
Multi-Machine Scheduling Lower Bounds Using

Decision DiagramsI

Pim van den Bogaerdt∗, Mathijs de Weerdt

Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Van Mourik Broekmanweg 6, 2628 XE Delft, The Netherlands

Abstract

We consider parallel multi-machine scheduling with due times, where a parti-
tion of jobs is given where jobs in the same partition have a common release
time, possibly precedence constraints, and cannot overlap. A formulation
of decision diagrams for this problem greatly improves upon a more natu-
ral extension of the state-of-the-art for single-machine scheduling, and can
provide decent lower bounds, outperforming existing solvers given the same
short runtime limit, for problem instances with large time scales and tight
due times.

Declaration of interest: When this work was carried out, the first author had
a paid internship, and the second author was a visiting scientist at the Dutch
Railways (NS).
Role of funding source: The NS had no involvement in the conduct of re-
search, this article, or the decision to submit for publication.

c© 2018. This manuscript version is made available under the CC-BY-NC-
ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

DOI: https://doi.org/10.1016/j.orl.2018.11.003

Keywords: multi-machine scheduling, lower bounds, decision diagrams

IThis work is based on the first author’s Master’s thesis [1].
∗Corresponding author.
Email address: P.vandenBogaerdt@tudelft.nl (Pim van den Bogaerdt)

Preprint submitted to Operations Research Letters December 7, 2018

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.orl.2018.11.003

2010 MSC: 90B35

1. Introduction

Multi-machine scheduling is a fundamental scheduling problem modeling
a range of important real-life problems from scheduling tasks on a CPU to
optimizing manufacturing processes [2, Ch.1]. Such problems have shown to
be computationally very challenging and are an active area of research [3].
Recently, single-machine scheduling problems have been solved more quickly
by lower bounds produced by relaxed decision diagrams [4, 5]. We show that
this can be generalized to finding lower bounds for parallel multi-machine
scheduling instances. Decision diagrams provide a new class of bounds, based
on a discrete relaxation of the problem, which may be useful e.g. in combining
with other bounds, such as additive bounding [6].

We are given n jobs that are to be scheduled without preemption on
m ≤ n machines. Let J denote the set of all jobs. Each job j ∈ J has
a processing time and a due time; let p (resp. d) denote the n-vector of
processing (resp. due) times.

We assume the jobs are partitioned into k subsets (partitions), and that
the jobs in a given subset may not overlap in time (“partition constraints”).
Let P be the set of partitions. We allow each partition i ∈ P to have a
release time, meaning its jobs cannot start before that time. Let r be the
k-vector of release times, and let P (j) denote the partition of job j. We
also allow precedence constraints between jobs of the same partition. The
precedence constraint i → j specifies that job i has to end before j starts.
Let ω(j) = {i | i→ j}.

A schedule assigns each job a starting time and a machine such that each
machine processes at most one job at a time. In a given schedule S, a job j
has starting time s(j), and m(j) denotes the machine j is scheduled on. The
processing time of a machine i is maxm(j)=i (s(j) + pj).

The objective function defines the cost of a schedule. We assume objective
functions are non-decreasing in the job start times. This is a reasonable
assumption: we typically want jobs to complete as soon as possible. We
also assume the objective function can be written as a sum over jobs, i.e.,
z(S) =

∑
j zj(s(j)). For example, the objective used in the experiments in

this paper is the total tardiness, defined by t(S) =
∑

j max{0, s(j) + pj − dj}.
Previous results. Relaxations of Mixed Integer Programming formulations
(MIPs) for multi-machine scheduling problems (e.g. [7]) can provide lower

2

bounds on the optimum. In particular, Baptiste et al. [8] focus on lower
bounds for multi-machine scheduling by giving MIPs and a reduction to a
flow problem, among other approaches. For single-machine scheduling, very
good lower bounds can be found using decision diagrams [5, 4]. In spite
of this promising result, there is no previous work on the use of decision
diagrams for finding lower bounds for multi-machine scheduling. Finding
lower bounds enables one to appreciate the quality of a schedule, and save
time by not searching for a better schedule if the lower bound is equal to the
optimum.
Our results. We present and prove correctness of a decision diagram (DD)
formulation for a multi-machine scheduling problem which greatly improves
upon a more natural extension of the state of the art for single-machine
scheduling [5]. We use a known reduction of an optimal schedule to a per-
mutation of jobs, and propose a decision diagram relaxation based on this
representation. We furthermore show that this provides decent lower bounds,
outperforming existing solvers given the same short runtime limit, for prob-
lem instances with large time scales and tight due times.

2. Background on Decision Diagrams

Many problems can be seen as a minimization problem involving variables
x1, . . . , xn with finite domain, including the scheduling problem we consider.
A decision diagram (DD) for an instance I of such a problem is a directed
graph with the following properties (see, e.g., [9] for an elaborate introduction
into decision diagrams for optimization). The nodes are partitioned into n+1
layers L1, . . . , Ln+1, and each node v contains a state S. For a node v in layer
Li, the choices to xi we can make in state S are defined by the set of feasible
choices F (S), and each choice xi ∈ F (S) induces an outgoing edge of v with
cost c(S, xi) to a node in layer Li+1 with state ϕ(S, xi). Layer L1 (resp. Ln+1)
consists of a single root node (resp. leaf node).

A root-leaf path corresponds to an assignment to x1, . . . , xn. The defini-
tions of S, F, c, ϕ are problem-specific and also depend on the type of DD.
We discuss two types of DDs in this paper.

An exact DD is a DD such that the cost of a root-leaf path equals the
objective value for the corresponding assignment, and the set of root-leaf
paths corresponds exactly to the set of feasible solutions. The shortest root-
leaf path in an exact DD corresponds with an optimal solution of I.

3

A problem with exact DDs is their possibly exponential size, and we
therefore consider another type of DD: relaxed DDs. These provide lower
bounds on the optimum. Given an integer w ≥ 1, a relaxed DD of width ≤ w
is a DD with the following additional properties. The cost of a root-leaf path
is at most as high as the objective value for the corresponding assignment to
x1, . . . , xn; the set of root-leaf paths corresponds to a set of solutions that is
a superset of the feasible solutions; and each layer contains at most w nodes.

A relaxed DD can be built layer-by-layer. After building each layer,
multiple nodes can be merged into one to prevent exceeding the allowed
width w. This algorithm is called top-down compilation. We define the
merged nodes by means of a merge operator ⊕ that transforms two states
into one merged state. We assume the operator is associative, so that we can
unambiguously allow it to have multiple states as input.

A theorem by Hooker [5, Theorem 1] describes when a merge operator
indeed yields a relaxed DD (called validity). The theorem is fundamental for
proving the correctness of our DD formulation (in Section 3). We present
this theorem in a slightly more formal way, using the following definition of
a state relaxation relation.

Definition 1. A state relaxation relation is a binary operator � that operates
on states with the following properties:

• (R1) � is reflexive and transitive.

• (R2) If S ′ � S, then F (S ′) ⊇ F (S).

• (R3) If S ′ � S, then for j ∈ F (S), c(S ′, j) ≤ c(S, j).

• (R4) If S ′ � S, then for j ∈ F (S), ϕ(S ′, j) � ϕ(S, j).

Theorem 1 (Hooker [5]). Given a state relaxation relation �, a merge op-
erator ⊕ is valid if S ⊕ S ′ � S, S ′ for all states S, S ′.

To compute the shortest root-leaf path in a DD, we keep track of the
partial objective in each node. We can use this value also as a heuristic to
choose what nodes to merge [5]: nodes with a high partial objective are not
likely to lie on the shortest path. Thus, merging these may maintain the
same lower bound on the shortest root-leaf path.

4

3. Multi-Machine Scheduling Using DDs

The DD formulation for multi-machine scheduling we introduce in this
paper uses an efficient search space, state description, and merge operator.
We explain these elements and prove their correctness in this section.

3.1. Minimal Schedules

To reduce the search space, we use the concept of minimal schedules and
that it is sufficient to consider permutations of jobs with non-decreasing start
times [10, 11, 12, 13, 14].

We say a schedule is minimal if each job is scheduled 1) as early as
possible, and 2) on the machine with earliest completion time (ignoring this
and later jobs; breaking ties by the smallest machine index).

The set of minimal schedules contains an optimal one: any optimal sched-
ule can be made minimal without affecting optimality by iteratively schedul-
ing a job earlier or by swapping the machine assignments of a subset of jobs.

Each minimal schedule can be represented as a permutation of the jobs
by using the Smallest Processing Time First algorithm (SPTF) to trans-
form a permutation into a schedule: schedule each job on the machine with
smallest processing time so far (breaking ties by machine index), taking into
account the release time of its partition. When scheduling a job, update
the release time of its partition to the end time. SPTF takes into account
precedence constraints if for each constraint i → j, job i occurs before j in
the permutation.

To see that a minimal schedule can be generated by SPTF, consider the
permutation obtained by sorting the jobs on start time, breaking ties by
machine index. Executing SPTF on this permutation gives back the same
schedule because SPTF chooses the machine and time corresponding to the
definition of a minimal schedule [14].

This idea also works with the precedence and partition constraints. Namely,
the permutation obtained adheres to the precedence constraints and so the
schedule by SPTF also does. Further, the partition constraints may be con-
sidered as a “dynamic release time”: as we schedule a job in a partition, the
release time of the unscheduled jobs of this partition are changed to the end
time of that job. Hence, when scheduling a job, the partition constraints re-
duce to release time constraints, and so do not pose a complication compared
to [14].

5

Moreover, by construction, the jobs in the permutation obtained this way
are sorted on non-decreasing start times, so we only need to consider such
permutations [13 cited by 14], also when computing a lower bound on the
optimum.

3.2. Exact DD Formulation

To define a DD, we give definitions for S, F , c, and ϕ (as explained in Sec-
tion 2). Our exact DD formulation for multi-machine scheduling represents
precisely all permutations with non-decreasing start times.

The state S(v) of a node v is a tuple (V, U, f , t, fu, tu, g). Below we
introduce the terms in this tuple step-by-step, using a bar over the variables
to indicate the value after a transition. First, the pair (V, f) already provides
sufficient information to build an exact DD, but without the partition and
precedence constraints. Like [5], we define V as the set of jobs that appear
on the path from the root to v. However, instead of a single number f ,
we now have a vector f = (f1, . . . , fm) of length m that contains the total
processing time of each machine. The root has V = ∅ and f = 0. Since we
consider identical machines, the ordering of elements in f is irrelevant. It is
efficient for the merge operator of the relaxed DD to ensure that f is sorted
in increasing order.

When we choose job j as the next item in the permutation, the new state
ϕ(S, j) contains

V = V ∪ {j}.
To take the partition constraints into account, the state contains a k-

vector t, which represents when a job can start because the previous jobs
of the partition have completed. The root has t = r (release times). If we
choose job j, resulting in completion time x, the new state t is updated with

tP (j) = x.

For 1 ≤ i ≤ k, i 6= P (j), we set ti = ti. In words, as we schedule job j, other
jobs of its partition can only start after job j ends. We can now define the
transition for f : job j is scheduled at the first machine in f (like SPTF: recall
that f is sorted), and can only start after time tP (j). That is,

f = sort((max{f1, tP (j)}+ pj, f2, . . . , fm)).

The cost of this transaction is computed as

c(S, j) = zj(max{f1, tP (j)}).

6

The set U is included in the state to incorporate precedence constraints
(similar to [4]). It represents which jobs occur on some path from the root
to v, as opposed to V , which contains jobs that occur on every path from
the root to v. The root has U = ∅. We only include a job j in the feasible
set F (S) if ω(j) ⊆ U . When we make a job choice j, we add j to the set U
in the new node, just like we do for V :

U = U ∪ {j}.

So in an exact DD, U = V , but these sets may be different in a relaxed DD.
The last step of our exact DD formulation is related to only considering

permutations with non-decreasing start times (to make the DD concise).
For this, we include a number g representing the starting time of the (last)
incoming job, i.e.,

g = max{f1, tP (j)},

and an m-vector fu and k-vector tu. The vectors fu and tu again represent
the finishing times of the machines and partitions, respectively. In our exact
DD formulation, fu = f and tu = t, but in a relaxed DD these represent the
respective upper bounds. The root has fu = 0, tu = r, g = 0.

We may ignore any (next) job j which would be scheduled at time max{fu
1 , t

u
P (j)} <

g, because it is sufficient to consider permutations with non-decreasing start
times (see Subsection 3.1). Also, we do not schedule jobs that have already
been scheduled (V) and jobs for which a preceding job i ∈ ω(j) has not been
completed. The definition of the feasible set is thus

F (S) = J − (V ∪ {j | ω(j) 6⊆ U} ∪ {j | max{fu
1 , t

u
P (j)} < g}).

The transition for fu uses these vectors as input also:

fu = sort((max{fu
1 , t

u
P (j)}+ pj, f

u
2 , . . . , f

u
m)).

Similarly, we define tuP (j) = max{fu
1 , t

u
P (j)}+ pj and tui = tui for i 6= P (j).

Summarizing, the root node has state

S(r) = (∅,∅,0, r,0, r, 0),

and edges are defined by

ϕ((V, U, f , t, fu, tu, g), j) = (V , U, f , t, fu, tu, g).

7

3.3. Relaxed DD Formulation

A relaxed DD formulation is implied by a state relaxation relation � and
merge operator ⊕.

Definition 2. The state relaxation relation � between two states holds if
each of the following relations hold pairwise on the elements in the state tu-
ples: ⊆,⊇,≤,≤,≥,≥,≤. On vectors, ≤ and ≥ denote pairwise comparisons.

Definition 3. The merge operator ⊕ on two states applies the following
operators on the elements in the state tuples: ∩,∪,min,min,max,max,min.
The min (max) operator on vectors takes pairwise minima (maxima).

There is now a difference between U and V . Intuitively, to obtain a valid
relaxation, we need to underestimate V (to ensure we do not disregard any
schedule) but overestimate U (to ensure we are not too strict regarding the
precedence constraints). This, and the need for fu and tu, becomes clear in
the proof of Lemma 2.

To show that � is a state relaxation relation, we use the following lemma.

Lemma 1. Let a ≤ b be sorted vectors of length m, and let a′1, b
′
1 ∈ R. If

a′1 ≤ b′1, then sort((a′1, a2, a3, . . . , am)) ≤ sort((b′1, b2, b3, . . . , bm)).

The proof of this lemma is straightforward but technical; it can be found in
the first author’s Master’s thesis [1, Section 3.3].

Lemma 2. The relation � is a state relaxation operator (cf. Definition 1).

Proof. We show each of the properties (R1)-(R4) in order. Let S, S ′ be
states on the same layer i such that S ′ � S. (R1) follows directly from the
reflexivity and transitivity of ⊆, ⊇, ≤, ≥ (pairwise and regular).

For (R2), let j be a job in F (S). In other words, assume the following
about j. First, j /∈ V . Second, ω(j) ⊆ U . Third, max{fu

1 , t
u
P (j)} ≥ g.

We have to show that j is in F (S ′), that is, we have to show three similar
predicates.

The predicate j /∈ V ′ follows from V ′ ⊆ V . Next, ω(j) ⊆ U ′ follows from
U ′ ⊇ U . For the inequality, note that fu′ ≥ fu, tu′ ≥ tu, g′ ≤ g, so indeed
max{fu′

1 , tu′P (j)} ≥ max{fu
1 , t

u
P (j)} ≥ g ≥ g′.

For (R3), let j be a feasible choice in S. We have to show c(S ′, j) ≤ c(S, j).
The cost c(S ′, j) is zj(max{f ′1, t′P (j)}), which is indeed at most the cost of

8

making the choice in S, zj(max{f1, tP (j)}), since f ′ ≤ f and t′ ≤ t and the zj
are non-decreasing.

For (R4), consider a job choice j that is feasible in S. Let S ′ and S denote
the state after making this choice in S ′ and S, respectively. We have to show
S ′ � S. We do this by showing the predicates in the definition of �.

V ′ ⊆ V and U ′ ⊇ U follow directly from V ′ ⊆ V, U ′ ⊇ U .
For f ′ ≤ f , consider the definition of ϕ:

f = sort((max{f1, tP (j)}+ pj, f2, . . . , fm))

f ′ = sort((max{f ′1, t′P (j)}+ pj, f
′
2, . . . , f

′
m))

We have max{f ′1, t′P (j)} + pj ≤ max{f1, tP (j)} + pj and we may thus apply

Lemma 1 to conclude f ′ ≤ f .
For t′ ≤ t, note that from f ′1 ≤ f1 and t′P (j) ≤ tP (j), we get t′P (j) ≤ tP (j).

For 1 ≤ i ≤ k, i 6= P (j), we have equality in t′i ≤ ti.
For fu′ ≥ fu, consider the equivalent predicate fu ≤ fu′, which we can

prove similarly to f ′ ≤ f . The inequality tu′ ≥ tu can be shown similarly to
t′ ≤ t. Lastly, we have g′ = max{f ′1, t′P (j)} ≤ max{f1, tP (j)} = g.

We now consider the merge operator ⊕. This merge operator is associa-
tive, as required. We now prove the validity of this merge operator.

Theorem 2. The merge operator ⊕ is valid.

Proof. Let S, S ′ be states. Using Theorem 1 we only have to show that
S ⊕ S ′ � S, S ′.

First, V ∩V ′ ⊆ V, V ′ and U∪U ′ ⊇ U,U ′ are trivial. Next, note that in the
merged state S⊕S ′, the vectors min(f , f ′) and max(fu, fu′) are automatically
sorted because f , f ′, fu, fu′ are sorted. We have min(f , f ′) ≤ f , f ′ because we
take pairwise minima and do pairwise comparisons. Similarly, min(t, t′) ≤
t, t′ as well as max(fu, fu′) ≥ fu, fu′ and max(tu, tu′) ≥ tu, tu′. Lastly,
min{g, g′} ≤ g, g′ holds.

The nodes with the highest partial objective are merged, breaking ties
by (high) slack of the last scheduled job. The slack is the difference between
due time and completion time.

9

Figure 1: Average gap over time for our DD formulation and the more natural extension
we introduced based on the single-machine formulation by Hooker [5]. [single column]

100 101 102 103 104

Time (ms)

0

1

G
ap Real

Natural

4. Experiments

We evaluate the relaxed DD formulation using the total tardiness objec-
tive function. Our implementation is written in C# (x64, .NET 4.7). When-
ever we compare against an upper bound, we use the best upper bound found
by any of the solvers. Also, in our implementation, we used parallelization
for building and merging: each thread builds and merges part of each layer.
Recall that we merge nodes with highest partial objective.

In all experiments, we supplied all solvers with an initial solution provided
by an adaptation of [10] (dealing with partition and precedence constraints).
This algorithm quickly gives a very good upper bound.

4.1. Comparison to More Natural Formulation

We investigate to what extent our formulation improves upon the fol-
lowing more natural extension of the single-machine scheduling formulation
by [5]: instead of using permutations, use a list of n (job, machine) pairs.
Each job is scheduled on the machine it is paired to, and the order of jobs
on each machine is given by the order of the list. Thus, the choices do not
define just the job but also the machine. The costs, feasible sets and transi-
tion functions are defined accordingly. In this formulation the vector f is not
sorted, and we do not apply the permutation optimization.

For the relaxation of both this and our new DD formulation, a width
needs to be selected. We construct DDs iteratively with increasing width as
follows: first we use the adaptation of [10] to obtain a schedule (upper bound).

10

Then we compute lower bounds for widths 212 and 215, and extrapolate these
linearly on the logarithm to determine the width for which the lower bound
is likely equal to the upper bound. We then repeat this process with this
extrapolated width, or a width increased by a factor of 23, whichever is
smaller.

Regarding the instances, we used the parameters and distributions based
on those used by [5] for single-machine scheduling. The processing times p
were integers drawn from {10, . . . , 16}, the release times r were drawn from
{0, . . . , 5n}, and the due times d were drawn from {rP (j) + (pj + x)/m | x =
4 · 10, . . . , 4 · 16}. We added the divisor m to model the fact that with m
machines, we can roughly finish m times as quickly. The jobs were partitioned
as evenly as possible, and each job had a random partition assigned. We set
n = 10,m = 2, k = 3.

For half of the instances, we set precedence constraints as follows. Con-
sider a partition with p jobs ji, ji+1, . . . , ji+p−1. We added precedence con-
straints ji → ji+1, ji+2 → ji+3, . . . , ignoring the last job if p is odd. The
reason we used these precedence constraints is that adding more may cause
the search space to be reduced to a rather large extent.

We used 1500 of such instances. This experiment was performed on an
Intel Core i7-3537U (2.00 GHz, 4 threads), 12 GB RAM, Windows 10, with
a maximum width of 222. Figure 1 shows the decrease in gap (using the
upper bound by [10]) for both our “real” DD formulation and the more
natural formulation. We observe that with more time, and thus DDs with
incrementally larger widths, the average gaps for both formulations decreases
significantly. Moreover, we see that our formulation is clearly superior. For
the more natural formulation, the median time for a non-zero lower bound
was about 0.35 seconds, and for only 465 instances it gave a final lower bound
equal to the upper bound. To compare, the new formulation we propose in
this paper gave a lower bound equal to the upper bound for 1473 instances,
and the median time to solve these instances to optimality was about 0.1
seconds.

We conclude that extending [5] to multi-machine scheduling is not trivial,
and that the relaxation we introduced in this paper is essential to obtain
decent performance.

4.2. Comparison to CP and MIP

We also compare our DD formulation to a constraint program (CP) and
two mixed integer programs (MIPs). This experiment was run on an Intel

11

Figure 2: Constraint Program.

Minimize
∑
j

max{0, StartOf(Ij) + pj − dj}

s.t. Ij,M ∈ Intervals([rP (j),∞), pj) (j ∈ J , M ∈M)

Ij ∈ {Ij,M | 1 ≤M ≤ m} (j ∈ J)

NoOverlap({Ij,M | 1 ≤ j ≤ n}) (M ∈M)

NoOverlap({Ij | P (j) = i}) (i ∈ P)

EndBeforeStart(i, j) (i, j ∈ J , i→ j)

Figure 3: Extra constraints for the MIP by [7], with i, j ∈ J with i < j, and the Zi,j

variables are binary.

Cj − Ci + L(1− Zi,j) ≥ pi (P (i) = P (j))

Ci − Cj + LZi,j ≥ pj (P (i) = P (j))

Cj ≥ rP (j) + pj (replaces (6))

Zi,j = 1 (i→ j)

Zi,j = 0 (j → i)

Xeon E5-1620 v2 (3.70 GHz, 8 threads), 8 GB RAM, Windows 7.
The CP (Figure 2) was solved by IBM ILOG CP Optimizer 12.8 and is

based on one of the samples provided with the solver. We enabled presolving
and used the “restart” method, which gives decent performance as well as
intermediate lower bounds.

The MIPs were solved by both IBM ILOG CPLEX 12.8 and Gurobi 8.0.1
with default parameters; for each instance, the best result is reported. The
first MIP is adapted from [7], which has few variables. See Figure 3. The
second MIP is based on a time-indexed one given by [8]. It has a binary
variable for each (job, time) pair, where “time” is any time step a job could
be scheduled. For this MIP, we used the makespan of a random schedule as
horizon H. See Figure 4. We used this MIP itself as well as its LP relaxation
(as suggested in [8]), both with and without presolving, again reporting only
the best result. We start measuring time after having built the model.

12

Figure 4: Extra constraints for the MIP by [8]. We define g(t, j) = max{0, t− pj + 1} and
ω−1(j) = {i | j → i}.

∑
j

P (j)=i

t∑
t′=g(t,j)

xj,t′ ≤ 1 (i ∈ P , 0 ≤ t < H)

∑
i∈ω−1(j)

t∑
t′=0

xi,t′ ≤ (t + 1) · |ω−1(j)| · (1 − xj,t)

(j ∈ J , 0 ≤ t < H)

We created instances based on the TF/RDD model [15, 16] adapted to
multiple machines. Given TF,RDD ∈ [0..1], the due times were drawn
uniformly from the integers between brj +

∑
j pj(1 − TF − RDD/2)/mc

and brj +
∑

j pj(1 − TF + RDD/2)/mc inclusive, with negative values re-
moved. Thus, TF (RDD) controls the expectation (variance) of the due
times. The processing times were drawn from {75, . . . , 150}. These are
rather large because for much smaller times the MIP by [8] outperforms
all other formulations. The release times are drawn from {0, . . . , 111}. We
set n = 4k,m = k − 2, let each partition contain 4 jobs, and set precedence
constraints for half of the instances like before.

We fixed a width of w = 1, 000 and gave each solver a time limit of 15
seconds. Figure 5 shows the performance for these instances after 50ms (our
formulation was done within this time for all but two instances). We see
that DD performs well if the due times are tight on average (large TF) and
have a small variance (small RDD). The reason is that such due times cause
relatively high tardiness, so that the merge heuristic is well-informed. In
contrast, DD do not work well for TF = 0.2.

If more time is available, the CP, LP and MIP solvers give (much) better
bounds. For example, after about 350ms, the average gap of CP and the
MIP by [7] are better than DD for TF = 0.8,RDD = 0.2, k = 7, except if we
fix m = 2. After about 3 seconds, the LP relaxation of [8] gives average gaps
close to zero for TF = 0.8, and after about 5.5 seconds, its averages are all
less than those of DD.

However, for TF = 0.8,RDD = 0.2, and m = 2, DD outperforms all

13

Figure 5: Average gap with standard deviation after 50ms for TF/RDD instances as a
function of k, with n = 4k,m = k − 2. The number of instances per plot varies between
510 and 551. Bal. (Bap.) refers to the MIP based on [7] ([8]). The error bars are shifted
based on the solver so as not to let them overlap. [single column]

4 5 6 7
0

1

R
D
D
=
0.
2

TF = 0.2

DD

CP

Bal.

Bap.

4 5 6 7
0

1
TF = 0.8

4 5 6 7
0

1

R
D
D
=
0.
8

TF = 0.2

4 5 6 7
0

1
TF = 0.8

14

other models. Only after running about 20 to 100 times longer (1s to 5s),
the model based on [8] eventually gives smaller average gaps than DD does.
Moreover, this formulation uses many variables and constraints, and it takes
time and memory to build these (which we did not take into account for
the runtime). In particular, if the time scale is larger than what we used,
this model may not be practical, while the runtime and memory of our DD
formulation virtually do not depend on the time scale.

5. Discussion and Future Work

When aiming for better bounds, the memory usage in our formulation
may become a bottleneck. Each node in our formulation uses O(m + n)
memory for its state, so that the total memory usage is O(nw(m + n)).
We found empirically that one has to double w to get a constant increase
in the lower bound, so the memory is exponential in the quality. Although
under specific circumstances, an exponential DD is inevitable with our model
(see Appendix A in [1]), a more sophisticated merge heuristic may reduce w
significantly and is thus an interesting direction for further research.

Given that the DD formulation proposed in this paper is so effective if
a small amount of runtime is available, it furthermore is very promising to
embed it in algorithms that have worked with DDs successfully in the past,
such as branch and bound [9, Chapter 6], logic-based Benders decomposi-
tion [17], constraint programming filtering techniques [4], and Lagrangian
methods [18].

Finally, we may tackle other multi-machine scheduling problems using
similar DDs, such as for unrelated machines.

Acknowledgements

The authors would like to thank Koos van der Linden for proofreading
the article, and the anonymous reviewer for constructive comments.

References

[1] P. van den Bogaerdt, Multi-Machine Scheduling Lower Bounds Using
Decision Diagrams, Master’s thesis, Delft University of Technology, The
Netherlands, 2018.

15

[2] M. L. Pinedo, Scheduling: theory, algorithms, and systems, Springer, 4
edn., 2016.

[3] M. O. Adamu, A. O. Adewumi, A survey of single machine scheduling
to minimize weighted number of tardy jobs, Journal of Industrial &
Management Optimization 10 (1) (2014) 219–241.

[4] A. A. Cire, W.-J. van Hoeve, Multivalued decision diagrams for sequenc-
ing problems, Operations Research 61 (6) (2013) 1411–1428.

[5] J. N. Hooker, Job Sequencing Bounds from Decision Diagrams, in: Pro-
ceedings of the International Conference on Principles and Practice of
Constraint Programming, Springer, 565–578, 2017.

[6] M. Slusky, Integrating Relaxations for Combinatorial Optimization,
Ph.D. thesis, Carnegie Mellon University, 2015.

[7] N. Balakrishnan, J. J. Kanet, V. Sridharan, Early/tardy scheduling with
sequence dependent setups on uniform parallel machines, Computers &
Operations Research 26 (2) (1999) 127–141.

[8] P. Baptiste, A. Jouglet, D. Savourey, Lower bounds for parallel ma-
chine scheduling problems, International Journal of Operational Re-
search 3 (6) (2008) 643–664.

[9] D. Bergman, A. A. Cire, W.-J. van Hoeve, J. Hooker, Decision diagrams
for optimization, Springer, 2016.

[10] R. Rodrigues, A. Pessoa, E. Uchoa, M. Poggi de Aragão, Heuristic algo-
rithm for the parallel machine total weighted tardiness scheduling prob-
lem, Relatório de Pesquisa em Engenharia de Produçao 8 (10) (2008)
1–11.

[11] B. Simons, Multiprocessor scheduling of unit-time jobs with arbitrary
release times and deadlines, SIAM Journal on Computing 12 (2) (1983)
294–299.

[12] J. M. J. Schutten, List scheduling revisited, Operations Research Letters
18 (4) (1996) 167–170.

16

[13] F. Yalaoui, C. Chu, New exact method to solve the Pm/rj/
∑

Cj sched-
ule problem, International Journal of Production Economics 100 (1)
(2006) 168–179.

[14] A. Jouglet, D. Savourey, Dominance rules for the parallel machine total
weighted tardiness scheduling problem with release dates, Computers &
Operations Research 38 (9) (2011) 1259–1266.

[15] J. E. Beasely, Weighted Tardiness (OR library), URL http://

people.brunel.ac.uk/~mastjjb/jeb/orlib/wtinfo.html, originally
described in [16], [Online accessed 26-Feb-2018], 2018.

[16] J. E. Beasley, OR-Library: distributing test problems by electronic mail,
Journal of the Operational Research Society 41 (11) (1990) 1069–1072.

[17] A. A. Ciré, J. N. Hooker, The Separation Problem for Binary Decision
Diagrams, in: Proceedings of the International Symposium on Artificial
Intelligence and Mathematics, 2014.

[18] D. Bergman, A. A. Cire, W.-J. van Hoeve, Lagrangian bounds from
decision diagrams, Constraints 20 (3) (2015) 346–361.

17

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/wtinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/wtinfo.html

	Introduction
	Background on Decision Diagrams
	Multi-Machine Scheduling Using DDs
	Minimal Schedules
	Exact DD Formulation
	Relaxed DD Formulation

	Experiments
	Comparison to More Natural Formulation
	Comparison to CP and MIP

	Discussion and Future Work

