
return M[j]
}

<

£

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
Proof.
Q. How many iterations in initialization?
= Sort by finish time: O(n log n).
= Computing p(:) : O(n log n) (e.g. O(n) if by decreasing start time)
Q. How many iterations in one invocation?
. M-Compute-Opt (j): each invocation takes O(1) time and either
— (i) returns an existing value M[7]
— (i) fills in one new entry M[3] and makes two recursive calls
Q. How many invocations?
= Progress measure ® = # nonempty entries of M[].
— initially ® = 0, throughout ® < n.
— (i) increases @ by 1 and only then at most 2 recursive calls.
= Overall running time (without init) of M-Compute-0pt (n) is O(n).

Remark. O(n) if jobs are pre-sorted by start and finish times.

100

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Note: reason top-down, implement bottom-up.

]
TUDelft

101

Weighted Interval Scheduling: Bottom-Up

Index
w, = 2
1 ! p(l) =0
w, = 4
2 | p(2) = 0
w3 = 4
3 | | p(3) = 1
Wy = 7
4 ! p@4) =0
Wy = 2
5 — p(5) = 3
Wqg = 1
6 —2—— p(6) =3
>

(@)

01 2 3 4 5 6

012

o
)
NN

(b)

Figure 6.5 Part (b) shows the iterations of Iterative-Compute-Opt on the sample
instance of Weighted Interval Scheduling depicted in part (a).

%
TUDelft

102

Weighted Interval Scheduling: Finding a Solution

Dynamic programming algorithms computes optimal value.
The solution can be found by post-processing the cache.

Q. In what order are the jobs printed?

]
TUDelft

103

Weighted Interval Scheduling: Finding a Solution

Dynamic programming algorithms computes optimal value.
The solution can be found by post-processing the cache recursively.

= # of recursive calls <n = O(n).

]
TUDelft

104

Dynamic Programming Summary

Recipe.
1. Characterize structure of problem.
2. Recursively define value of optimal solution: OPT(j) = ...
3. Compute value of optimal solution iteratively.
4. Construct optimal solution from computed information.

Dynamic programming techniques.
Binary choice: weighted interval scheduling.
Multi-way choice: segmented least squares, word segmentation.

]
TUDelft

105

6.2 Dynamic Programming: Multi-Way Choice

Word segmentation

Problem

.Given a string x of letters x;x,...x,

.Given a quality function q(i,j) that gives the value of substring xx;,;...x;.
.Give an efficient algorithm to split x into words (substrings) such that sum

of quality of these words is maximized.
word | quality

Example. “mogenzeslapen”:

mogen 4
enz 1
g(mo) + q(gen) + q(ze) + q(sla) + g(pen) = ? gen 2
q(mogen) + q(ze) + q(slapen) = ? sla 2
pen 2
slapen 5
ze 1
en 1

]
TUDelft

107

Word segmentation

Problem

.Given a string x of letters x;x,...x,

.Given a quality function q(i,j) that gives the value of substring xx;,;...x;.
.Give an efficient algorithm to split x into words (substrings) such that sum

of quality of these words is maximized.
word | quality

Example. “mogenzeslapen”:

mogen 4
enz 1
gq(mo) + q(gen) + q(ze) + q(sla) + q(pen) = 7 gen 2
q(mogen) + q(ze) + q(slapen) = 10 sla 2
pen 2
slapen 5
ze 1
en 1

]
TUDelft

108

Dynamic Programming: Multiway Choice

Notation.
- OPT(j) = maximum quality of string xy, X, , . . ., X;.
= q(i, j) = quality of substring x;, X11, - .., %;

Reason backward, computing OPT(j) using subproblems

Q. How can value of OPT(j) be expressed based on subproblems?

]
TUDelft

109

Dynamic Programming: Multiway Choice

Example. Compute OPT(6).

Choose optimal value of the following segmentations:

§ OPT(0)
q(1,6)
OPT(1) q(2,6)
OPT(2) q(3,6)
OPT(3) q(4,6)
OPT(4) q(5,6)
OPT(5) q(6,6)

]
TUDelft

110

Dynamic Programming: Multiway Choice

Notation.
- OPT(j) = maximum quality of string xy, X, , . . ., X;.
= q(i, j) = quality of substring x;, X11, - .., %;

Reason backward, computing OPT(j) using subproblems
Q. How can value of OPT(j) be expressed based on subproblems?
Q. What are the options here?
A. The start i of the last word.
. Last word uses characters X;, X1 , - - - , X; for some i.
= Value = q(i, j) + OPT(i-1).

0 if =0
OPT()) = max { q(i,j) + OPT(i-1)} otherwise
<is<
“ N J
e S
Choose i € [1, j] Value of this choice

%
TUDelft

Word Segmentation: DP Algorithm

Q. What is the worst-case tight upper bound of this algorithm?
A.O(n)

B.O(n log n)
C.0(n?)

D.O(n3)

E.O(2")

F.O(n!)

G.I don’ t know.

]
TUDelft

112

Word Segmentation: Finding a Solution

]
TUDelft

113

Dynamic Programming Summary

Recipe.
1. Characterize structure of problem.
2. Recursively define value of optimal solution: OPT(j) = ...
3. Compute value of optimal solution iteratively.
4. Construct optimal solution from computed information.

Dynamic programming techniques.
Binary choice: weighted interval scheduling.
= Multi-way choice: segmented least squares, word segmentation.

= Extra variable: knapsack

]
TUDelft

114

6.4 Knapsack Problem

Knapsack Problem

Knapsack problem.
= Given n objects and a "knapsack.”
« Item i weighs w; > 0 kilograms and has value v; > 0.
= Knapsack has limit of W kilograms.
= Goal: fill knapsack so as to maximize total value.

Q. What is the maximum value here?

1 1 1
W= 11 S :
3 18 5
4 2 6
5 28 7

]
TUDelft

116

Knapsack Problem

Knapsack problem.
= Given n objects and a "knapsack."
« Item i weighs w; > 0 kilograms and has value v; > 0.
= Knapsack has limit of W kilograms.
= Goal: fill knapsack so as to maximize total value.

Q. What is the maximum value here?
A. {3, 4 } attains 40

1 1 1 1

W= 11 2 6 2 3
3 18 5 3.6
4 22 6 3.66
A reasonable greedy algorithm seems to 5 28 7 4

repeatedly add item with maximum ratio v; / w..

Q. Is this greedy algorithm optimal?
Ex: {5, 2,1} achieves only value = 35 = greedy not optimal.

117

Dynamic Programming: False Start

Recursively define value of optimal solution:
Def. OPT(i) = max profit subset of items 1, ..., .

sCase 1: OPT does not select item i.
= OPT selects best setoutof { 1, 2, ..., i-1 }

=Case 2: OPT selects item i.
= accepting item i does not immediately imply that we will have to reject
other items; this depends on the remaining weight!
= (does not only depend on best set outof { 1, 2, ..., i-1 })

Conclusion. Need more sub-problems!

Q. What is the missing parameter to identify a sub-problem?
Q. And how to express the optimal value of a set of items and a capacity in
terms of these sub-problems? (1 min)

]
TUDelft

118

Dynamic Programming: Adding a New Variable

Recursively define value of optimal solution:
Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

sCase 1: OPT does not select item i.
= OPT selects best set out of { 1, 2, ..., i-1 } using weight limit w

=Case 2: OPT selects item i.
= new weight limit = w — w;
= OPT selects best set out of { 1, 2, ..., i-1 } using this new weight limit

[0 if 1=0
OPT(i,w) =14 OPT(i -1, w) if w,>w
‘max{ OPT(i-1,w), v;+ OPT(i-1,w-w;)} otherwise

]
TUDelft

119

Knapsack Algorithm: Recursive

W+1 >
OPT(i w):
0| 12 3 4 5 6 7 89 01
¢
{1}
{1,2}
{1,2,63}
{1,2,3,4}
{1,2,3,4,5}
W=t
1 1 1
2 6 2
0 if i=0 3 18 5
OPT(i,w)=10PT(i-1,w) if w,>w 4 22 6
max{ OPT(i-1,w), v,+ OPT(i-1,w —wl.)} otherwise 5 28 7

Knapsack Algorithm: Recursive

W+1 >
OPT(i w):
0|12 3456 78 90 1
o o O O O O o0 o0 O O O O
{1} o 1t 1 1 1 1 1 1 1
{1,2} 0 7 7 7 7
{1,2,3} 7 18 25
{1,2,3,4} 7 40
{1,2,3,4,5} 40
wn
1 1 1
2 6 2
0 if i=0 3 18 5
OPT(i,w)=10PT(i-1,w) if w.>w
iz 4 22 6
max{ OPT(i-1,w), v, + OPT(i—l,w—wl.)} otherwise
5 28 7

Knapsack Algorithm: Bottom-Up

wW+1

ﬂ-----ﬂ-ﬂﬂ
ﬂ_---

[.
] 5 RSHIERILIEE
n+1
W

Knapsack Algorithm: Bottom-Up

W+1 >
OPT(i w):
0|12 3] 4]5 6 78 9]0 1
o o o0 o o o o o o o o o o
{1} 0 1 1 1 1 1 1 1 1 1 1 1
{1,2} 0 1 6 7 7 7 7 7 7 7 T 7
{1,2,3} 0 1 6 7 7 18 19 24 25 25 25 25
{1,2,3,4} 0 1 6 7 7 18 22 24 28 29 29 40
{1,2,3,4,5} O 1 6 7 7 18 22 28 29 34 34 40
wn
1 1 1
2 6 2
0 if i=0 3 18 5
OPT(i,w)=10PT(i-1,w) if w.>w
i~ 4 22 6
max{ OPT(i-1,w), v, + OPT(i—l,w—wl.)} otherwise
5 28 7

Knapsack Problem: Bottom-Up

Compute value of optimal solution iteratively.
Knapsack. Fill up an n-by-W array.

Q. What is the running time? (1 min)
A.

]
TUDelft

124

Knapsack Problem: Bottom-Up

Compute value of optimal solution iteratively.
Knapsack. Fill up an n-by-W array.

Q. What is the running time? (1 min)
A. ©(n W).

]
TUDelft

125

Knapsack Problem: Running Time

Running time. ©(n W).
= Not polynomial in input size!
= 'Pseudo-polynomial.”
= (Decision version of) Knapsack is NP-complete.
(Complexity theory, 3™ year)

Knapsack approximation algorithm. There exists a polynomial algorithm
that produces a feasible solution that has value within 0.01% of optimum.
[Section 11.8, Master course on Advanced Algorithms]

]
TUDelft

126

Knapsack Problem: Finding a Solution

Construct optimal solution from computed information.

]
TUDelft

127

MY HOBBY:
EMBEDDING NP-(DMPLETE PROBLEMS IN RESTAURANT ORDERS

—

3 CROTCHKIES RESTAURANT

«— APPENZERS —
MIXED FROIT 2.15
FRENCH FRIES 2.75
SIDE SALAD 235,
HOT WINGS 3.55

MOZZAREUA STICXS 420
SAMPLER PLATE 5.80

—— SANDWICHES ~—
 RARREOIE

L 8T

WED LIKE EXACTLY §15. 05
WORTH OF APPETIZERS, PLEASE..

\ . EXACTLY? UK.

HERE, THESE PAPERS ON THE: KNAPSACK
PROBLEM MIGHT HELP YOU OUT.

LISTEN, I HAVE Six OTHER
TABLES TQ GET TO —

—AS FRST AS POSSIBLE (F COURSE. WANT
SOMETHING ON TRAVELING SALESNAN? /

\
(XIER

http://xkcd.com/287/

