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Planning komende “bijeenkomsten”

Bijeenkomst:
4. 31-3. Greedy. Bespreken opgaven met Mathijs via Skype.
5. 21-4. Divide & Conquer, Network Flow. Tomas. (& Bespreken DFS)
6. 5-5? Divide & Conquer. Bespreken opgaven met Paul/Tomas.
7. 19-5. Dynamic programming. Bespreken opgaven met Mathijs. Skype.
8. 2-6. Network Flow. Bespreken opgaven met Tomas via Skype.
9. 16-6. Eigen les. Vragenuur. Challenges (in Utrecht)
10.30-6. Exam

DomJudge: wachtwoord

Tussendoor vragen in het forum.

Skype id: 
mathijs.de.weerdt
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Beoordeling

Beoordeling Algoritmiek cursus:
• 5 programmeeropdrachten tijdens cursus
• Eigen les voorbereiden, geven in eigen klas, presenteren aan elkaar
• Toets met open vragen
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Learning Objectives: Algorithmic Paradigms

After this course you are able to design, analyze and implement algorithms 
in the following paradigms:
§ Greedy. 
§ Divide-and-conquer.
§ Dynamic programming.
By giving examples of problems and algorithms that solve them optimally.

We focus on algorithms and techniques that are useful in practice.
We also guarantee their correctness and optimality.

You will further develop your skills regarding 
• critical thinking, 
• implementing,
• proving correctness,
• proving time complexity, and
• problem-solving.



4  Greedy algorithms



Greedy

The efficient wine expert
§He would like C bottles of a specific champagne for new year’s eve.
§There are n shops in the neighborhood who sell this.
§For each shop i, price pi and the amount available ci are given.

Determine where he should buy the C bottles.

Q. What would be a good greedy strategy to minimize costs?
1. Visit the shops in order of increasing price pi.
2. Visit the shops in order of decreasing price pi.
3. Visit the shops in order of increasing capacity ci.
4. Visit the shops in order of decreasing capacity ci.
5. I don’t know.
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Greedy Buying Algorithm

Q. What is the tightest worst-case upper bound on the running time?
1.O(1)
2.O(log n)
3.O(n)
4.O(n log n)
5.O(n2)
6.I don’t know.
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Sort shops by price so that p1 £ p2 £ ... £ pn.

A ¬ f
For k = 1 to n {

A ¬ A È {k}
if (ck ≥ C)

buyk ¬ C
exit

else
buyk ¬ ck
C ¬ C - ck

}
return A  
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Selecting Breakpoints

Selecting breakpoints.
§ Road trip from Amsterdam to Rome along fixed route of length L.
§ Refueling stations at certain points b0, b1, …, bn along the way.
§ Let distances δi = (bi+1 – bi)
§ Fuel capacity (distance) = C.
§ Goal:  makes as few refueling stops as possible.

Q. What is a good strategy?

Amsterdam Rome



11

Selecting Breakpoints

Selecting breakpoints.
§ Road trip from Amsterdam to Rome along fixed route.
§ Refueling stations at certain points b0, b1, …, bn along the way.
§ Let distances δi = (bi – bi-1)
§ Fuel capacity = C.
§ Goal:  makes as few refueling stops as possible.

Greedy algorithm.  Go as far as you can before refueling.

Amsterdam Rome

1

C

C

2

C

3

C

4

C

5

C

6

C
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Q. What is the tightest worst-case upper bound on the run time?
1.O(1)
2.O(log n)
3.O(n)
4.O(n log n)
5.O(n2)
6.I don’t know.

Selecting Breakpoints:  Greedy Algorithm

Sort breakpoints so that: 0 = b0 < b1 < b2 < ... < bn = L

S ¬ {0}
x ¬ 0

while (x ¹ bn)
let p be largest integer such that bp £ x + C
if (bp = x)

return "no solution"
x ¬ bp
S ¬ S È {p}

return S

breakpoints selected
current location
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Implementation.  O(n log n)

Selecting Breakpoints:  Greedy Algorithm

Sort breakpoints so that: 0 = b0 < b1 < b2 < ... < bn = L

S ¬ {0}
x ¬ 0

while (x ¹ bn)
let p be largest integer such that bp £ x + C
if (bp = x)

return "no solution"
x ¬ bp
S ¬ S È {p}

return S

breakpoints selected
current location
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Selecting Breakpoints:  Correctness

Theorem.  Greedy algorithm is optimal.

Pf. (by contradiction)
§ Assume greedy is not optimal.
§ What we will do:

– Reason about some specific optimal solution that is as similar to the 
solution produced by the Greedy algorithm as possible.

– Show that an optimal solution exists that is even more similar.

§ Contradiction!  So greedy is optimal.

. . .

Greedy:

OPT:

g0 g1 g2

f0 f1 f2 fq

gr

fr

gr+1

fr+1
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Selecting Breakpoints:  Correctness

Theorem.  Greedy algorithm is optimal.

Pf. (by contradiction)
§ Assume greedy is not optimal.
§ Let 0 = g0 < g1 <  . . . < gp = L denote set of breakpoints chosen by greedy.
§ Let 0 = f0 < f1 <  . . . < fq = L denote set of breakpoints in the optimal 

solution with f0 = g0, f1= g1 , . . . , fr = gr for largest possible value of r.
§ Note: gr+1 ≥ fr+1 by greedy choice of algorithm, so gr+1 > fr+1 

§ …

§ Contradiction!  So greedy is optimal.

. . .

Greedy:

OPT:

g0 g1 g2

f0 f1 f2 fq

gr

fr

gr+1

fr+1
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Selecting Breakpoints:  Correctness

Theorem.  Greedy algorithm is optimal.

Pf. (by contradiction)
§ Assume greedy is not optimal.
§ Let 0 = g0 < g1 <  . . . < gp = L denote set of breakpoints chosen by greedy.
§ Let 0 = f0 < f1 <  . . . < fq = L denote set of breakpoints in the optimal 

solution with f0 = g0, f1= g1 , . . . , fr = gr for largest possible value of r.
§ Note: gr+1 ≥ fr+1 by greedy choice of algorithm, so gr+1 > fr+1 

Q. Where is the contradiction?

. . .

Greedy:

OPT:

g0 g1 g2

f0 f1 f2 fq

gr

fr

gr+1

fr+1
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Selecting Breakpoints:  Correctness

Theorem.  Greedy algorithm is optimal.

Pf. (by contradiction)
§ Assume greedy is not optimal.
§ Let 0 = g0 < g1 <  . . . < gp = L denote set of breakpoints chosen by greedy.
§ Let 0 = f0 < f1 <  . . . < fq = L denote set of breakpoints in the optimal 

solution with f0 = g0, f1= g1 , . . . , fr = gr for largest possible value of r.
§ Note: gr+1 ≥ fr+1 by greedy choice of algorithm, so gr+1 > fr+1 

. . .

Greedy:

OPT:

g0 g1 g2

f0 f1 f2 fq

gr

fr

why doesn't “optimal” drive a 
little further?

gr+1

fr+1
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Selecting Breakpoints:  Correctness

Theorem.  Greedy algorithm is optimal.

Pf. (by contradiction)
§ Assume greedy is not optimal.
§ Let 0 = g0 < g1 <  . . . < gp = L denote set of breakpoints chosen by greedy.
§ Let 0 = f0 < f1 <  . . . < fq = L denote set of breakpoints in the optimal 

solution with f0 = g0, f1= g1 , . . . , fr = gr for largest possible value of r.
§ Note: gr+1 ≥ fr+1 by greedy choice of algorithm, so gr+1 > fr+1 

another optimal solution has
one more breakpoint in common
Þ contradiction

. . .

Greedy:

OPT:

g0 g1 g2

f0 f1 f2 fq

gr

fr

gr+1



More problems with a greedy solution

Known greedy algorithms:
§ Dijkstra (see if you understand the proof) (Ch 4.4)

§ Interval Scheduling (Ch 4.1)
§ Minimizing maximum lateness (Ch 4.2)
§ Minimal Spanning Trees (Ch. 4.5)
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4.1  Interval Scheduling
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Interval Scheduling

Interval scheduling (activity selection)
§ Job j starts at sk and finishes at fk.
§ Two jobs compatible if they don't overlap.

Select as many compatible intervals as possible.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d
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Interval Scheduling:  Greedy Algorithms

Greedy template.  Consider jobs in some order. Take each job provided it's 
compatible with the ones already taken.

Q. In which order should we consider the jobs?

A. [Earliest start time] Consider jobs in ascending order of start time sk.
B. [Earliest finish time] Consider jobs in ascending order of finish time fk.
C. [Shortest interval] Consider jobs in ascending order of interval length fk – sk.
D. [Fewest conflicts] For each job, count the number of conflicting jobs ck. 

Schedule in ascending order of conflicts ck.
E. I don’t know.

0 1 2 3 4 5 6 7 8 9 1
0

1
1

f
g

h

e

a
b

c
d
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Interval Scheduling:  Greedy Algorithms

Greedy template.  Consider jobs in some order. Take each job provided it's 
compatible with the ones already taken.

earliest start time?

shortest interval?

fewest conflicts?
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Sort jobs by finish times so that f1 £ f2 £ ... £ fn.

A ¬ f
For k = 1 to n {

if (job k compatible with A)
A ¬ A È {k}

}
return A  

jobs selected 

Interval Scheduling:  Greedy Algorithm



4.2  Scheduling to Minimize Maximum Lateness



Scheduling to Minimizing Maximum Lateness

Minimizing lateness problem.
§ Single resource processes one job at a time.
§ Job j requires tj units of processing time and is due at time dj.

§ If j starts at time sj, it finishes at time fj = sj + tj. 
§ Lateness:  !j = max { 0,  fj - dj }.
§ Goal:  schedule all jobs to minimize maximum lateness L = max !j.

Ex:

0 1 2 3 4 5 6

d2 = 3d1 = 1

dj 1

tj 3

1

3

2

2

time required 

deadline

0 1 2 3 4 5 6

d1 = 1d2 = 3

job number

L = 4

L = 2
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Minimizing Maximum Lateness:  Greedy Algorithms

Q. In which order should we consider the jobs?
A. [Shortest processing time first] Consider jobs in ascending order of 

processing time tj (least work first).
B. [Earliest deadline first] Consider jobs in ascending order of deadline dj 

(nearest deadline).
C. [Smallest slack] Consider jobs in ascending order of slack dj – tj (least 

time to start to make deadline).
D. I don’t know.

0 1 2 3 4 5 6

d2 = 3d1 = 1

dj 1

tj 3

1

3

2

2

time required 

deadline

0 1 2 3 4 5 6

d1 = 1d2 = 3

job number

L = 4

L = 2
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Greedy template.  Consider jobs in some order. 

§ [Shortest processing time first] Consider jobs in ascending order of 
processing time tj (least work first).

§ [Smallest slack] Consider jobs in ascending order of slack dj - tj
(least time to start to make deadline).

counterexample

counterexample

dj

tj

100

1

1

10

10

2

dj

tj

2

1

1

10

10

2

Minimizing Maximum Lateness:  Greedy Algorithms
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Sort n jobs by deadline so that d1 £ d2 £ … £ dn

t ¬ 0
for j = 1 to n

Assign job j to interval [t, t + tj]:
sj ¬ t
fj ¬ t + tj

t ¬ t + tj
output intervals [sj, fj]

Minimizing Maximum Lateness:  Greedy Algorithm

Greedy algorithm.  Earliest deadline first.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness = 1

Minimizing Maximum Lateness:  Greedy Algorithm

Greedy algorithm.  Earliest deadline first.

Observation. The greedy schedule has no idle time.

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

time required 

deadline

job number
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Minimizing Maximum Lateness: No Idle Time

Observation.  There exists an optimal schedule with no idle time.

Prove that earliest-deadline-first greedy algorithm is optimal by exchange 
argument:
§ Take an optimal schedule that is as much as Greedy as possible.
§ Change more into greedy schedule without losing optimality…
§ A contradiction!

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12
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Minimizing Maximum Lateness: Inversions

Def.  An inversion in schedule S is a pair of jobs i and j such that:
di < dj but j scheduled before i.

Observation.  Greedy schedule has no inversions. 

ijbefore swap

inversion
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Minimizing Maximum Lateness: Inversions

Def.  An inversion in schedule S is a pair of jobs i and j such that:
di < dj but j scheduled before i.

Q.  Suppose two adjacent, inverted jobs j and i with di < dj are swapped, 
what happens to the maximum lateness?

A.The maximum lateness cannot become smaller.
B.The maximum lateness cannot become larger.
C.The maximum lateness stays the same.
D.I don’t know.

ij

i j

before swap

after swap

f'j

fi

inversion
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Minimizing Maximum Lateness: Inversions

Def.  An inversion in schedule S is a pair of jobs i and j such that:
di < dj but j scheduled before i.

Claim.  Swapping two adjacent, inverted jobs reduces the number of 
inversions by one and does not increase the maximum lateness.

Pf.  
§ … for all k ¹ i, j 
§ … for i
§ … for j

ij

i j

before swap

after swap

f'j

fi

inversion
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Minimizing Maximum Lateness: Inversions

Def.  An inversion in schedule S is a pair of jobs i and j such that:
di < dj but j scheduled before i.

Claim.  Swapping two adjacent, inverted jobs reduces the number of 
inversions by one and does not increase the maximum lateness.

Pf.  Let ! be the lateness before the swap, and let ! ' be it afterwards.
§ ! 'k = !k for all k ¹ i, j 

(lateness other jobs the same)
§ ! 'i £ !i

(new lateness for i smaller)
§ If job j is late:

ij

i j

before swap

after swap

  

€ 

"  j = " f j − d j (definition)
= fi − d j ( j finishes at time f i)
≤ fi − di (di < d j )
≤  i (definition)

f'j

fi

inversion
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Minimizing Maximum Lateness: Inversions

Def.  An inversion in schedule S is a pair of jobs i and j such that:
di < dj but j scheduled before i.

Observation.  If a schedule (with no idle time) has an inversion, then it has 
one with a pair of inverted jobs scheduled consecutively (adjacent jobs).

Pf.
■ Suppose there is an inversion. 
■ There is a pair of jobs i and j such that: di < dj but j scheduled before i.
■ Walk through the schedule from j to i. 
■ Increasing deadlines (= no inversions), at some point deadline decreases.

ijbefore swap

inversion
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Minimizing Lateness: Analysis of Greedy Algorithm

Theorem.  Greedy schedule S is optimal.
Pf.  (by contradiction)
Idea of proof: 
§ Suppose S is not optimal.
§ Take a optimal schedule S* that is as much like greedy.
§ Change to look like greedy schedule (less inversions) without losing 

optimality.
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Minimizing Lateness: Analysis of Greedy Algorithm

Theorem.  Greedy schedule S is optimal.
Pf.  (by contradiction)
Suppose S is not optimal.
Define S* to be an optimal schedule that has the fewest number of 
inversions (of all optimal schedules) and has no idle time. 
Clearly S≠S*. 

Q. How can we arrive at a contradiction?
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Minimizing Lateness: Analysis of Greedy Algorithm

Theorem.  Greedy schedule S is optimal.
Pf.  (by contradiction)
Suppose S is not optimal.
Define S* to be an optimal schedule that has the fewest number of 
inversions (of all optimal schedules) and has no idle time. 
Clearly S≠S*. Case analysis:
§ If S* has no inversions, then the same lateness. Contradiction.
§ If S* has an inversion, let i-j be an adjacent inversion.

– swapping i and j does not increase the maximum lateness and strictly 
decreases the number of inversions

– this contradicts definition of S* 
So S is an optimal schedule. ▪

This proof can be found 
on pages 128-131.

Greedy has no 
inversions.

All schedules 
without 
inversions have 
same lateness

(only diff is jobs 
with equal 
deadlines).



4.5  Minimum Spanning Tree
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Minimum Spanning Tree

Minimum spanning tree.  Given a connected graph G = (V, E) with edge 
weights ce, an MST is a subset of the edges T Í E such that
• T is a tree
• T connects all vertices, and 
• the sum of edge weights is minimized

Q. How to find such a minimum spanning tree efficiently?

5

23

10 
21

14

24

16

6

4

18
9

7

11
8

5

6

4

9

7

11
8

G = (V, E) T,    SeÎT ce = 50
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Greedy Algorithms

Q. How to find a minimum spanning tree efficiently?

A. For each vertex add cheapest edge, then join subtrees by adding 
cheapest edge.

B. Add the cheapest edge to T that has exactly one endpoint in T.
C. Add edges to T in ascending order of cost unless doing so would create 

a cycle.
D. Start with all edges from G in T. Delete edges in descending order of 

cost unless doing so would disconnect T.
E. All of the above.
F. None of the above.
G. I don’t know.
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Greedy Algorithms

Kruskal's algorithm.  Start with T =   . Consider edges in ascending order 
of cost. Insert edge e in T unless doing so would create a cycle.

Reverse-Delete algorithm.  Start with T = E.  Consider edges in 
descending order of cost. Delete edge e from T unless doing so would 
disconnect T.

Prim's algorithm.  Start with some root node s and greedily grow a tree T 
from s outward.  At each step, add the cheapest edge e to T that has 
exactly one endpoint in T.

(Boruvka, 1926).  Was first. (For each vertex add cheapest edge, then join 
subtrees by adding cheapest edge.)

Remark. All these algorithms produce an MST. We will prove this for the 
first three above using two general properties: the cut property and the 
cycle property.

Æ
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Greedy Algorithms

Simplifying assumption.  All edge costs ce are distinct. (Lengths in example 
are related to their visual representation.)

Q.  Let S be any subset of nodes, and let e be the min cost edge with 
exactly one endpoint in S.  Should e be in an MST?

A. Yes
B. No
C. It depends.
D. I don’t know.

S
e
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Greedy Algorithms

Simplifying assumption.  All edge costs ce are distinct. (Lengths in example 
are related to their visual representation.)

Q.  Let S be any subset of nodes, and let e be the min cost edge with 
exactly one endpoint in S.  Should e be in an MST?

A.  Yes (in very one) è cut property

S
e

e is in every MST
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Greedy Algorithms

Simplifying assumption.  All edge costs ce are distinct.

Q.  Let C be any cycle, does a MST exist that has all of C’s edges?
A. No.
Q.  Which one should be not in the MST (Lengths in example are related to 

their visual representation.)?
A. a
B. b
C. c
D. d
E. e
F. f

C

e a

b

c

d f 
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Greedy Algorithms

Simplifying assumption.  All edge costs ce are distinct.

Q.  Let C be any cycle, does a MST exist that has all of C’s edges?
A. No.
Q.  Which one should be not in the MST (Lengths in example are related to 

their visual representation.)?
A.  The max cost è cycle property

f 
C

f is not in the MST



48

Greedy Algorithms

Simplifying assumption.  All edge costs ce are distinct.

Cut property.  Let S be any cut, and let e be the min cost edge with exactly 
one endpoint in S.  Then the MST contains e.

Cycle property.  Let C be any cycle, and let f be the max cost edge 
belonging to C.  Then the MST does not contain f.

f 
C

S

e is in the MST

e

f is not in the MST
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Cut and cutset

Def. A cut is a subset of nodes S.  (Note: compare to s-t cut.)

1
3

8

2

6

7

4

5

S

Cut S       =  { 4, 5, 8 }
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S

Cut and cutset

Def. A cut is a subset of nodes S.  (Note: compare to s-t cut.)

Def.  A cutset D of a cut S is the subset of (cut)edges with exactly one 
endpoint in S.

1
3

8

2

6

7

4

5

Cut S       =  { 4, 5, 8 }
Cutset  D =  5-6, 5-7, 3-4, 3-5, 7-8
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Cycle-Cut Intersection

Q.  Consider the intersection of a cycle and a cutset. How many edges are 
there in such an intersection?

A. 1
B. 2
C. odd
D. even
E. I don’t know.

1
3

8

2

6

7

4

5

Cycle  C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8 
Intersection = 3-4, 5-6

S
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Cycle-Cut Intersection

Claim.  A cycle and a cutset intersect in an even number of edges.

Pf.  Walk along cycle from a node s∈S: for every edge leaving S, there 
should (first) be an edge to a node in S before returning to s.

S

V - S

C

1
3

8

2

6

7

4

5

Cycle  C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8 
Intersection = 3-4, 5-6

S

s
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Cut property

Simplifying assumption.  All edge costs ce are distinct.

Cut property.  Let S be any subset of nodes, and let e be the min cost edge 
with exactly one endpoint in S. Then the MST T* contains e.

Pf. 
Q. What proof technique to use?



Cut property

Simplifying assumption.  All edge costs ce are distinct.

Cut property.  Let S be any subset of nodes, and let e be the min cost edge 
with exactly one endpoint in S. Then the MST T* contains e.

Pf. (by contradiction)
§ Suppose e does not belong to T*, and let's see what happens.

§ This is a contradiction.
§ Thus e belongs to T*   ▪

f 

T*
e

S



Cut property

Simplifying assumption.  All edge costs ce are distinct.

Cut property.  Let S be any subset of nodes, and let e be the min cost edge 
with exactly one endpoint in S. Then the MST T* contains e.

Pf. (by contradiction)
§ Suppose e does not belong to MST T*, and let's see what happens.
§ Adding e to T* creates a cycle C in T*.
§ Edge e is both in the cycle C and in the cutset D corresponding to S  Þ

there exists another edge, say f, that is in both C and D. (use claim)
§ T' = T* È { e } - { f } is also a spanning tree.
§ Since ce < cf,   cost(T') < cost(T*).
§ This is a contradiction with T* being MST.
§ Thus e belongs to T*   ▪

f 

T*
e

S

This proof can be found on page 145.
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Cycle property

Simplifying assumption.  All edge costs ce are distinct.

Cycle property.  Let C be any cycle in G, and let f be the max cost edge 
belonging to C. Then the MST T* does not contain f.

Pf. (3 min)
Q. What proof technique to use?



Cycle property

Simplifying assumption.  All edge costs ce are distinct.

Cycle property.  Let C be any cycle in G, and let f be the max cost edge 
belonging to C. Then the MST T* does not contain f.

Pf.  (by contradiction) (1 min)
§ Suppose f belongs to T*, and let's see what happens. 

§ This is a contradiction. 
§ Thus f does not belong to T*  ▪

f
C

T*



Cycle property

Simplifying assumption.  All edge costs ce are distinct.

Cycle property.  Let C be any cycle in G, and let f be the max cost edge 
belonging to C. Then the MST T* does not contain f.

Pf.  (by contradiction)
§ Suppose f belongs to T*, and let's see what happens. 
§ Deleting f from T* creates a cut S in T*.

§ This is a contradiction. 
§ Thus f does not belong to T*  ▪

f

T*
e

S



Cycle property

Simplifying assumption.  All edge costs ce are distinct.

Cycle property.  Let C be any cycle in G, and let f be the max cost edge 
belonging to C. Then the MST T* does not contain f.

Pf.  (by contradiction)
§ Suppose f belongs to T*, and let's see what happens.
§ Deleting f from T* creates a cut S in T*.
§ Let S be all vertices connected in T*  to one endpoint of f.
§ Edge f is both in the cycle C and in the cutset D corresponding to S  Þ

there exists another edge, say e, that is in both C and D. (use claim)
§ T' = T* È { e } - { f } is also a spanning tree.
§ Since ce < cf,   cost(T') < cost(T*).
§ This is a contradiction.   
§ Thus f does not belong to T*  ▪

f

T*
e

S

This proof can be found on page 147-148. (NB. An alternative proof using the cut property is also possible.)
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Generic MST Algorithm (blue rule, red rule)

Blue rule: Cut property.  Let S be any subset of nodes, and let e be the min 
cost edge with exactly one endpoint in S. Then the MST T* contains e. 
Color e blue.

Red rule: Cycle property.  Let C be any cycle in G, and let f be the max cost 
edge belonging to C. Then the MST T* does not contain f. Color f red.

Generic greedy algorithm. 
Apply these rules until all edges are colored.
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Prim's Algorithm:  Proof of Correctness

Prim's algorithm.  [Jarník 1930, Dijkstra 1957, Prim 1959]
§ Initialize S = {any node}.   Apply cut property to S.
§ Add min cost edge in cutset corresponding to S to MST, and respective 

explored node u to S.

Q. Implementation is similar to which algorithm you have already seen?
A. BFS
B. DFS
C. Dijkstra
D. Topological Sorting
E. I don’t know.

S



Implementation:  Prim's Algorithm

Prim(G, c) {
foreach (v Î V) a[v] ¬ ¥; e[v] ¬ f
foreach (v Î V) insert v into Q
Initialize set of explored nodes S ¬ f, T ¬ f

while (Q is not empty) {
u ¬ delete min element from Q
S ¬ S È { u }
T ¬ T È { e[u] } (unless e[u] = f)
foreach (edge e = (u, v) incident to u)

if ((v Ï S) and (ce < a[v]))
decrease priority a[v] to ce
e[u] ¬ e

}

Implementation.  Use a priority queue a la Dijkstra.
§ Maintain set of explored nodes S.
§ For each unexplored node v, maintain attachment cost a[v] = cost of 

cheapest edge e[v] to a node in S.
§ O(n2) with an array; O(m log n) with a binary heap.



Kruskal's algorithm.  [Kruskal, 1956]
§ Consider edges in ascending order of weight.
§ Case 1:  If adding e to T creates a cycle, discard e according to cycle 

property.
§ Case 2:  Otherwise, insert e = (u, v) into T according to cut property

where S = set of nodes in u's connected component in T. 
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Kruskal's Algorithm:  Proof of Correctness

Case 1

v

u

Case 2

e

e S



Kruskal(G, c) {
Sort edges weights so that c1 £ c2 £ ... £ cm.
T ¬ f

foreach (u Î V) make a set containing singleton u

for i ¬ 1 to m
(u,v) ¬ ei
if (u and v are in different sets) {

T ¬ T È {ei}
merge the sets containing u and v

}
return T

}

Implementation:  Kruskal's Algorithm

Implementation.  Use the union-find data structure.
§ Build set T of edges in the MST.
§ Maintain set for each connected component.

merge two components, ie, union(u,v)

are u and v in different connected components, ie, find(u)=find(v)?



Union-Find

Union-Find.
Efficient data structure to do two operations on
§ Union: merge two components
§ Find: give the representative of the component

Q. How to implement efficiently?



Union-Find

Union-Find.
§ Represent component by tree

§ Union (by rank): merge two components
– assign each node a rank
– place root with lowest rank under highest
– increase rank of new root if equal rank

§ Find: give the representative
– path compression

(eg find(g) )
– btw, do not update rank

a

b

c

d

e

f

a

b

c

d

e

f

a

b

c

d

e

f

g

g

g



Kruskal(G, c) {
Sort edges weights so that c1 £ c2 £ ... £ cm.
T ¬ f

foreach (u Î V) make a set containing singleton u

for i ¬ 1 to m
(u,v) ¬ ei
u_root ¬ find(u)
v_root ¬ find(v)
if (u_root != v_root) {

T ¬ T È {ei}
union( u_root, v_root )

}
return T

}

Implementation.  Using the union-find data structure.
§ O(m log n) for sorting and  O(m  a(m, n) ) for union-find.

Implementation:  Kruskal's Algorithm

m £ n2 Þ log m is O(log n) essentially a constant

O(1)

O(m)

O(a(m, n))



5.  Divide & conquer



Divide & conquer

History
“divide ut regnes” / “divide et impera”

(divide and rule)

Often used in politics and as military strategy 
(Julius Caesar, Machiavelli, Napoleon)

General idea
1. Break a problem into subproblems, 
2. solve each subproblem

a. usually recursively,
b. if small enough, solve as base case,

3. then combine results.

Correctness proof by induction.

Examples
• recursive algorithms on trees
• merge sort, quicksort
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Linear Time:  O(n)

Merge.  Combine two sorted lists A = a1,a2,…,an with B = b1,b2,…,bn
into sorted whole.

Claim.  Merging two lists of size n takes O(n) time.
Pf.  After each comparison, the length of output list increases by 1.

i = 1, j = 1
while (both lists are nonempty) {

if (ai £ bj) append ai to output list and increment i
else(ai > bj)append bj to output list and increment j

}
append remainder of nonempty list to output list



Call graph of Mergesort
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16

8

4

2

1 1

2

1 1

4

2

1 1

2

1 1

8

4

2

1 1

2

1 1

4

2

1 1

2

1 1

Call graph of Mergesort of a string of length 16
(the nodes contain size of substring; nodes typically represent different substrings)



6.  Dynamic programming

Today
Dynamic Programming (Ch.6.1-6.4)
§ Binary choice: weighted interval scheduling
§ Multi-way choice: word segmentation 
§ Extra variable: knapsack
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Algorithmic Paradigms

Greedy.  Build up a solution incrementally, myopically optimizing some local 
criterion.

Divide-and-conquer.  Break up a problem into two sub-problems, solve 
each sub-problem independently, and combine solution to sub-problems to 
form solution to original problem. 

Dynamic programming. Break up a problem into a series of overlapping 
sub-problems, and build up solutions to larger and larger sub-problems.

recursive matrix chain
optimal multiplication order
(Cormen et al., p.345)
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Dynamic Programming Applications

Areas. 
■ Bioinformatics.
■ Control theory. (E.g. heating)
■ Information theory.
■ Operations research.
■ Computer science: theory, graphics, AI, systems, ….

Some famous dynamic programming algorithms. 
■ Viterbi for hidden Markov models.
■ Unix diff for comparing two files.
■ Smith-Waterman for sequence alignment.
■ Bellman-Ford for shortest path routing in networks.
■ Cocke-Kasami-Younger for parsing context free grammars.



6.1  Dynamic Programming: Binary Choice



Weighted Interval Scheduling

Weighted interval scheduling problem.
■ Job j starts at sj, finishes at fj, and has weight vj . 
■ Two jobs compatible if they don't overlap.
■ Goal:  find maximum weight subset of mutually compatible jobs.

Q. How to efficiently solve this problem?

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

dweight = 3

weight = 4

weight = 1

weight = 2

weight = 1

weight = 1

weight = 1

weight = 2
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Weighted Interval Scheduling

Weighted interval scheduling problem.
■ Job j starts at sj, finishes at fj, and has weight vj . 
■ Two jobs compatible if they don't overlap.
■ Goal:  find maximum weight subset of mutually compatible jobs.

Q. How to efficiently solve this problem with weights?
A. Consider all possible subsets of jobs that are all compatible, and take 

the maximum set.
B. Consider jobs in ascending order of finish time and add if compatible 

with already selected jobs.
C. Consider jobs in descending order of finish time and add if compatible 

with already selected jobs.
D. Consider jobs in ascending order of start time and add if compatible 

with already selected jobs.
E. Consider jobs in descending order of start time and add if compatible 

with already selected jobs.
F. I don’t know.

Ti
m
e

0 1 2 3 4 5 6 7 8 9 1
0

1
1

f
g

h

e

a
b

c
dweight = 3

weight = 4
weight = 1

weight = 2
weight = 1
weight = 1

weight = 1
weight = 2
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Weighted Interval Scheduling:  Greedy

Recall.  Greedy algorithm works if all weights are 1.
■ Consider jobs in ascending order of finish time.
■ Add job to subset if it is compatible with previously chosen jobs.

C. Ascending order of finish time used for weighted interval scheduling

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 999

weight = 1
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Weighted Interval Scheduling:  Greedy

B. Descending order of weight
Fails

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 2

weight = 1
each

c d
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Weighted Interval Scheduling:  Greedy

D. Descending order of relative weight (weight per time unit)
Fails (by a factor 2 at most).

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 6

weight = 9
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Weighted Interval Scheduling:  Brute Force

A. All possible subsets of jobs 

Q. How many possible selections of jobs are there at most? 
A.O(n log n)
B.O(n2)
C.O(n3)
D.O(2n)
E.O(n!)
F.I don’t know.



Weighted Interval Scheduling:  Brute Force
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5

4

3

2

1 1

2

1 1

3

2

1 1

2

1 1

4

3

2

1 1

2

1 1

3

2

1 1

2

1 1

include 5? yes (right) or no (left)?

include 4? yes (right) or no (left)?

include 3?

include 2?

include 1?

Note: recursion! (Is common with back-tracking).
1.Some combinations can be infeasible…
2.Some subproblems are identical

3
4

5

1
2
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Weighted Interval Scheduling

Notation.  Label jobs by finishing time:  f1  £ f2  £ . . . £ fn .
Def.  p(j) = largest index i < j such that job i is compatible with j.
(predecessor)
Q.  p(8) = ?,  p(7) = ?,  p(2) = ?.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

weight = 3

weight = 4

weight = 1

weight = 2

weight = 1

weight = 1

weight = 1

weight = 2
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Weighted Interval Scheduling

Notation.  Label jobs by finishing time:  f1  £ f2  £ . . . £ fn .
Def.  p(j) = largest index i < j such that job i is compatible with j.
(predecessor)
Q.  p(8) = ?,  p(7) = ?,  p(2) = ?.
A.  p(8) = 5,  p(7) = 3,  p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

weight = 3

weight = 4

weight = 1

weight = 2

weight = 1

weight = 1

weight = 1

weight = 2



Weighted Interval Scheduling: Recursion

Q. Suppose optimal weight of selection up to three (OPT(3)) and four  
(OPT(4)) are known, what to do with job 5 with p(5)=3?

A. Select if OPT(3) ≥ OPT(4)
B. Select if OPT(3) + v5 ≥ OPT(4)
C. Select if OPT(4) + v5 ≥ OPT(3)
D. I don’t know.
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1 1
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Recursion: 
so assume optimal value of 
subproblems is known.

3
4

5

1
2
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Example: Weighted Interval Scheduling:  Brute Force’

Notation.  OPT(j) = value of optimal solution to the problem consisting of 
job requests 1, 2, ..., j   (ordered by finishing time).

■ Case 1:  OPT selects job 5.
– can't use incompatible job 4
– must include optimal solution to problem consisting of remaining 

compatible jobs, so OPT(3)

■ Case 2:  OPT does not select job 5.
– must include optimal solution to problem consisting of remaining 

compatible jobs, so OPT(4)

optimal substructure

OPT (5) =max v5 + OPT (3), OPT (4){ }
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General: Weighted Interval Scheduling:  Brute Force’

Notation.  OPT(j) = value of optimal solution to the problem consisting of 
job requests 1, 2, ..., j   (ordered by finishing time).

■ Case 1:  OPT selects job j.
– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
– must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  p(j)

■ Case 2:  OPT does not select job j.
– must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  j-1

optimal substructure
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General: Weighted Interval Scheduling:  Brute Force’

Notation.  OPT(j) = value of optimal solution to the problem consisting of 
job requests 1, 2, ..., j   (ordered by finishing time).

■ Case 1:  OPT selects job j.
– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
– must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  p(j)

■ Case 2:  OPT does not select job j.
– must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  j-1

  

€ 

OPT( j) =
0 if  j = 0

max v j + OPT( p( j)), OPT( j −1){ } otherwise
# 
$ 
% 

optimal substructure

Case 1 Case 2
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
if (j = 0)

return 0
else

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Weighted Interval Scheduling:  Brute Force’

Brute force algorithm (with smart skipping of predecessors).

  

€ 

OPT( j) =
0 if  j = 0

max v j + OPT( p( j)), OPT( j −1){ } otherwise
# 
$ 
% 
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
if (j = 0)

return 0
else

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Weighted Interval Scheduling:  Brute Force’

Q. What is the worst-case tight upper bound of this algorithm?
A.O(n log n)
B.O(n2)
C.O(n3)
D.O(2n)
E.O(n!)
F.I don’t know.
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Weighted Interval Scheduling:  Brute Force’

Q. What is the worst-case tight upper bound of this algorithm?
A.O(n log n)
B.O(n2)
C.O(n3)
D.O(2n)
E.O(n!)
F.I don’t know.

3

4
5

1
2

p(1) = 0, p(j) = j-2

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

0

0

0 0

0
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Weighted Interval Scheduling:  Brute Force’

Q. What is the worst-case tight upper bound of this algorithm?
A. T(0)=O(1) and T(n) = T(n-1) + T(n-2) + O(1)

Observation. Number of recursive calls grow like Fibonacci sequence Þ
exponential.
Observation.  Recursive algorithm has many (redundant) sub-problems.

3

4
5

1
2

p(1) = 0, p(j) = j-2

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))

NB: worst-case is T(n-2), because if p(j)=j-1 there is only one subproblem
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
if (j = 0)

return 0
else

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Weighted Interval Scheduling:  Brute Force’

Q. What can we do to obtain polynomial run time?
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.
Compute p(1), p(2), …, p(n)

for j = 1 to n
M[j] = empty

M[0] = 0

M-Compute-Opt(j) {
if (M[j] is empty)

M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]

}

global array

Weighted Interval Scheduling:  Memoization

Memoization.  Store results of each sub-problem in a cache; lookup as 
needed.
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Weighted Interval Scheduling:  Memoization

3

4
5

1
2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

0

0

0 0

0
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Sort jobs by finish times so that f1 £ f2 £ ... £ fn.
Compute p(1), p(2), …, p(n)

for j = 1 to n
M[j] = empty

M[0] = 0

M-Compute-Opt(j) {
if (M[j] is empty)

M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]

}

Weighted Interval Scheduling:  Memoization

Q. What is the worst-case tight upper bound of this algorithm?
A.O(n log n)
B.O(n2)
C.O(n3)
D.O(2n)
E.O(n!)
F.I don’t know.
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Weighted Interval Scheduling:  Running Time

Claim.  Memoized version of algorithm takes O(n log n) time.
Proof.
Q. How many iterations in initialization?

Q. How many iterations in one invocation?

Q. How many invocations?

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.
Compute p(1), p(2), …, p(n)

for j = 1 to n
M[j] = empty

M[0] = 0

M-Compute-Opt(j) {
if (M[j] is empty)

M[j] = max(vj + M-Compute-Opt(p(j)), M-
Compute-Opt(j-1))

return M[j]
}
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Weighted Interval Scheduling:  Running Time

Claim.  Memoized version of algorithm takes O(n log n) time.
Proof.
Q. How many iterations in initialization?
■ Sort by finish time:  O(n log n).
■ Computing p(×) :  O(n log n) (e.g. O(n) if by decreasing start time)

Q. How many iterations in one invocation?

Q. How many invocations?

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.
Compute p(1), p(2), …, p(n)

for j = 1 to n
M[j] = empty

M[0] = 0

M-Compute-Opt(j) {
if (M[j] is empty)

M[j] = max(vj + M-Compute-Opt(p(j)), M-
Compute-Opt(j-1))

return M[j]
}
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Weighted Interval Scheduling:  Running Time

Claim.  Memoized version of algorithm takes O(n log n) time.
Proof.
Q. How many iterations in initialization?
■ Sort by finish time:  O(n log n).
■ Computing p(×) :  O(n log n) (e.g. O(n) if by decreasing start time)

Q. How many iterations in one invocation?
■ M-Compute-Opt(j):  each invocation takes O(1) time and either

– (i)  returns an existing value M[j]
– (ii) fills in one new entry M[j] and makes two recursive calls

Q. How many invocations?

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.
Compute p(1), p(2), …, p(n)

for j = 1 to n
M[j] = empty

M[0] = 0

M-Compute-Opt(j) {
if (M[j] is empty)

M[j] = max(vj + M-Compute-Opt(p(j)), M-
Compute-Opt(j-1))

return M[j]
}
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Weighted Interval Scheduling:  Running Time

Claim.  Memoized version of algorithm takes O(n log n) time.
Proof.
Q. How many iterations in initialization?
■ Sort by finish time:  O(n log n).
■ Computing p(×) :  O(n log n) (e.g. O(n) if by decreasing start time)

Q. How many iterations in one invocation?
■ M-Compute-Opt(j):  each invocation takes O(1) time and either

– (i)  returns an existing value M[j]
– (ii) fills in one new entry M[j] and makes two recursive calls

Q. How many invocations?
■ Progress measure F = # nonempty entries of M[].

– initially F = 0,  throughout F £ n. 
– (ii) increases F by 1 and only then at most 2 recursive calls.

■ Overall running time (without init) of M-Compute-Opt(n) is O(n).   ▪

Remark.  O(n) if jobs are pre-sorted by start and finish times.
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Weighted Interval Scheduling:  Bottom-Up

Bottom-up dynamic programming.  Unwind recursion.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
M[0] = 0
for j = 1 to n

M[j] = max(vj + M[p(j)], M[j-1])
}

Note: reason top-down, implement bottom-up.
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Weighted Interval Scheduling:  Bottom-Up
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Weighted Interval Scheduling:  Finding a Solution

Dynamic programming algorithms computes optimal value.
The solution can be found by post-processing the cache.

Q. In what order are the jobs printed?

Run M-Compute-Opt(n)
Run Find-Solution()

Find-Solution(n) {
j = n
while (j>0 and vj + M[p(j)] >= M[j-1])

print j
j = p(j)
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Weighted Interval Scheduling:  Finding a Solution

Dynamic programming algorithms computes optimal value.
The solution can be found by post-processing the cache recursively.

■ # of recursive calls £ n  Þ O(n).

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
if (j = 0)

output nothing
else if (vj + M[p(j)] > M[j-1])

Find-Solution(p(j))
print j

else
Find-Solution(j-1)

}
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Dynamic Programming Summary

Recipe.
1. Characterize structure of problem.
2. Recursively define value of optimal solution: OPT(j) = …
3. Compute value of optimal solution iteratively.
4. Construct optimal solution from computed information.

Dynamic programming techniques.
■ Binary choice:  weighted interval scheduling.
■ Multi-way choice:  segmented least squares, word segmentation.



6.2  Dynamic Programming: Multi-Way Choice
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Word segmentation

Problem
•Given a string x of letters x1x2…xn, 
•Given a quality function q(i,j) that gives the value of substring xixi+1…xj.
•Give an efficient algorithm to split x into words (substrings) such that sum 
of quality of these words is maximized.

Example. “mogenzeslapen”: 

q(mo) + q(gen) + q(ze) + q(sla) + q(pen) = ?
q(mogen) + q(ze) + q(slapen) = ?

word quality

mogen 4

enz 1

gen 2

sla 2

pen 2

slapen 5

ze 1

en 1
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Word segmentation

Problem
•Given a string x of letters x1x2…xn, 
•Given a quality function q(i,j) that gives the value of substring xixi+1…xj.
•Give an efficient algorithm to split x into words (substrings) such that sum 
of quality of these words is maximized.

Example. “mogenzeslapen”: 

q(mo) + q(gen) + q(ze) + q(sla) + q(pen) = 7
q(mogen) + q(ze) + q(slapen) = 10

word quality

mogen 4

enz 1

gen 2

sla 2

pen 2

slapen 5

ze 1

en 1
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Dynamic Programming:  Multiway Choice

Notation.
■ OPT(j) = maximum quality of string x1, x2 , . . . , xj.
■ q(i, j)   = quality of substring xi, xi+1 , . . . , xj .

Reason backward, computing OPT(j) using subproblems
Q.  How can value of OPT(j) be expressed based on subproblems?



Dynamic Programming:  Multiway Choice

Example. Compute OPT(6). 

Choose optimal value of the following segmentations:

110

Algoritmiek – Exercise 6.5

Given a string of letters y = y1y2 · · · yn, let y[i : j] = yiyi+1 · · · yj denote
the substring of y consisting of letters from position i to j, and q(i, j) be
the quality of the string y[i : j]. The optimal solution can be computed
by the following recurrence.

OPT(j) = max
1⇤i⇤j

{OPT(i� 1) + q(i, j)} for j ⌅ 1, and OPT(0) = 0.

As an example, to calculate OPT(6), six options are possible, using the
results for OPT(0) through OPT(5). The maximum of these options is
used as value for OPT(6).

OPT(0)

OPT(1)

OPT(2)

OPT(3)

OPT(4)

OPT(5)

q(1, 6)

q(2, 6)

q(3, 6)

q(4, 6)

q(5, 6)

q(6, 6)

Note that, while only two segments are visible, the algorithm is recursive.
This means that for example OPT(3) might contain multiple segments,
which are not visualized in the drawing above.

The optimal quality defined by OPT() can be computed as follows.
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Dynamic Programming:  Multiway Choice

Notation.
■ OPT(j) = maximum quality of string x1, x2 , . . . , xj.
■ q(i, j)   = quality of substring xi, xi+1 , . . . , xj .

Reason backward, computing OPT(j) using subproblems
Q.  How can value of OPT(j) be expressed based on subproblems?
Q.  What are the options here?
A.  The start i of the last word.
■ Last word uses characters xi, xi+1 , . . . , xj for some i.
■ Value = q(i, j) + OPT(i-1).

OPT ( j) =
0 if  j= 0

max
1≤ i ≤ j

q(i, j) + OPT (i−1){ } otherwise

#

$
%

&%

Choose i Î [1, j] Value of this choice
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Word Segmentation:  DP Algorithm

Q. What is the worst-case tight upper bound of this algorithm?
A.O(n)
B.O(n log n)
C.O(n2)
D.O(n3)
E.O(2n)
F.O(n!)
G.I don’t know.

INPUT: n, qij

Word-Segmentation() {
M[0] = 0

for j = 1 to n
M[j] = max 1 £ i £ j (qij + M[i-1])

return M[n]
}
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Word Segmentation:  Finding a Solution

Run Find-Solution(n)
Find-Solution(j) {

if (j = 0)
output nothing

else 
i = j
while(i >= 1 && qij+M[i-1]!=M[j])
i = i-1

Find-Solution(i-1)
output i

}



114

Dynamic Programming Summary

Recipe.
1. Characterize structure of problem.
2. Recursively define value of optimal solution: OPT(j) = …
3. Compute value of optimal solution iteratively.
4. Construct optimal solution from computed information.

Dynamic programming techniques.
■ Binary choice:  weighted interval scheduling.
■ Multi-way choice:  segmented least squares, word segmentation.
■ Extra variable: knapsack



6.4  Knapsack Problem
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Knapsack Problem

Knapsack problem.
■ Given n objects and a "knapsack.”
■ Item i weighs wi  > 0 kilograms and has value vi > 0.
■ Knapsack has limit of W kilograms.
■ Goal:  fill knapsack so as to maximize total value.

Q.  What is the maximum value here?
1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2W = 11
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Knapsack Problem

Knapsack problem.
■ Given n objects and a "knapsack."
■ Item i weighs wi  > 0 kilograms and has value vi > 0.
■ Knapsack has limit of W kilograms.
■ Goal:  fill knapsack so as to maximize total value.

Q.  What is the maximum value here?
A.  { 3, 4 } attains 40

A reasonable greedy algorithm seems to 
repeatedly add item with maximum ratio vi / wi.

Q.  Is this greedy algorithm optimal?
Ex: { 5, 2, 1 } achieves only value = 35  Þ greedy not optimal.

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2W = 11

1

Ratio

3.6
3.66

3

4
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Dynamic Programming:  False Start

Recursively define value of optimal solution: 
Def.  OPT(i) = max profit subset of items 1, …, i.

§Case 1:  OPT does not select item i.
§ OPT selects best set out of { 1, 2, …, i-1 } 

§Case 2:  OPT selects item i.
§ accepting item i does not immediately imply that we will have to reject 

other items; this depends on the remaining weight!
§ (does not only depend on best set out of { 1, 2, …, i-1 })

Conclusion.  Need more sub-problems!

Q. What is the missing parameter to identify a sub-problem?
Q. And how to express the optimal value of a set of items and a capacity in 
terms of these sub-problems? (1 min)
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Dynamic Programming:  Adding a New Variable

Recursively define value of optimal solution: 
Def.  OPT(i, w) = max profit subset of items 1, …, i with weight limit w.

§Case 1:  OPT does not select item i.
§ OPT selects best set out of { 1, 2, …, i-1 } using weight limit w 

§Case 2:  OPT selects item i.
§ new weight limit = w – wi
§ OPT selects best set out of { 1, 2, …, i–1 } using this new weight limit

  

€ 

OPT(i, w) =

0 if  i = 0
OPT(i −1, w) if  wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi ){ } otherwise

# 

$ 
% 

& 
% 
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Knapsack Algorithm: Recursive

1
Value

18
22
28

1
Weight

5
6

6 2

7

Item
1

3
4
5

2

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

1 2 3 4

0

7

7

7

1

5

0

7

18

1

6

0

7

1

7 8

0

9

0

1

10

0

11

0

7

25

40

1

40

W + 1

W = 11

OPT(i,w):

0

1

0

1

0

1

€ 

OPT(i, w) =

0 if  i = 0
OPT(i −1, w) if  w i > w
max OPT(i −1, w), vi + OPT(i −1, w − wi){ } otherwise

# 

$ 
% 

& 
% 

w:

n + 1

i:

0

1

2

3

4

5
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Knapsack Algorithm: Recursive

1
Value

18
22
28

1
Weight

5
6

6 2

7

Item
1

3
4
5

2

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

1 2 3 4

0

7

7

7

1

5

0

7

18

1

6

0

7

1

7 8

0

9

0

1

10

0

11

0

7

25

40

1

40

W + 1

W = 11

OPT(i,w):

0

1

0

1

0

1

w:

n + 1

i:

0

1

2

3

4

5

€ 

OPT(i, w) =

0 if  i = 0
OPT(i −1, w) if  w i > w
max OPT(i −1, w), vi + OPT(i −1, w − wi){ } otherwise

# 

$ 
% 

& 
% 
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Knapsack Algorithm: Bottom-Up

1
Value

18
22
28

1
Weight

5
6

6 2

7

Item
1

3
4
5

2

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40

W + 1

W = 11

OPT(i,w):

n + 1

i:

0

1

2

3

4

5

w:

€ 

OPT(i, w) =

0 if  i = 0
OPT(i −1, w) if  w i > w
max OPT(i −1, w), vi + OPT(i −1, w − wi){ } otherwise

# 

$ 
% 

& 
% 



Knapsack Algorithm: Bottom-Up

1
Value

18
22
28

1
Weight

5
6

6 2

7

Item
1

3
4
5

2

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40

W + 1

W = 11

OPT(i,w):

n + 1

i:

0

1

2

3

4

5

w:

€ 

OPT(i, w) =

0 if  i = 0
OPT(i −1, w) if  w i > w
max OPT(i −1, w), vi + OPT(i −1, w − wi){ } otherwise

# 

$ 
% 

& 
% 
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Compute value of optimal solution iteratively.
Knapsack.  Fill up an n-by-W array.

Q.  What is the running time? (1 min)
A.

Input: n, w1,…,wN, v1,…,vN

for w = 0 to W
M[0, w] = 0

for i = 1 to n
for w = 0 to W

if (wi > w)
M[i, w] = M[i-1, w]

else
M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}

return M[n, W]

Knapsack Problem:  Bottom-Up
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Compute value of optimal solution iteratively.
Knapsack.  Fill up an n-by-W array.

Q.  What is the running time? (1 min)
A. Q(n W).

Input: n, w1,…,wN, v1,…,vN

for w = 0 to W
M[0, w] = 0

for i = 1 to n
for w = 0 to W

if (wi > w)
M[i, w] = M[i-1, w]

else
M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}

return M[n, W]

Knapsack Problem:  Bottom-Up
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Knapsack Problem:  Running Time

Running time.  Q(n W).
■ Not polynomial in input size!
■ "Pseudo-polynomial."
■ (Decision version of) Knapsack is NP-complete. 

(Complexity theory, 3rd year)

Knapsack approximation algorithm.  There exists a polynomial algorithm 
that produces a feasible solution that has value within 0.01% of optimum.  
[Section 11.8, Master course on Advanced Algorithms]



Run Knapsack()
Run Find-Solution(n,W)

Find-Solution(i,w) {

}
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Knapsack Problem: Finding a Solution

Construct optimal solution from computed information.

Run Knapsack()
Run Find-Solution(n,W)

Find-Solution(i,w) {
if (i = 0 or w = 0)

output nothing
else if ( M[i,w] = M[i-1, w] )

Find-Solution(i-1,w)
else

Find-Solution(i-1,w-wi)
print i

}



6.  Dynamic programming

http://xkcd.com/287/


