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Abstract

In context-aware route planning, agents have to plan their
route on a common infrastructure in such a way that plans
made by other agents are not invalidated, and no conflicts
are introduced. Previous research on context-aware routing,
mostly in the domain of automated guided vehicle (AGV)
routing, has reported on an O(n*v?) (n the number of ve-
hicles, v the number of infrastructure resources) algorithm.
In this paper we present an improved algorithm with a com-
plexity of only O(nvlog(nv) 4+ nv?).

Our free path routing approach is based on a search through
the graph of free time windows on the resources, rather than
a search through the infrastructure itself. Our algorithm can
be used to find a set of conflict-free routes for a number of
agents by finding the route for a single agent at a time. As a
consequence, the order in which agents plan their route will
determine the quality not only of the individual agent plans,
but also of the global plan.

Our experimental results confirm that for an individual agent,
its position in the planning queue can make a significant dif-
ference; for the total throughput of the airport, however, the
order in which the agents make their plans is not highly sig-
nificant. Also the experiments compare our free path routing
approach to fixed path scheduling approaches. We show that
for a reasonable amount of extra computation time (required
to investigate alternative routes), a free path routing approach
finds more efficient plans, because it manages to avoid bottle-
necks in the infrastructure.

Introduction

The problem we address in this paper is context-aware route
planning. In its most general form this problem is about
finding a collectively optimal and feasible set of routes for
several agents on an infrastructure with limited-capacity re-
sources. Context awareness refers to the fact that an agent
has to be aware of the consequences of the route planning
by other agents, since his individually optimal route choice
might be seriously affected by the route choices of other
agents. Examples of applications where this route plan-
ning problem plays a role are automated guided vehicle
(AGV) routing, scheduling in flexible manufacturing sys-
tems (FMS), waterway management, scheduling of trans-
portation vehicles in a container port, and airport taxiing.
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Due to the intractability of the general problem and the
obvious need for efficient algorithms to solve it, several ap-
proaches can be distinguished. One of the most simple ap-
proaches to “solve” this problem is to forget the planning
aspect and simply to ensure that the individual routes cho-
sen will be conflict-free. An example of such an approach is
the use of social laws (Shoham & Tennenholtz 1995) which,
by constraining the behaviour of the agents, only ensure
conflict-free routing without pretending any form of opti-
mality with respect to the achievement of the individual ob-
jectives. In this approach conflicts are avoided during exe-
cution by following a set of rules.

Other more sophisticated approaches split the problem
into a first phase where routes are found for each of the
agents individually, and a second phase ensuring feasibil-
ity of the collection of routes found in the first phase. An
important difference with the first approach is that conflict-
resolution is applied before the individual plans are exe-
cuted. In fact, this conflict-resolution can be considered as
a kind of plan repair, modifying individual plans if they are
in conflict. For example Broadbent et al. (Broadbent et al.
1985) employ a simple shortest path algorithm to find a set
of initial routes. In case of catching-up conflicts, some ve-
hicles are slowed down; for head-on conflicts, an alternative
route is found that does not make use of the road at which
the conflict occurred. Broadbent’s algorithm can be used
both on unidirectional and bidirectional infrastructures, but
in the latter case it need not find the optimal solution. The
approach proposed by Hatzack and Nebel (Hatzack & Nebel
2001) also can be considered as a two-phase approach to
this problem. Compared with earlier approaches, they use
a more refined model of the common infrastructure by con-
sidering parts of the infrastructure (such as lane segments
and intersections) as resources having a limited capacity.
Once the individual routes have been chosen, conflict res-
olution can be modeled as a job-shop scheduling problem
with blocking to ensure that the constraints imposed by the
resources are not violated.

A third type of approach to the problem aims at integrat-
ing the route planning and the conflict-resolution process.
Typically, such algorithms consider route planning problems
using a free path of resources from the origin to a destina-
tion, taking into account reservations that have been made
by other agents using the same infrastructure. For example,



the algorithm proposed by Huang et al. (Huang, Palekar,
& Kapoor 1993) finds a path through the (graph of) free
time windows on the resources, rather than directly through
the graph of resources. Huang’s algorithm is optimal both
for unidirectional and bidirectional networks, but it assumes
unit capacity for all resources. Fujii et al. (Fujii, Sandoh,
& Hozaki 1989) combine the search through free time win-
dows with a heuristic that calculates the shortest path from
the current resource to the destination resource, assuming no
other traffic. The solution method proposed should result in
an optimal, polynomial-time algorithm, but their description
of the algorithm contains a number of ambiguities. Addi-
tionally, the authors do not provide any complexity analysis
of the algorithm. The work of Kim and Tanchoco (Kim &
Tanchoco 1991) is similar to the work of Fujii et al., but
their treatment of the problem and the analysis of their al-
gorithm is more comprehensive. Kim and Tanchoco’s algo-
rithm finds the (individually) optimal solution for both uni-
and bidirectional networks, and they give an O(n*v?) time
complexity for their algorithm, where n is the number of
vehicles in the system, and v is the number of resources in
the infrastructure network. Due to this relatively high run-
time complexity (especially given the limited computational
resources of an early 90s PC), Taghaboni-Dutta and Tan-
choco (Taghaboni-Dutta & Tanchoco 1995) developed an
approximation algorithm that decides at every intersection
to which resource to go next, based on the estimated traf-
fic density of the resources from the current intersection to
the destination. The authors show a small loss of plan qual-
ity, but they claim that the algorithm consumes significantly
fewer computational resources; however, they do not quan-
tify the run-time complexity of the approximation algorithm,
nor do they present any CPU time comparisons.

Recent approaches have been focused towards special
cases of AGV routing, where additional constraints have
to be taken into account. For example, Beaulieu and
Gamache (Beaulieu & Gamache 2006) delve into the prob-
lem of routing underground mining carts. Their method
takes into account the displacement mode of the mining
carts, either forward or in reverse, and the carts must be in
forward mode when they reach a service point. The authors
describe their solution method as a dynamic programming
approach, without providing any details on the complexity
of their algorithm. Mbohring et al. (Mohring et al. 2004)
present a routing algorithm in which the physical dimen-
sions of the AGV are taken into account: an AGV travelling
along one arc may °‘spill over’ onto a neighboring arc. To
avoid conflicts, the authors associate a polygon with each arc
to represent the area that an AGV uses when travelling along
the arc, and they prohibit the simultaneous use of two arcs if
their polygons intersect. The algorithm presented is a gener-
alized arc-based Dijkstra algorithm, which runs in polyno-
mial time if waiting and transit times are the only measure
of cost; other cost measures like distance are also supported,
but a combination of cost measures results in an exponential
time-complexity.

The main contributions of this paper are: (i) an
O(nvlog(nv) + nv?) algorithm that performs a search
through the graph of free time windows, based on a concise

model of free time windows, and reachability between free
time windows. The algorithm finds the optimal conflict-free
route on both uni-and bidirectional networks. (i7) An anal-
ysis of the free time window graph that allows us to derive
the worst-case complexity of the algorithm. (ii7) A set of
experiments, in which we compare the two-phase approach
to route planning — in which first a route is planned, and any
conflicts are solved later — to our free path approach, where
routing and conflict resolution are integrated. For the two-
phase approach, we make use of the algorithm by Hatzack
and Nebel (Hatzack & Nebel 2001). Our algorithm does
not guarantee a globally optimal solution for all route plan-
ning agents together and the total performance of the result-
ing route plans will be dependent on the exact sequence in
which the agents will plan their individual route. Therefore,
in a second experiment we investigate the effect different
sequences of planning agents have on both individual route
plans as well as on the total performance of the set of route
plans.

Model

We assume a set A of agents that each have to find a
quickest-time path from one location in the infrastructure
to another. We model the infrastructure in terms of a set of
resources R (Hatzack and Nebel (Hatzack & Nebel 2001)
propose a similar resource-based model). Travel from re-
source 7; to resource r; is possible if the pair (r;,7;) is in
the successor relation S C R x R. A resource r; has a ca-
pacity C(r;), denoting the maximum number of agents that
can simultaneously make use of the resource, and a traversal
time D(r;) > 0 which represents the minimum time it takes
for an agent to traverse the resource.

An agent’s plan consists of a sequence of resources, and a
corresponding sequence of intervals in which to visit them.

Definition 1 (Agent Plan) An agent plan is a sequence
P = ((r1,m),...,(rn,Tn)) of n (resource, interval) pairs
such thatVj € [1,...,n — 1]:

1. interval 7; meets interval 71,

2. |75 = D(rj),

3. (Tj,Tj+1) S O
The first constraint in the above definition makes use of

Allen’s interval algebra (Allen 1983)!, and states that the

exit time of the j" resource in the plan must be equal to the
entry time into resource j + 1.

Reservations and free time windows

To ensure that an agent can perform its plan as intended
without interference from other agents, it should make reser-
vations on the resources in its plan for the duration of the
intended use. Reserving a resource for a certain interval will
use up one unit of the capacity for the duration of the in-
terval. The route planning algorithm we will present in the
next section plans around the reservations of other agents

"We make use of the meets predicate, which means that the end
of one interval is equal to the start of the second, and the precedes
predicate, which means that the end of one interval is earlier than
the start of the second.



that have previously made their plans. To plan around the
reservations of other agents, we can only make use of the
free time windows on the resources.

Definition 2 (Free Time Window) Given resource ; and a
bag? of reservation-intervals I = {7y, ...,7,,} on resource
r;, a free time window on 7; is an interval f; ,, = [0 .4, $i 0]
such that:

1. Vt € fi,v : |{Tj c I‘t c Tj}| < C(’f'i),
2. (¢i,v - Ui,v) Z D(T’L) O

The above definition states that for an interval to be a free
time window, there should not only be sufficient capacity at
any moment during that interval (Condition 1), but it should
also be long enough for an agent to traverse the resource
(Condition 2). Note that the set of free time windows Fj on
resource 7; is a vector (f; 1,..., fim) of disjoint intervals
such that forall j € [1,...,m — 1], f; ; precedes f; ji1.

The route planning algorithm of the next section is based
on the idea of going from one free time window on one re-
source, to another free time window on the next resource.
We now define when one free time window can be reached
from another.

Definition 3 (Free Time Window Reachability) Given a
resource 7;, a free time window f; ,, on this resource, and
a time ¢, we say that free time window f; ,, on resource r;
is reachable from r; at time ¢, denoted f; ., € p(r;, 1), if:

1. (’I“i,’l“j) S S,

2. t€ (fiwN fiw)

3. (t - Gi,v) Z D(TL)

4. (¢j,w - t) > D(Tj) O
The third condition in the definition above ensures that

we do not try to leave f;, at time ¢ until we have had time

enough to traverse r;; the fourth condition requires that there

will be enough time to traverse r; when we enter it from r;

at time ¢. To express the set of free time windows reachable
from f; ,,, we write

p(fi,fu) = U

t€(oi,v+D(r:),0i,0]

p(ri,t)

Context-aware routing

In Dijkstra’s shortest path algorithm, when a node is selected
for expansion, we know that the current path to this node is
the shortest, and the algorithm does not need to consider
any other paths leading to this node. In context-aware rout-
ing, on the other hand, the first (and shortest) path to reach
a resource is not necessarily the one that will result in the
shortest path from the start to the destination, via the current
resource. The example in Figure 1 shows why we sometimes
need to consider more than one visit to a resource. From the
first (and only) free time window on start resource r,, we can
reach both free time windows on resource 71 (which is on a
direct path to the destination resource r4). However, from
the first free time window on rq, f11 = [0, 2], we cannot

’Note that in a bag, we may have 7; = 7; for i # j.

Algorithm 1 Context-aware routing.

Pre: start resource r,, destination resource 4, start time ¢.

Post: entry time into r4 for the shortest path from 7, to .
I: if Jv [fs, € Fs | ts € fs,] then

Q —{(rs,ts)}

3: while Q # @ do

4: (ri,t;) «— argming, yeqt + D(r))

550 Q= Q\{(ri,t:)}

6: if r; = r4 then

7.

8

»

return (r;, ;)
: forall f;, € p(r;,t;) do
9: tenwy = max(t; + D(r;),05.)

10: if constraints_ok(7;, 7'}, teniry) then
11: Q — Q U (Tj,temry)
12: Fy = F;\{fj»}

reach any free time window on 74, because on the destina-
tion resource there is a reservation until time 5. Hence, we
must go from r, to r; at time 4 (assuming travel times of 1
for all resources, by time 4 we will have had enough time
to traverse r). Then, we can leave r; at time five, enter-
ing rq at time 5, at the start of the free time window on the
destination resource.

s r g
[0, 0] [0,2] [0, 5]
2,4]

/ [5, 0]

Figure 1: The first arrival at resource r1, at time 1, will not
lead to the shortest path to destination resource r4. Instead,
we must also consider the path that visits r; during its sec-
ond free time window, which starts from 4.

Our context-aware routing algorithm (Algorithm 1) ex-
pands a partial plan by looking at which free time windows
can be reached, rather than by expanding the plan by reach-
able resources.

In Line 2, we initialize the open list ) of free time win-
dows to the start resource and the start time®. For the sim-
plicity of the specification of the algorithm, we specify par-
tial plans only with (resource, free window entry time) pairs.
In the actual implementation of the algorithm, an open list
element has a backpointer to the open list element from
which it was expanded, which is nil for the initial plan. In
Line 4, we retrieve the open list element (r;,¢;) with the
lowest cost t; + D(r;). Hence, the open list elements are

Due to condition 1 from Definition 1, we can represent a plan
by a vector ((r1,t1),...,(rn,tn)) of (resource, resource entry
time) pairs.



sorted in order of increasing (minimum) exit times.

To expand the current free time window, we consider, in
Line 8, all (resource, free time window) pairs that are in
p(ri,t;). The entry time into a reachable free time window
fiw = [0jw, @) is either the entry time into the previous
resource r; plus the time it takes to traverse 7;, or, in case
fjo starts after ¢; + D(r;), the start time o, of f; ..

In Line 10, we check whether we need to take into ac-
count any additional constraints with regard to the current
expansion candidate. For now, we will simply assume that
constraints_ok returns true. In Line 11 we simply add the
new element to the open list ), and, in Line 12, we re-
move the free time window f;, from resource r;’s set of
free time windows F;. This is an important step, as it guar-
antees that we do not consider any free time window for
expansion more than once.

Correctness of the Algorithm

The correctness of the algorithm can be shown by consid-
ering the algorithm as a modified version of a shortest path
algorithm not on the original infrastructure graph (R, S) but
on the modified free time window reachability graph (F, p).
Here, for each free time window f; ,, belonging to resource
r; that is reachable from the origin a cost is assigned: the
(earliest) time this free time window is entered.

Proposition 1 Algorithm I returns an optimal solution.

PROOF: First of all, we prove by induction that for any k& >
0 during the k-th execution of the while-loop algorithm’s
execution, each pair (r;,t;) € ) represents the earliest time
to reach the free time window f; , such thatt; € f; j, having
started from (7, ts).

Initially, the open list contains only (rs,ts), and the in-
duction hypothesis holds for k£ = 0.

Suppose now that after k£ > 0 iterations of the while-loop,
the pair (r;,¢;) is retrieved from the open list in Line 4. Let
fiy € p(ri,ty), and let t, = t; + D(r;). Now there are two
cases to consider:

case 1: ¢, < o;,. InLine9, the entry time into f; , is de-
termined to be o ,. Clearly, the free time window f; ,
can be entered no earlier than its start time oy, so the in-
duction hypothesis also holds for the pair (7, 0;,,,) that is
added to the queue.

case 2: t, > o0;,. The entry time into f;, will be t,. To
see that no earlier entry time into f;, is possible, note
that Vk # @, (r, tr) € Q : t, <ty + D(rx). Hence, for
any pair (ry, t) such that f; ., € p(7g, tx), the entry time
into f;, would be larger than ¢,.
A second point to note is that there will be no iteration
m > k such that a pair (r,,t,,) can be inserted into @,
such that ¢, + D(r,,) < t,. For all (rg,t;) € Q, we
have t, < (tx + D(rx)), according to Line 4. If a new
element (7,,, t,,) is inserted into the open list @) as a result
of expanding (ry, tx), then t,, > (tx +D(rg)), and, since
travel times are greater than 0, (¢, + D(r.,)) > (tx +
Hence, there is no earlier entry time possible into window
fj,y than t,, and the pair (r;,t,) satisfies the induction
hypothesis.

The proposition now follows since in each step of the al-
gorithm, we expand a pair (r;, ;) to all free time windows
reachable from the free time window determined by (r;, t;).
Hence, we are guaranteed to find the first entry into the first
reachable time window on destination resource 7. n

Complexity analysis

In the proof of complexity, we make an assumption regard-
ing the maximum number of free time windows on one re-
source. Note that the assumption holds in case each agent in
the system makes at most one, acyclic plan®*.

Assumption 1 Each agent makes at most a constant num-
ber of reservations per resource.

Before we discuss the complexity of Algorithm 1, we will
first present two propositions that serve to bound the size of
the reachability relation p. In line 8 of the algorithm, a cur-
rent free time window is expanded according to the reacha-
bility relation p. The number of free time windows that can
be reached from a particular time window is an important
factor in the complexity of the algorithm.

Figure 2: Free time window fj, , on resource ry is not reach-
able from f,, ;, by Proposition 2.

Proposition 2 states that if one free time window f3 ,, can
be reached from two different free time windows f,; and
fa,j> on resource 4, then the first free time window f, ;
cannot reach any subsequent free time windows f ,, on re-
source 1, because its end time is too early. For an illustra-
tion, see Figure 2.

Proposition 2 [Interval reachability] If fy., € p(fa,i) then
35 > i fou € p(fa,;) implies 3w > v : fi0 € p(fa,i)
and vice-versa. 0
PROOF: Let fy, ., € p(fqi). We consider two cases.

case 1. if ¢, ; < ¢y, then for every w > v, 04 4 > Pq,i, SO
fow & p(fai);
case 2. if ¢, ; > ¢y, then for every j > 1, 04,; > Pp 0, SO

fb,v gp(fa,j)‘ u

Intuitively, the number of free time intervals on a resource
b that can be reached from free time windows on another
resource r, is bounded by |F,| x |F3|. Using Proposition 2,
however, we can improve this upper bound considerably.

“Kim and Tanchoco (Kim & Tanchoco 1991) assume in their
complexity analysis that each agent makes at most one reservation
per resource.



Proposition 3 Given two resources r, and ry, and sets of
free time windows F, and F}, then

|Fla

resum(ra,ro) = Y | pfa)| | < (IFal + |Fy]) — 1
i=1

O

PROOF: Let m = |Fy,| and n = |F}|. We will prove the
proposition with induction on n+m. Forn = 1 and m = 1,
the result is trivial. Suppose that the property holds for k =
n +m. Let k = n +m + 1. We distinguish the following
cases.

o |F,| = n+ 1. Let f, . be the last time window in F,.
Let O, C F} be the set of all time windows having an
overlap with f, , and let p = |O|. If p = 0 then, clearly,
r-sum < n+m — 1. If p > 0, let fp ; be the first time
window in Op. By Proposition 2, we have that r-sum is the
number of tuples obtained from (Fy, (F, — Oy) U{fp ;})
plus the number of tuples obtained from ({ f, .}, Op). By
induction hypothesis, the first number of tuples is at most
n+ (m —p+ 1) — 1 and the second number is at most
p. Hence, r-sum(ry,7p) <n+(m—p+1)—1+p=
(n+1)+m—1.

e |F}y| = m + 1. Analogous to the previous case. ™

Proposition 4 Algorithm 1 has a run-time complexity of
O(IF[log(IF[) + |S] - |A])- 0

PROOF: In every iteration of the outer while loop (Line 3),
one free time window is removed from the open list (). Be-
cause there are | F'| free time window in total, the while loop
is executed at most | F'| times. If we implement the open list
@ as a priority queue, removing the smallest element from
the list takes O(log(|F|)) time. Lines 1-7 therefore con-
tribute O(|F'| log(|F'|)) to the complexity of the algorithm.

Rather than looking at lines 8—12 in the context of the
outer while loop, we observe that over the whole run of the
algorithm, these lines will be executed at most O(|S] - |A|)
times in total: there are at most |.S| connections between re-
sources, and for each connection, there are at most O(|.A])
time windows on each of the resources because of Assump-
tion 1. From Proposition 3, we know that there are at most
O(JA] + |A| — 1) = O(|A]) time windows that can reach
each other. Finally, we note that any free time window is
considered at most once for expansion, and so each of the
reachable free time windows is also considered at most once.
In case there are no special constraints to check, the proce-
dure constraints_ok simply returns true, requiring O(1) time.

Hence, Algorithm 1 has a run-time complexity of
O(F|1og(|F|) + 5] - |A]).

Special constraints

The procedure constraints_ok can check whether any spe-
cial, domain-specific constraints need to be satisfied. In
this paper we will discuss a constraint (which was first con-
sidered by Hatzack and Nebel (Hatzack & Nebel 2001))
that is necessary in some domain to rule out head-on
conflicts. Consider the following example situation: we

have two resources 7, and 7, of unit capacity, and S =
{(ra,7b), (T6,74)}, 1.e., travel is possible in both direction.
Furthermore, we have agents A; and As, with the follow-
ing respective plans: P; = ((r4,10,5]), (7, [5,10])) and
Py, = ((14,]0,5]), (4, [5,10])). Note that the union of these
plans does not at any time exceed the capacity of the re-
sources, and these plans therefore seem conflict-free.

The problem with these plans is that at time 5, the two
agents ‘exchange’ resources. Unless there is enough space
to manoeuver at the intersection of resources r, and 7y, this
attempted resource exchange will result in a head-on con-
flict. The simultaneous exchange check can be performed
by a lookup into a hash table associated with the current re-
source, in which the keys are times of resource entry and
exit, and the values are the number of exchanges at those
time points. Updating of the hash table occurs when an
agent reserves his plan; the lookup itself requires O(1) time,
so taking this constraint into account does not change the
run-time complexity of the planning algorithm.

Algorithm variants

There are a number of ways in which Algorithm 1 can be
adapted, and we have implemented the following:

Informed A*-search : Our A*-search variant uses a con-
sistent heuristic distance function (Dechter & Pearl 1985)
h that tries to direct the search earlier towards the goal,
resulting in fewer open list operations. The heuristic h
we have chosen calculates the length of a shortest path
from the current resource to the goal resource assuming
no reservations on the resources.

Algorithm 1 has to be adapted as follows: Instead of re-
moving a free time window in Line 12, we should put the
window on a closed list, just before this window gets ex-
panded. Also, after Line 7, we insert a test to see if the
window determined by (r;, ;) is on the closed list; if so,
we directly continue to the next iteration; otherwise, we
put it on the closed list, and proceed with Line 8. Fi-
nally, when we are considering successors for expansion,
we should check whether a successor already exists on the
open list; if it does, we replace this open list entry only if
its heuristic value is smaller than that of the open list en-
try. Replacing an entry on the open list takes log(|F'|)
time, so the complexity of the algorithm then becomes

O(|A[IR[? log(JA||R])).

Acyclic plans : In Algorithm 1, we allow agent plans that
visit one resource multiple times. To understand why an
agent might do that, we can think of the agent as stepping
aside to let another agent pass. In many application do-
mains, like airport taxi planning, such actions would be
considered too wasteful. In acyclic planning, the size of
the algorithm’s open list might be reduced if we do not
allow cycles. To adapt Algorithm 1 we check after Line 4
whether the current resource has already been visited in
the current partial plan (by traversing the parent pointers
of the open list elements). With acyclic planning, we no
longer have the guarantee that we find the optimal plan.



Experiments

In this section, we will compare our one-phase free path
approach to conflict-free routing to a two-phase approach
where the sequence of resources is fixed, but the time at
which we make use of them is not. In particular we com-
pare the performance of the different variants of Algorithm 1
as described above with an implementation of the algorithm
by Hatzack and Nebel (Hatzack & Nebel 2001) (H&N) as
a representative of the two-phase approach. Secondly, we
will look at the effects of the sequence in which the agents
plan on the total throughput of the infrastructure. All exper-
iments were run on the infrastructure of Amsterdam Airport
Schiphol, where we consider the problem of aircraft taxiing.
We would also have liked to compare our one-phase al-
gorithm to Kim and Tanchoco’s (Kim & Tanchoco 1991)
one-phase algorithm, but it turned out there was no imple-
mentation of their algorithm available, and no previous ex-
perimental results have been published that we could find.

One-phase versus two-phase routing

To make a fair comparison between the two approaches,
each algorithm was used to calculate a route for the same
start-destination pair, given the same set of reservations on
the infrastructure. For each set of reservations, we calculated
the average time to find a conflict-free path for 20 randomly
chosen start-destination pairs. To get an impression of how
plan quality and CPU-time depend on the number of reserva-
tions, we started with an empty set of reservations. For each
set of reservations, we used the last conflict-free plan found
to obtain new reservations, added them to the existing set of
reservations, and used the new set to calculate again the time
for route finding. We repeated this procedure for 3000 iter-
ations. We ran this experiment twice: the first time, we used
the plans generated by the A*-search with distance heuris-
tic to make reservations, the second time we used the plans
obtained by H&N’s algorithm.> At all times, we started the
algorithms with start time ¢ = 0.

We conclude from Figure 3 that H&N’s two-phase ap-
proach is so fast, our one-phase algorithm looks slow by
comparison. A closer look reveals that our algorithms are
still pretty fast, as a solution is found on average within two
tenths of a second. Also, the 95% confidence intervals are
reasonably small, so this performance is reasonably stable.
With regard to the different variants of our algorithms, we
see that the no-cycles variant is significantly faster than the
other two, despite the fact that checking for a-cyclicity is not
a very cheap operation. Note that the A*-search with dis-
tance heuristic requires about the same amount of CPU-time
as the standard version of Algorithm 1, which utilizes no
heuristic. Apparently, the cost of the closed list operations
more or less cancels out the benefits of having an informed
search.

Looking at the cost of the generated plans (Figure 4), the
plans generated by the no-cycles variant are not significantly
more expensive than those generated by Algorithm 1 and

For H&N’s algorithm, we set the initial fixed sequence of re-
sources to be the shortest path from start to destination.
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Figure 3: Average CPU-time for increasing amount of re-
source reservations (of plans generated by A*-search algo-
rithm).
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Figure 4: The average end-times of plans for increasing
amount of resource reservations (of plans generated by A*-
search algorithm).

informed A*-search, both of which are optimal. Note that
the plans made by H&N are slightly longer (in time).

In Figures 5 and 6, the results are given using plans made
by H&N to make new reservations. Although the afore-
mentioned is still lightningly fast, the plans made by H&N
are significantly more expensive. The reason is that many
shortest paths will make use of the same resources, so af-
ter a while a number of bottleneck resources will emerge,
dramatically deteriorating the performance of H&N’s algo-
rithm. The free path planners still manage to plan around the
bottleneck resources to a large extent, but the search process
is slowed down considerably, with an average CPU-time of
half a second per shortest path call, and frequent outliers of
one or even two seconds for a single shortest path call. The
informed A*-search suffers especially, presumably because
the distance heuristic, which is based on the shortest path
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Figure 5: Average CPU-time for increasing amount of re-
source reservations (of plans generated by Hatzack and
Nebel’s algorithm).
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Figure 6: The average end-times of plans for increasing
amount of resource reservations (of plans generated by
Hatzack and Nebel’s algorithm).

without reservations, directs the search right into the con-
gested area of the infrastructure.

One phase vs. two-phase: conclusions Clearly, the ad-
vantage of two-phase routing over one-phase routing is its
speed. Conflict resolution of one plan requires a few hun-
dredths of a second, compared to maybe a few tenths of a
second for a complete route planning call. The plan qual-
ity of a two-phase algorithm will depend on the sequence of
resources that is the result of the first phase. In the above
experiments, we simply chose the shortest path when no
reservations are taken into account; and this turned out to
be a good choice, as long as there is an even spread of
reservations over resources, and over time. This spread of
reservations is typically achieved if a free path method is

n Alg.l1[s] H&N/[s] rec. calls
1 0 0 10
2 0 0 26
4 0 0 110
8 0 10 1,682
16 0 2.600 426,026
20 0 41.460 6,815,798
24 0 696.280 109,051,970

10000 2.260 - -
20000 12.140 - -

Table 1: For different problem sizes n, the time required to
find a plan by Algorithm 1, by H&N’s algorithm, and the
number of recursive calls used by the latter.

used to generate plans that are reserved on the infrastruc-
ture. However, using the plans generated by H&N’s conflict
resolution algorithm to make reservations can lead to gross
inefficiency.

Finally, we suggest some circumstances favour a two-
phase planning approach more than others. In H&N'’s pa-
per, they consider an airport taxiing problem in which the
taxi routes are fixed. Moreover, in their scenario it is reason-
able to assume that there is some spread of the agents over
time (in the above experiments, all agents were ready to go
from time 0). In general, one should determine whether the
flexibility afforded by a free path approach is worth the ad-
ditional CPU-cycles.

Conflict resolution: hard instances Ironically, although
their algorithm was shown to be the fastest, the worst-case
time complexity of H&N’s algorithm is not polynomially
bounded. Their algorithm makes use of backtracking, and
since they do not make use of the idea that a free time win-
dow needs to be expanded at most once, it is possible to con-
struct examples in which the algorithm keeps backtracking
through the same paths of time windows.

To create such an instance where their algorithm needs
2™ 4 1 updates, no more than the following 5n reservations
are needed in a route 71, . . ., 3, of 3n resources (each hav-
ing a traversal time equal to 1). Resources

e r3;_o are reserved during [5i — 3,5¢ — 2) for 1 <i <mn,
e r3; are reserved during [5¢ — 3,5¢) for 1 < i < n,
e 7; are reserved during [5n,5n 4+ 1) for 1 < i < 3n.

Table 1 clearly shows that if such a structure of reserva-
tions occurs H&N’s algorithm will not be able to solve the
instance within acceptable time.

Planning in sequence From Figure 4 it is already clear
why agents would prefer to plan before others make any
reservations: the cost of the average plan increases linearly
with the number of reservations in the system. Figure 7
shows that if an agent is 400" in line to make a plan, then
his plan cost will approximately be twice the cost of the
minimum-cost plan, which is the shortest path when reser-
vations are not taken into account.

This does not mean that the order in which airplanes plan
makes a difference to the total system. Here we show the
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Figure 7: The average overhead (plan cost divided by mini-
mum plan cost) increases when an airplane plans later.

performance of the total system for a group of 500 airplanes
routing from and to random resources in the Schiphol in-
frastructure. The same tasks are repeated 100 times with
different random permutations in which the airplanes create
their plans and make the reservations.

The relatively small 95% confidence intervals shown in
Figure 7 indicate that for the Schiphol airport network the
order in which airplanes reserve their plans is not significant;
the overhead for being n*” in line does not vary greatly.

Conclusions and Future work

In this paper we have presented an optimal single-agent
algorithm for the context-aware routing problem, with a
worst-case time complexity of O(|F|log(|F|) + |A| - |S]),
where F' is the set of free time windows, and S' is the num-
ber of connections between resources in the infrastructure
(the number of ‘edges’). On a realistic airport infrastruc-
ture consisting of over 1000 resources, the algorithm finds
the optimal plan within a few tenths of a second, even af-
ter 3000 agents have reserved their plans on the infrastruc-
ture resources (an average day at Schiphol airport has around
1600 flight movements).

To apply the single-agent algorithm in a multi-agent sys-
tem, the order in which agents are allowed to make their
plans will determine the utility of the individual agents, and
might therefore be the subject of negotiation between the
agents. Fortunately, the order of in which the agents make
their plans does not affect the throughput of the infrastruc-
ture to a great extent.

In the near future, we will look at the problem of multi-
stage context-aware routing, in which an agent is looking
for the quickest way to visit a (fixed) sequence of resources.
In the airport taxiing domain, this can be relevant when an
aircraft needs to go by the deicing station on its way from
the gate to the runway. In a warehouse AGV domain, multi-
stage routing can be useful when multiple tasks have to be
processed by an AGV, and also in case a visit to the battery

charging system must be inserted into its plan.

In the longer run, we intend to explore the possibilities of
increasing the number of agents that can plan a route simul-
taneously, and to resolve any conflicts between the newly
made plans in an after-planning negotiation phase.
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