
Plan Repair in Conflict-Free Routing

Adriaan ter Mors1 and Cees Witteveen2

1 Almende BV, Rotterdam, The Netherlands, adriaan@almende.org
2 Delft University of Technology, The Netherlands, c.witteveen@tudelft.nl

Abstract. In conflict-free routing a set of agents have to traverse a
common infrastructure without interfering with each other. Maza and
Castagna [1] showed how route plans can be repaired by maintaining the
priority of agents on infrastructure resources. They also developed an
algorithm that allows agents to change priorities to avoid long waits. We
extend the work of Maza and Castagna by (i) specifying an algorithm
that allows more priority changes, and by (ii) defining a graph structure
that can predict exactly which priority changes will lead to a deadlock,
and which will not.
Our experiments show that our algorithm performs around twice as many
priority changes as Maza and Castagna’s algorithm. Also, the average
delay produced by our algorithm is lower in our experiments, although
there is no clear relation between the number of priority changes and the
delay: priority changes seem the most effective when the system is not
fully congested, and when there are few incidents that cause delay.

1 Introduction

Let A be a set of vehicles or agents each with a start location and a goal location.
The problem of conflict-free routing is to find the shortest-time route to the
goal location for each of the agents, in such a way that agents do not interfere
with each other (e.g., they do no collide). This problem has applications in the
routing of Automated Guided Vehicles (AGVs) in warehouses or at container
terminals (such as Rotterdam and Singapore), but also in the routing of aircraft
on taxiways.

In the literature many planning approaches to this problem exist, that find
an optimal (shortest-time) plan for a single agent, given the plans of previous
agents, which may not be invalidated. Early algorithms include those from Fujii
et al. [2], and from Kim and Tanchoco [3], who proved that their algorithm
returned the optimal solution in O(|A|4|R|2) time, where A is the set of agents,
and R is the set of infrastructure resources. More recent work includes that
of Hatzack and Nebel [4], who presented a sub-optimal O(|A||R|) algorithm,
and an algorithm from Ter Mors et al. [5] that finds the optimal solution in
O(|A||R| log(|A||R|) + |A||R|2) time.

In of all of the aforementioned application domains, deadlock situations can
occur if only one agent is delayed. One approach is to detect and resolve dead-
locks (cf. [6]) as they occur, but that leaves the question what to do with the

plans that have been made: it is unclear whether these are still of good quality,
or whether they will soon lead to another deadlock. Many other approaches are
based on deadlock avoidance, with little or no planning involved. In these ap-
proaches, agents usually take the shortest path, and before an agent enters the
next road or intersection, a check is performed to see if it safe to do so. Wu and
Zhou [7], for example, build a Petri net model of the transportation system, and
only allow an agent to enter the next segment if it leaves the Petri net in a live
state. Reveliotis [8] presents a similar approach in which he extends Dijkstra’s
Banker’s algorithm. The disadvantage of these deadlock avoidance approaches
is that they do not try to find optimal agent routes.

The approach we discuss in this paper was first explored by Maza and
Castagna [1]. They assume a planning algorithm such as [3], and they note
that the set of agent plans specifies for each infrastructure resource the order in
which the agents should enter the resource. They prove that if during execution
we simply maintain this priority, then no deadlocks can occur. A disadvantage is
that it requires agents to wait for delayed agents. The authors came up with an
algorithm that sometimes allows non-delayed agents to increase their priority.
However, the constraints under which this is possible are quite restrictive.

We extend the approach of Maza and Castagna in two ways: first, we present
an algorithm that allows more priority changes; second, we define a graph struc-
ture that can predict exactly which priority changes will lead to a deadlock, and
which will not.

2 Framework

An infrastructure is an undirected graph G = (V, E), where V is a set of vertices
representing intersections, and E ⊆ V ×V is a set of edges representing lanes. For
each agent Ai ∈ A there is a pair (si, di) of locations were si is the agent’s start
location and di its destination location. We will treat both lanes and intersections
as resources that must be traversed by the agents, in non-zero time. Hence, we
define the set R of resources by R = V ∪E. The function C : R → N

+ associates
with every resource ri ∈ R a capacity C(ri) that specifies the maximum number
of agents that can simultaneously occupy a resource. For an intersection resource
ri we always have C(ri) = 1. We also define a function D : R → N

+ that gives
the minimum travel time of a resource. From the infrastructure graph G, we
derive a resource graph RG = (R, ER) where for each edge e = {v1, v2} ∈ E,
the resource successor relation ER contains the pairs (v1, e), (e, v2), (v2, e), and
(e, v1).

Definition 1 (Agent Plan). Given a source, destination pair (s, d) and a re-
source graph RG, an agent plan is a sequence π = (〈r1, τ1〉, . . . , 〈rn, τn〉) of n

〈 resource, interval 〉 pairs such that r1 = s and rn = d and ∀j ∈ {1, . . . , n− 1}:

1. interval τj meets interval τj+1,
2. |τj | ≥ D(rj),
3. (rj , rj+1) ∈ ER

The first constraint in the above definition states that the exit time of the
jth resource in the plan must be equal to the entry time into resource j +1. The
second constraint requires that the agent’s occupation time of a resource is at
least sufficient to traverse the resource in the minimum travel time. The third
constraint states that if two resources follow each other in the agent’s plan, then
they must be adjacent in the infrastructure.

In conflict-free routing, agents need to find plans that do not interfere with
each other. Only those combinations of agent plans that do not violate any
resource capacity constraints should be considered.

Definition 2 (Resource Load). Given a set Π of agent plans, the resource
load λ is a function λ : R × N → N that gives the number of agents occupying a
resource ri at each time point t: λ(ri, t) = |{〈ri, τ〉 ∈ π |π ∈ Π ∧ t ∈ τ}|.

In this paper we consider two additional constraints. The first is that agents
are not allowed to overtake each other on a (lane) resource. The second con-
straint is that a resource can be used in only a single direction at one time. This
implies that once an agent has entered a (lane) resource from one end (i.e., an
intersection), no other agent can enter the resource from the other end until the
first agent has exited. In other words, if two agents occupy the same resource at
the same time, they must have entered from the same intersection. Given plan
step σ, we write ep(σ) to denote the entry point of σ, which equals the previous
resource in the plan.

3 Plan execution

We employ a simple model for agent driving: each agent has a maximum speed,
and it can drive at any speed up to that maximum speed. We assume no ac-
celeration or deceleration are necessary. Given its plan of pairs of resources and
time intervals, an agent will try to traverse each resource in the specified time
interval. If an agent arrives at a resource early, it will simply wait before entering
the resource; if an agent is late, it will simply continue to drive along the planned
sequence of resources, and it will try to make up some time. Making up time
might be possible if the planned speed of traversing a resource is less than the
agent’s maximum speed.

With the above model of plan execution, the delay of one agent can cause a
deadlock situation, as the following example illustrates.

Example 1. Consider a small airport with aircraft agents A1 and A2, in figure 1.
A1 starts at hangar h2 and wants to go to h4, while A2 wants to go from hangar
h3 to hangar h1. The agents make the following plans, to the effect that A1 is
allowed to pass along the taxiway straight t2 − t4 − t5 first:

πA1
= 〈h2, 0〉, 〈t3, 2〉, 〈t2, 4〉, 〈t4, 5〉, 〈t5, 10〉, 〈t7, 11〉, 〈h4, 13〉

πA2
= 〈h3, 0〉, 〈t6, 2〉, 〈t5, 11〉, 〈t4, 12〉, 〈t2, 17〉, 〈t1, 18〉, 〈h1, 20〉

h1

h2 h3

h4t1 t2

t3

t4 t5

t6

t7

A1 A2

Fig. 1. Two aircraft agents A1 and A2 with hangars h4 and h1 as respective destina-
tions.

Hence, A2 plans to stay on taxiway t6 in the interval [2, 11), just long enough
to let A1 pass. Suppose that during plan execution, A1 stalls his engine, and he
departs with a delay of 5. Then, he will be on taxiway t4 in the interval [10, 15).
Clearly, this interferes with the plan of A2, who will be on t4 from 12 until 17.
Agent A1 and A2 will therefore meet each other on taxiway t4, and unless either
of them can drive backwards, they will end up in a deadlock situation.

What happened in example 1 was that the priority that the agents had agreed
upon during planning was violated during plan execution. After the planning
phase, we know for each resource in which order it will be visited by the agents.
If we maintain this order during plan execution, then no deadlocks can occur [9].
This leads us to formulate the following conditions for entry into a resource:

Definition 3 (Resource Entry Permission). An agent Ai is allowed to start
its next plan step σi = 〈rj , τ = [ts, te)〉 by entering resource rk at time t if:

1. σi is plan step number n on rk, and n − 1 plan steps have been started on
this resource so far,

2. the number of agents on rk at time t is at least one less than C(rk),

3. if an agent Aj occupies rk at time t, with plan step σj , then ep(σi) = ep(σj),

4. t ≥ ts.

Changing the priority (i.e., the plan step number on a resource) of the agents’
plan steps during plan execution can often be beneficial, for instance if A1 in
example 1 suffers a very long delay, then A2 should go first. The question is
whether we can change the priority of the agents without introducing deadlocks.
One simple mechanism is from Maza and Castagna [1]: Algorithm Maza-2: Grant
one agent the highest priority from the current resource — where the agent is
waiting for some delayed agent — until the resource in its plan where the agent
already has the highest priority (i.e., this agent is the next to enter), if and only
if the resources, on which the agent will inherit the highest priority, are currently
empty.

4 Planstep-Priority Graph

In this section we will construct the Planstep-Priority Graph (PPG) from the
(plan) steps of the plans of the agents. We will show that a deadlock will occur if
and only if this graph contains a cycle. In the following we will write p(rk, σi,x)
to denote the priority of plan step σi,x on resource rk.

Definition 4 (Enabling Plan Step). Plan step σi,x+1 ∈ πi is the enabling
plan step of σj,y ∈ πj if σi,x (i.e., the previous step in πi) and σj,y are on the
same resource rk, and:

1. p(rk, σj,y) = p(rk, σi,x) + 1 ∧ ep(σi,x) 6= ep(σj,y); or
2. p(rk, σj,y) = p(rk, σi,x) + C(rk)∧

∀h, w : p(rk, σj,y) ≤ p(rk, σh,w) ≤ p(rk, σi,x) : ep(σi,x) = ep(σh,w).

When the enabling plan step starts, at least two entry conditions from defi-
nition 3 become satisfied: first of all, there are now fewer agents occupying the
resource than the capacity, and second, all agents traversing the resource in the
opposite direction have exited.

Definition 5 (Planstep-Priority Graph). Given a set of agent plans Π =
{π1, . . . , πn}, πi = (σi,1, . . . , σi,m), the Planstep-Priority Graph (PPG) is a di-
rected graph G = (V, E), where the set of vertices is given by:

V =

|A|⋃

i=1

|πi|⋃

j=1

σi,j (1)

That is, there is a vertex for every plan step in every plan. The set of edges is
made up of three parts E = E1 ∪ E2 ∪ E3:

E1 = {(σi,j , σi,j+1)} (2)

E2 = {(σi,x, σj,y), (σi,x+1, σj,y+1) | p(rk, σi,x) = p(rk, σj,y) + 1} (3)

E3 = {(σi,x, σj,y)|σi,x is enabling plan step of σj,y} (4)

The edges in the Planstep-Priority Graph reflect the order in which plan steps
should be executed; if (σi,x, σj,y) ∈ E, then plan step σi,x must start before σj,y

can start. Edges in E1 express that an agent should perform the steps in its plan
sequentially. The set E2 specifies that if the priority of σi,x (on some resource
rk) is one higher (i.e., the priority number is one lower) than the priority of σj,y,
then σi,x must not only start before σj,y, it must also finish before σj,y (since
overtaking is not allowed). This implies that the next plan step σi,x+1 of πi must
start before the next step σj,y+1 in πj . Finally, the set E3 states that a plan step
cannot start until its enabling plan step has started.

Proposition 1. A deadlock will occur if and only if there is a cycle in the
Planstep-Priority Graph.

Proof (sketch). Case I: deadlock → cycle in PPG. A deadlock occurs if no agent
can make any progress any more. In our model, this can occur if an agent is
waiting to enter a resource, or if an agent is ‘in the middle’ of a resource, but
stuck behind another agent. In both of these cases, we can find a path of edges
in E to connect a waiting agent to the culprit. Because a deadlock involves a
cyclic wait, the paths in E between waiting agents form a cycle.

Waiting to enter a resource: Definition 3 gives three reasons why an agent
should wait for entry; two of them indicate that an agent’s enabling plan
step has not started yet (in which case we can find an edge in E3). The third
reason is that it’s not yet the agent’s turn to enter a resource; in this case,
we can construct a path between the waiting agents using edges from E1

and E2.
Stuck behind another agent: Using edges in E2, we can find a path to the

first agent to exit the resource, and this agent is waiting to enter its next
resource, so we return to the previous case.

Case II: cycle in PPG → deadlock. The edges in PPG specify a precedence
order between plan steps; if this order is cyclic, then no plan step in a cycle can
ever start, and hence a deadlock will occur the moment an agent tries to start a
plan step that is part of a cycle.

4.1 Algorithm: increasing agent priorities

Arriving at a resource, an agent Ai may find that there are one or more agents
with a higher priority that have not entered the resource yet. To continue driving,
agent Ai should increase its priority to the maximum of all these delayed agents.
If we only change priorities on the current resource, however, then it is easy to
create a deadlock situation. Suppose that one of the delayed agents, agent Aj ,
follows the same route as (what remains of the plan of) Ai, but in the opposite
direction. If agent Ai is allowed to increase its priority, then sooner or later agent
Ai and agent Aj will meet, when neither can make progress anymore.

For each of the delayed agents, Ai must check whether they also have a
higher priority on subsequent resources in Ai’s plan, and, if yes, then Ai can
only increase its priority if these agents are not already occupying one of these
resources.

From lines 7 and 9 we can see that the set A of delayed agents can change
as Ai scans the resources that remain in its plan. A new agent Aj can be added
to A if for some future resource rk the priority of Aj is higher than that of Ai,
but lower than that of some agent already in A. Of course, an agent can also
disappear from the set A as soon as it does not share any resources anymore
with agent Ai.

In most cases, the procedure described above results in a deadlock-free change
of priorities. In a few cases, however (most notably when a delayed agent’s path
crosses that of Ai more than once), it is still possible that a deadlock situation is
created. Therefore, we simply check after increasing an agent’s priority whether
the Planstep-Priority Graph is still acyclic.

Algorithm 1 Increase Agent Priority

Require: agent Ai, plan π, Planstep-Priority Graph PPG
Ensure: give agent Ai the highest priority on the first resource of π, in case this does

not create a deadlock
1: rcurr ← π(0).resource
2: A← {Aj ∈ agents(rcurr) | p(rcurr, Aj) < p(rcurr, Ai)}
3: M ← ∅

4: k← 0
5: deadlock← false

6: while A 6= ∅ ∧ ¬deadlock do

7: rcurr ← π(k).resource
8: Amin ← minAj∈A p(rcurr, Aj)
9: A← {Aj ∈ agents(rcurr) | p(rcurr, Amin) ≤ p(rcurr, Aj) < p(rcurr, Ai)}

10: for all Aj ∈ A do

11: if locatedAt(Aj , rcurr) then

12: deadlock← true

13: continue

14: M ←M ∪ 〈rcurr, A〉
15: k← k + 1

16: if ¬deadlock then

17: for all 〈rk, A〉 ∈M do

18: increasePriority(Ai, A, rk, PPG)

19: if cycle in PPG then

20: rollbackPriorityChanges(M, PPG)

5 Experiments

In this section, we will evaluate the performance of our IAP algorithm in com-
parison with algorithms 1 and 2 from Maza and Castagna (we will refer to these
algorithms as Maza-1 — which is to perform no priority changes — and Maza-2
respectively). The first question we aim to answer is: which algorithm allows the
most priority changes? The second question is: which algorithm results in plan
execution with the smallest delay? Intuitively, we would expect that the algo-
rithm that performs the most changes will result in the smallest delay, because
with every change an agent with little or no delay is given priority over an agent
with more delay.

To introduce delay into the system, we introduce random incidents that tem-
porarily immobilize an agent. The incident rate is a value between 0 and 1 that
indicates the probability that an agent will suffer an incident during the execu-
tion of one plan step. Hence, if the incident rate equals 0.1, and an agent’s plan
contains 50 plan steps, then the agent can expect to have five incidents on the
way. The incident duration is always the same for one experiment run.

5.1 Setup

We experimented with a set of 100 random infrastructures, each consisting of 120
intersections and 200 lanes. To evaluate which algorithm results in the smallest

delay, we measure the (relative) mechanism delay: the time an agent has to wait
for one or more conditions of definition 3 to become satisfied (or if an agent
is waiting behind another agent that is accumulating mechanism delay), as a
percentage of its plan length.

In our experiments we varied three parameters: the number of agents, from
100 to 500, with an increment of 10; the incident rate, with values 0.02, 0.06, and
0.1; and the incident duration, with values of 30 and 60 seconds. In total, this
amounts to around 800 experiments. To compare the different algorithms, we
ran each of them on the same problem instances. One problem instance consists
of: (i) one of the 100 infrastructures, chosen by: experiment-number modulo 100;
(ii) for each agent a randomly chosen start and destination location; (iii) a set
of agent plans, obtained by letting each agent plan its optimal route, given the
reservations of the agents that have planned before it; (iv) for each step of each
agent plan, we use the incident rate parameter to determine whether the agent
will suffer an incident during the execution of this plan step.

5.2 Results

In figure 2, we compare the number of priority changes performed by algorithms
IAP and Maza-2, for three different parameter settings: an incident rate of 0.02,
an incident rate of 0.06, and an incident rate of 0.1; the incident duration was
set to 60 seconds (other settings have been omitted from the figure, but do not
change the general picture). The conclusions that can be drawn from figure 2 are
straightforward: (i) IAP performs more changes than Maza-2, sometimes up to
twice as many; (ii) the number of changes performed by both of the algorithms
increases linearly with the number of agents.

Figure 3 shows the relative mechanism delay (i.e., the mechanism delay di-
vided by the plan length), averaged over the six different incident settings (inci-
dent rates of 0.02, 0.06, and 0.1, and incident durations of 30 and 60 seconds).
We can see from figure 3 that IAP results in lower mechanism delay than algo-
rithms Maza-1 and Maza-2. However, the differences are perhaps not as large as
we may have anticipated after seeing figure 2: IAP often performs twice as many
priority changes as Maza-2, but the difference in performance ranges from 0%
to 10% of relative mechanism delay. Moreover, algorithm Maza-1, which does
not perform any priority changes at all, is actually quite competitive for larger
numbers of agents in the system.

Table 1 shows the relative mechanism delay for each of the six incident set-
tings. For each combination of incident setting and number of agents, the al-
gorithm that produced the lowest delay is highlighted in bold. A quick glance
at the table reveals that for settings with a low incident load, IAP (and to a
lesser extent, Maza-2) performs very well. For the highest incident load (rate =
0.1 and duration = 60s), however, Maza-2 and Maza-1 perform better, with the
latter best of all for more than 300 agents. From this table we can conclude that
for higher incident loads and more congestion, there is less benefit from making
priority changes.

100 200 300

number of agents

400 500

0
20

0
40

0
60

0
80

0

nu
m

be
r

of
 p

rio
rit

y
in

cr
ea

se
s

HH.IAP
LH.IAP
MH.IAP
HH.Maza 2
LH.Maza 2
MH.Maza 2

Fig. 2. Number of priority changes made by IAP and algorithm Maza-2 for incident
settings: HH = (0.1, 60s) ; MH = (0.06, 60s) ; LH = (0.02, 60s).

Table 1. Relative mechanism delay for six different incident settings.

|A| 0.02, 30s 0.02, 60s 0.06, 30s 0.06, 60s 0.1, 30s 0.1, 60s

M1 M2 IAP M1 M2 IAP M1 M2 IAP M1 M2 IAP M1 M2 IAP M1 M2 IAP

100 14 3 2 36 8 4 30 20 25 53 35 28 28 16 9 44 25 27

150 15 10 7 33 21 10 27 10 6 36 22 26 24 13 10 40 31 32

200 14 11 5 38 11 8 17 12 9 44 35 30 22 26 14 34 25 26

250 16 10 6 30 27 18 17 11 6 36 32 24 18 13 5 33 28 28

300 11 5 3 30 18 5 19 13 13 37 36 36 21 15 15 32 35 45

350 11 6 4 30 16 9 16 18 13 31 31 30 17 14 14 27 31 28

400 9 4 3 32 24 16 15 11 6 29 26 21 16 27 20 25 29 35

450 10 5 3 26 16 11 16 11 8 26 27 22 18 13 11 25 39 43

500 12 5 3 28 19 10 14 15 8 25 20 21 17 14 8 22 24 33

5.3 Discussion

The rationale behind making priority changes in the manner of algorithms Maza-
2 and IAP is that a ‘timely’ agent can continue execution of its plan unhindered,
whereas the delayed agent might not even notice the loss of priority. Of course,
this is only a rule of thumb, and, as we have seen in figure 3 and table 1, it does
not always hold, and sometimes priority changes can have averse effects.

The added value of IAP over Maza-2 is therefore better illustrated by figure 2
than by figure 3. In figure 2 we see that IAP finds more possibilities for changing
priorities than Maza-2. Currently, we do not have a clear idea which priority
changes are beneficial, and which are detrimental. However, if we develop addi-
tional heuristics that tell us when priority changes are good, then we can use
IAP as a basis for a more effective plan repair algorithm.

100 200 300 400 500

number of agents

0
5

10
15

20
25

30
35

re
la

tiv
e

m
ec

ha
ni

sm
 d

el
ay

 (
%

)

Maza 1
Maza 2
IAP

Fig. 3. Relative mechanism delay, averaged over different incident settings.

References

1. Maza, S., Castagna, P.: A performance-based structural policy for conflict-free
routing of bi-directional automated guided vehicles. Computers in Industry 56(7)
(2005) 719–733

2. Fujii, S., Sandoh, H., Hozaki, R.: A routing control method of automated guided
vehicles by the shortest path with time-windows. In: Production Research: Ap-
proaching the 21st Century. (1989) 489–495

3. Kim, C.W., Tanchoco, J.: Conflict-free shortest-time bidirectional AGV routeing.
International Journal of Production Research 29(1) (1991) 2377–2391

4. Hatzack, W., Nebel, B.: The operational traffic problem: Computational complexity
and solutions. In Cesta, A., ed.: Proceedings of the 6th European Conference on
Planning (ECP’01). (2001) 49–60

5. ter Mors, A.W., Zutt, J., Witteveen, C.: Context-aware logistic routing and schedul-
ing. In: Proceedings of the Seventeenth International Conference on Automated
Planning and Scheduling. (2007) 328–335

6. Lehmann, M., Grunow, M., Günther, H.O.: Deadlock handling for real-time control
of AGVs at automated container terminals. OR Spectrum 28(4) (October 2006)
631–657

7. Wu, N., Zhou, M.: Resource-oriented petri nets in deadlock avoidance of agv sys-
tems. In: Proceedings of the 2001 IEEE International Conference on Robotics and
Automation (ICRA), Seoul, Korea (May 2001) 64–69

8. Reveliotis, S.A.: Conflict resolution in AGV systems. IIE Transactions 32(7) (July
2000) 647–659

9. Maza, S., Castagna, P.: Conflict-free AGV routing in bi-directional network. In:
Proceedings of the 8th IEEE International Conference on Emerging Technologies
and Factory Automation. Volume 2., Antibes-Juan les Pins, France (October 2001)
761–764

