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Abstract—In this paper we present the scaling of BTWorld,
our MapReduce-based approach to observing and analyzing the
global BitTorrent network which we have been monitoring for
the past 4 years. BTWorld currently provides a comprehensive
and complex set of queries implemented in Pig Latin, with
data dependencies between them, which translate to several
MapReduce jobs that have a heavy-tailed distribution with
respect to both execution time and input size characteristics.
Processing BitTorrent data in excess of 1 TB with our BTWorld
workflow required an in-depth analysis of the entire software
stack and the design of a complete optimization cycle. We analyze
our system from both theoretical and experimental perspectives
and we show how we attained a 15 times larger scale of data
processing than our previous results.

I. INTRODUCTION

Global networks with millions of nodes, from the BitTor-

rent file-sharing network to the smart electricity grids, are

increasingly used to support daily human activities, requiring

continuous monitoring and analysis. Starting with 2009, in

our BTWorld project [1] we have conducted a longitudinal

experiment in observing the global BitTorrent network during

which we have collected over 15 TB of operational data.

Although we have created a MapReduce-based logical work-

flow to extract insightful knowledge about the evolution of

the BitTorrent network [2], the vicissitude of processing our

BitTorrent data, that is the combination between large volume

of data and the complexity of the processing workflow, has

prevented us until now to gather useful insights. To address

this problem, in this work we demonstrate the scaling of the

BTWorld workflow and process an order of magnitude more

data than in our previous attempt [2]. The contributions of this

paper are conceptual, technical, and related to scale.

In terms of conceptual contribution, we introduce a complex

workflow for big data processing solving a real-world problem

that is highly relevant for the evolution of the Internet, which

is the analysis of the operation of the global BitTorrent file-

sharing network. Popular yet simple benchmarks used in

much of the big data research fail to stress the MapReduce

software stack. In contrast, the level of complexity of our

workflow drives the MapReduce platform to its limits which

unexpectedly crashed multiple times. Thus, scaling it to very

large data sets required several considerations, both in terms

of tuning the platform configuration and workflow design.

The BTWorld workflow currently includes 17 high-level SQL-

like queries implemented in Pig Latin which translate to 35

MapReduce jobs. The complexity of the workflow turned out

to be more important than the data volume. While trying to

scale BTWorld to larger data sets, the vicissitude encountered

determined us to analyze in-depth the entire software stack and

understand the impact of each level on the actual performance

of the workflow.

Our technical contributions form a complete optimization

cycle that includes modifications applied at all levels of the

big data processing stack. At the storage level, we show

the importance of input data organization and the influence

of the replication factor on the execution time of complex

workflows. At the level of MapReduce, we found that delaying

the execution of reducers can alleviate memory pressure and

that increasing default buffer allocations is essential. At the

high-level programming level, Pig, we show that finding a

balance between the number of tasks and memory allocation

is crucial to avoid crashes. Finally, at the workflow level, it is

important for the design to include inter-query data reuse.

As to scale, we have processed 40 times more data com-

pared to the “biggest” presentation at CCGrid SCALE 2013,

MR-DBSCAN. At the same time, we surpass our own previous

work by a factor of 15 [2]. Most importantly though, the

problem we are addressing in this paper concerns the global

BitTorrent network, which is of an unprecedented scale in

peer-to-peer research. The scientific community can greatly

benefit from our analysis to improve the service level of

the hundreds of millions of BitTorrent users [3], but also to

alleviate the network issues that BitTorrent can cause because

of its heavy use of upload bandwidth [4].

In summary, the contributions of this paper are threefold:

1) We present BTWorld, our MapReduce-based approach

for observing the global BitTorrent system.

2) We design a multi-level optimization cycle for tuning

MapReduce-based software stacks in order to accom-

modate complex workflows.

3) We present the scaling of the BTWorld workflow to 15

times the size of the data sets of our previous results [2].

II. OBSERVING THE GLOBAL BITTORRENT NETWORK

BitTorrent is the most popular peer-to-peer file sharing

protocol and the biggest Internet application in terms of

residential upload bandwidth usage [4]. BTWorld [1] is an

ongoing project we started in 2009 to observe the global

BitTorrent network.
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TABLE I
OVERVIEW OF THE COMPLETE BTWORLD DATA SET.

Collection period 2009-12-04 to 2014-02-06
Total size of data set 14.90 TB
Unique swarm samples (estimate) 165 billion
Unique trackers 2 378
Unique timestamps 79 521
Unique scrapes 10 001 940
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Fig. 1. CDF of mean scrape size per tracker. Logarithmic horizontal scale.

A. BitTorrent and BTWorld Operation

Sharing of a file in BitTorrent starts with the creation of a

torrent–a metadata file–containing information about the file to

be shared. The file is logically broken up into constant length

pieces which are SHA-1 hashed to facilitate the file transfer–

different pieces can be downloaded from different peers in

parallel and peers can upload pieces even before having the

complete file. Piece hashes are recorded in the torrent, together

with the file name, and are themselves hashed to obtain a

unique identifier–a hash–allowing peers interested in the file

to find each other. Centralized servers called trackers are used

by peers to find members of the swarm of peers sharing the

file identified by a certain hash.

BTWorld aims to capture the global state of BitTorrent;

instead of monitoring the hundreds of millions of peers

themselves [3], which would require resources well beyond

the possibilities of a university lab, BTWorld contacts trackers

to gather statistics. We built a comprehensive list of trackers

which we query periodically using several Linux servers

running cron and wget. Each query response, or scrape,

contains, for each hash at the tracker, the following swarm

statistics: the number of seeders–peers having the complete

file, the number of leechers–peers downloading the file, and

the total number of downloads. The raw scrape data is encoded

in a BitTorrent specific format [5] and can be further gzip-

compressed by the tracker for transport over HTTP.

B. Global Scale

The BTWorld project operates on an unprecedented scale in

the area of file sharing in terms of population and time. While

previous work has focused on at most a handful of trackers

to obtain exemplary evidence about BitTorrent phenomena

TABLE II
QUERIES OF THE LOGICAL WORKFLOW IN BTWORLD.

Acronym Query Description

ToT Tracker status over time
AT / AS / AH Active trackers/swarms/tracker per timestamp
TKTL / TKTG Local/global top-K trackers
TKHL / TKHG Local/global top-K hashes
TKSL / TKSG Local/global top-K swarms
TKNDH Newborn/Dead hashes over time for top-K trackers
SeT / SwT / SLT Sessions/Swarms/SeederLeecherRatio over time
TT / TTS / THS Total number of trackers/timestamps/hashes&swarms

during a few months [6], BTWorld provides researchers a

global vantage point from which to observe the evolution of

BitTorrent over the past 4 years.

Processing the BTWorld data reveals long term trends like

the year-over-year variation in the global peer population, the

geographical migration of trackers, or the availability of very

old files. At the same time, the data captures the effect of

external disruptions on the BitTorrent ecosystem, including

legal challenges in several countries [7] and the creation of

fake trackers and swarms [1].

C. Data Set

We summarize the characteristics of the data collected by

BTWorld from its start in 2009 until now in Table I. The raw

tracker scrapes represent almost 15 TB of data. We estimate

there are approximately 165 billion unique samples of swarm

statistics in the data set based on an average sample size of

90 bytes. BTWorld tracks the evolution of over two thousand

trackers from which it has collected more than 10 million

scrapes. The distribution of scrape size across all trackers and

timestamps is presented in Figure 1. The median is 21 kB,

while the mean is 1.49 MB. Most of the scrapes are small,

but some trackers generate more than 300 MB of data per

timestamp. This skewness makes the data especially hard to

process.

III. BTWORLD WORKFLOW

Given the richness of the data set, it is common for the

BitTorrent analyst to design new queries, which could (and

in our experience do) traverse the entire data set to produce

their output. At the same time, queries need to be translated

to executable code as fast and simply as possible.

The BTWorld workflow is designed as a set of inter-

dependent queries written in Pig Latin, an SQL-like pro-

gramming language designed to be automatically translated

to MapReduce jobs. The queries are presented in Figure 2,

together with their data dependencies created to maximize data

reuse. Table II summarizes their function (the last six queries

in the table are omitted from the figure for clarity). In the rest

of this section, we describe three queries that are representative

for the diversity of the workflow.

TrackerOverTime (ToT). What is the evolution of indi-

vidual trackers? This query is used to extract information

about the evolution of each tracker we monitor in terms of
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Fig. 2. The BTWorld logical workflow diagram.

Listing 1. Pseudo-code for the ToT query.

SELECT tracker, timestamp,

COUNT(hash) AS hashcount,

SUM(seeders + leechers) AS sessions,

AVG(leechers == 0 ?

seeders : seeders / leechers)

AS slratio

FROM logs

GROUP BY tracker, timestamp;

the number of swarms served, the total peer population (total

sum of seeders and leechers), as well as the service level in

its swarms (using the ratio of seeders to leechers as a proxy).

Listing 1 shows the query. The complete data set is grouped by

tracker and timestamp and aggregation functions are applied

to extract the statistics for each group.

As a sample of BTWorld output, we plot the CDF of the

total number of sessions per tracker as produced by the ToT

query on our 1.5 TB data set in Figure 3. The data was

sanitized similarly to the original BTWorld paper [1].

ActiveSwarms (AS). What is the total number of swarms

active in the system? Starting with the output of the ToT

query instead of the complete data set considerably speeds-

up the execution of this query. This type of inter-query

data dependency is used whenever possible throughout the
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Fig. 3. CDF of the total number of sessions per tracker for all scrapes in
the 1.5 TB data set. Logarithmic horizontal axis.

Listing 2. Pseudo-code for the AS query.

SELECT timestamp,

SUM(hashcount) AS swarms

FROM ToT

GROUP BY timestamp;

workflow. The pseudocode is shown in Listing 2. The data is

grouped by timestamp and the SUM function is applied to the

hashcount data pre-computed by the ToT query to extract

the number of swarms active in the global network at each

timestamp.

Top-K-Swarms-Per-Time (TKSL). Which are the K most

popular swarms? To answer this question we designed a

complex query that requires the entire data set and several

processing stages. Firstly, we group the input data set by

hash, tracker and a configurable time window representing the

period we investigate and we calculate for each such group the

average number of sessions. Secondly, we re-group the data by

tracker and time window and select from each resulting group

the largest K hashes with respect to the average number of

sessions.

IV. EXPERIMENTAL RESULTS

In this section we present the design of the experimental

setup we employed to execute the BTWorld workflow and we

analyze its performance on a real-world cluster system.

A. System Configuration

We run experiments on the Dutch six-cluster wide-area com-

puter system DAS-4 [8] with node configuration summarized

in Table III. The TU Delft cluster, which we use for our big

data challenge, has 24 dual-quad-core compute nodes with

24 GiB memory per node and 50 TB total storage, connected

within the clusters through 1 Gbit/s Ethernet (GbE) and

20 Gbit/s QDR InfiniBand (IB) networks. In our experiments,

we use a standard setup of Hadoop-1.0.0 over InfiniBand. We

configure the HDFS on a virtual disk device (with RAID 0

software) that runs over 2 physical devices with 2 TB storage

in total per node.

TABLE III
NODE CONFIGURATION

Processor Dual quad-core Intel E5620
Physical cores 8
Memory 24 GiB RAM
Physical Disk 2 WD Re 1 TB (RAID 0)
Network 20 Gbit/s InfiniBand
Operating system CentOS 6 (Linux 2.6.32)
JVM Oracle JDK 1.6.0 27

B. Optimization Cycle

Scaling the BTWorld workflow for large data sets is not

trivial. We have encountered unexpected crashes due to in-

sufficient hardware capabilities (disk quotas and memory

capacity exceeded). Using common rule-of-thumb settings of
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Fig. 4. Different aspects addressed in the software stack and the optimization
cycle required by BTWorld.

MapReduce for configuring the number of map and reduce

slots, number of reducers, or the replication factor proved to

be inefficient for the complex and diverse BTWorld jobs. Thus,

to successfully scale the workflow to larger input data sizes,

we apply the optimization cycle in Figure 4, which we further

discuss in this section.

HDFS. The BTWorld raw input data is decompressed and

decoded from the BitTorrent-specific encoding to plain-text

files containing tab-separated values, using a combination of

shell and Python scripts. Upon insertion into HDFS, the files

are organized in a tracker-based directory structure. Scrape

samples are concatenated into fixed-size files configured to

match the HDFS block size, 128 MiB. Because the largest

queries are disk-intensive and generate outputs comparable in

size with the input data, we decrease the replication factor in

HDFS from the default value 3 to 2 replicas (minimum for

fault tolerance). This also accelerates execution time, because

our inter-query dependencies imply writing data to HDFS

in between MapReduce jobs and this writing also benefits

from the reduced replication. As the FIFO scheduler does

not optimize for task and data co-location [9], there is no

concern about decreasing the data locality when lowering the

replication factor.

MapReduce. MapReduce scheduler manages internally an

overlapping queue which splits the job into map and reduce

tasks such that different types of tasks may run simultaneously.

The scheduler first executes the map tasks of the jobs, but the

overlapping model allows the scheduler to execute reduce tasks

when a certain fraction of map tasks have been successfully

completed. The general assumption of allowing map and

reduce tasks co-exist is that the latter type of tasks only

transfer output data from the map tasks, thus not increasing

the resource contention of the cluster nodes. Although this is a

common configuration for most of the MapReduce traditional

applications (e.g., cite HiBench, Facebook), a high degree

of task-level concurrency may break the system when run-

TABLE IV
HADOOP CONFIGURATION

Hadoop version 1.0.0
Cluster size 24
Scheduler FIFO
Map slots 92
Reduce slots 92
Memory per task 6 GiB
HDFS replication 2

ning memory-bound applications. We have encountered this

issue with our largest BTWorld queries (e.g., ActiveHashes,

TopKSwarmsPerTime, TopKHashesPerTime). In consequence,

we limited the number of concurrent tasks at 4 each with 6 GiB

memory allocated by setting both map and reduce slots set to

4 and stalling the execution of the reduce tasks until all map

tasks have completed.

Pig. Although Pig language provides a limited level of

control on the optimization of the MapReduce jobs generated,

we observed two important elements that influence the imple-

mentation and the performance of the workflow: the lack of a

wide range of operators and the number of reducers launched

by the MapReduce jobs. For the former, we implemented

several user-defined functions to support different operations

on the timestamps. Given the diversity and the number of the

jobs in our workflow, setting the number of reducers to a static

value is sub-optimal. However, as Pig allows configuring the

number of reducers per query and in our implementation each

query may be translated into several jobs, we were not able to

tune the number of reducers per job. Therefore, we applied

the default rule-of-thumb and set the number of reducers

proportionally to the input data of the job (1 GB per reduce

task).

BTWorld. The design and implementation of the workflow

itself went through several iterations. Given the large size of

data generated by the queries, an important aspect was to make

efficient use of the data from previously executed queries. One

technique used to increase data reuse is identifying common

execution patterns and splitting them off into separate queries.

For example, both the number of trackers and swarms per

timestamp can be found by grouping by tracker and timestamp.

To prevent executing this operation twice, we created the

TrackerOverTime (ToT) query to perform the grouping and

aggregation once, and extract the number of trackers and

swarms from the result. A second technique involves rewrit-

ing queries to use output of existing queries. For example,

BTWorld extracts information about both the global (all-time)

and local (per-timestamp) top-K swarms. Intuitively, the global

top-K can be found by grouping the full data set by swarm and

computing the size of each. However, as the size of a swarm

is defined as its peak concurrent sessions, the size of a swarm

can be extracted from the local top-K results (a swarm in the

global top-K must be part of the local top-K during its peak).
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Fig. 5. The performance of the BTWorld queries. The query runtimes compared for 100 GB vs. 1500 GB (a), in logarithmic vertical scale, and the query
runtimes of the largest queries decomposed in successive map-reduce phases (b).

TABLE V
EXPERIMENT OVERVIEW

Data set size 1500 GB 100 GB
Pig queries 17 17
MapReduce jobs 35 35
Total map tasks 101 955 6987
Total reduce tasks 7721 745
Total runtime 17.87 h 2.44 h
Shuffled data (temporary) 11.9 TB 1.4 TB
Intermediary data (persistent) 1.7 TB 73 GB
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Fig. 6. The BTWorld job runtime and input data size distributions for
1500 GB. Logarithmic horizontal scale.

C. BTWorld Performance

In this section, we extract the characteristics of the workflow

after running BTWorld on a 24-node Hadoop cluster deployed

on our DAS-4 system with the configuration given in Table IV.

We compare the query performance for two data sets, and we

show the execution time across different MapReduce phases

for a selection of the largest queries.

The general characteristics of the workflow are depicted in

Table V. The 35 MapReduce jobs launch over 110 000 map

and reduce tasks for the 1.5 TB data set which are executed in

almost 18 hours. The amount of shuffled data between the map

and reduce phases is more than 10 times larger than the initial

input. Moreover, the size of the intermediary data resulted

from our design of the BTWorld workflow has the same order

of magnitude as the input. While the former is discarded when

the jobs are completed, the latter is persistent and possibly

used by other jobs (e.g., the output data of ToT is later used

by AS and AT, see Figure 2).

Most of the queries (e.g., SeT, SwT, SLT) run over sum-

maries of the entire data set, whose sizes are quasi-independent

of the original input. Thus, as we illustrate in Figure 5(a), their

performance is comparable even when the input data size is

increased by a factor of 15, switching from the 100 GB to the

1.5 TB data set.

A small fraction of the BTWorld queries (i.e., ToT, AH,

TKSL, TKSG, TKHL, and THS) determine the performance

of the entire workflow, because they process the entire data set.

These queries are responsible for almost half of the total load

of the system and translate into multiple MapReduce jobs, with

non-overlapping map and reduce phases (see Figure 5(b)).

In Figure 6, we depict the distributions for the job runtime

and input size for the complete BTWorld workflow, consisting

of 35 jobs. The mean and median runtimes are 1838 s and

38.69 s, respectively; the mean and median input data sizes

are 373 MB and 42 MB, respectively. Similarly to workloads

in production clusters from Google and Facebook, the jobs in

the BTWorld workflow follow a heavy-tailed distribution with

respect to both runtime and input data size.

V. CONCLUSIONS

Overall, the most important lesson learnt from implementing

the BTWorld workflow is that the promise of high-level

languages like Pig of making the big data processing stack

available to everybody, without requiring expertise in the

lower levels of the stack, is not fulfilled. The performance of

MapReduce workloads is dependent on several aspects such

as the data set layout and size, the hardware configuration
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of the cluster, or the deployment of the MapReduce frame-

work within the physical infrastructure. Current techniques for

tunning the performance of MapReduce workloads, such as

Starfish [10], consider these elements as independent variables,

without studying how they influence each other. Instead, based

on our experience with BTWorld, we argue that finding the

correlations between different parameters is a building block

towards an optimized data processing framework.

The design space for autonomous systems is still large. We

experienced crashes at all levels, even for simple queries, and

scaling the system to process data sets in excess of one terabyte

required a wide range of manual tuning. Nevertheless, auto-

tuning techniques based on machine-learning algorithms [11]

are offline, which makes them impractical for multiple reasons.

Training the models requires repeated runs, which is time-

consuming even for single simple jobs such as Wordcount or

Sort. This issue is amplified for long running jobs or complex

workflows like ours. Furthermore, as the optimal configuration

depends on the hardware configuration of the cluster, the

training phase has to be re-executed when moving from one

infrastructure to another. Therefore, we argue the need of an

online performance tunning tool for data analytics, which can

explore the parameter space during the system operation and

eventually converge to the optimal offline configuration.

Although designed for dedicated single cluster deployments,

data processing platforms like MapReduce can benefit from

elastic scaling [12]. Based on the observations we have made

in the current configuration of our system, we also identify the

need to scale out the BTWorld processing. We are currently

working on a multi-cluster deployment of the MapReduce

framework which will enable a larger capacity for running

the BTWorld workflow.

Finally, we have learnt that benchmarking big data process-

ing systems using common yet simple workload suites (e.g.,

[13],[14]) with small data volumes may not be representative

for an accurate performance evaluation. Instead, we advocate

using more complex applications in current big data research.
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