
Adding Cycle Scavenging Support to the Koala
Grid Resource Manager

Bart Grundeken

Adding Cycle Scavenging Support to the Koala
Grid Resource Manager

Master’s Thesis in Computer Science

Parallel and Distributed Systems Group
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology

Bart Grundeken

February 1, 2009

Author
Bart Grundeken

Title
Adding Cycle Scavenging Support to the Koala Grid Resource Manager

MSc presentation
February 11, 2009

Graduation Committee
prof.dr.ir. H.J. Sips (chair) Delft University of Technology
ir.dr. D.H.J. Epema Delft University of Technology
O.O. Sonmez, MSc. Delft University of Technology
dr. K.V. Hindriks Delft University of Technology

To my parents, Gerard and Meriam

Abstract

Cycle scavenging (CS) is the process of using otherwise idle computational re-
sources to provide large, aggregate, amounts of computational power. It is the core
principle of so-called desktop grids and volunteer computing, which use the idle
cycles of desktop computers to do computations. However, resources in a multi-
cluster grid likewise may have idle time, and so, multi-cluster grids go through
periods of low efficiency. In addition, many practical grid applications are of the
Bag-of-Tasks (BoT) type, which are large collections of embarrassingly parallel
tasks. These require a vast amount of computational power, which multi-cluster
grids can provide. Claiming an entire grid for one application would however not
be fair to other grid users. In this thesis, we design a system for multi-cluster
grids that detects and uses otherwise idle resources, specifically to execute BoTs.
By combining CS with the computational power of the grid, we increase grid effi-
ciency, we are able to provide the resources needed by BoTs, and, at the same time,
we can guarantee unobtrusiveness to all grid users. The system we design, KOALA-
CS, is an extension of the KOALA grid resource manager. We create a framework
for submitting CS jobs through KOALA, and implement several policies for fair
sharing among such CS jobs. We then evaluate the performance of the complete
system, and demonstrate its capabilities, through a series of experiments on a real
grid system, the DAS-3. With these experiments, we show that KOALA-CS does
not hinder non-CS grid users, that it ensures fair sharing of resources among CS
jobs, and that it is robust and fault tolerant.

iv

Preface

Computers have held my interest since a young age. At Delft University of Tech-
nology, I was able to extend that interest into practical knowledge for designing
complex systems. Distributed computing caught my eye as one of the most chal-
lenging fields, and within that field, Grid computing was something I was unfamil-
iar with and wanted to know more about. The premise of creating a system within
such a complex environment as grids, as well as the original problem domain (ap-
plying the system to solve complex games), finally, pulled me in. The result is
the thesis that know lays before you. I did the research for it in the context of the
Virtual Lab for e-Science project. Parts of Chapters 3 and 4 have been submitted to
and accepted by the Ninth IEEE International Symposium on Cluster Computing
and the Grid [35].

Of course, I could not have completed this project alone. First of all, I would like
to thank the Grid group at Delft University of Technology: Ozan Sonmez, for his
day-to-day guidance and support; Hashim Mohamed, for developing KOALA and
helping me understand and extend it; Dick Epema, for his guidance, especially
with writing this report; Alex Iosup and all the other members for their input.
In addition, I thank Henk Sips for chairing the graduation committee and Koen
Hindriks for participating in it. I would also like to thank my fellow students from
the 9th floor laboratory, my fellow interns of the ”KPN group”, and all my friends
who took an interest in this project. I extend my special gratitude to my family: my
brothers and sister-in-law, but foremost my parents, for their support in too many
ways to mention. Last, but not least, I thank God for giving me the ability to learn,
to improve, and to be creative.

Bart Grundeken

Delft, The Netherlands

February 1, 2009

v

vi

Contents

Preface v

1 Introduction 1
1.1 Computational Grids and Cycle Scavenging 2
1.2 Related Work . 2
1.3 Contributions . 3
1.4 Thesis Outline . 4

2 Cycle Scavenging in Multi-Cluster Grids 5
2.1 Background . 5

2.1.1 Grids . 5
2.1.2 The DAS-3 Multi-cluster grid 9
2.1.3 Cycle scavenging . 10

2.2 The Koala Grid Resource Manager 11
2.2.1 Architecture of Koala . 11
2.2.2 Koala job flow . 12
2.2.3 The Koala scheduler . 14
2.2.4 Koala runners . 16
2.2.5 The Koala component manager 20

2.3 System and Job Models . 23
2.3.1 System model . 23
2.3.2 Job model . 23

2.4 Cycle Scavenging Applications 24
2.4.1 Bag-of-Tasks applications 24
2.4.2 Dummy application . 24
2.4.3 Eternity II . 25

2.5 Problem Statement . 25

3 The Design and Implementation of Koala-CS 27
3.1 The CS Functionality of the Scheduler 28

3.1.1 Resource discovery . 28

vii

3.1.2 Fair allocation of resources 28
3.1.3 Grid-level unobtrusiveness 29

3.2 The Extended Koala Component Manager 30
3.2.1 Local job detection . 30
3.2.2 Component submission 31

3.3 The Launcher Mechanism . 32
3.3.1 Deployment protocol . 32
3.3.2 Scheduling control . 33
3.3.3 Task management . 33
3.3.4 Communications . 34

3.4 The CS Runner and Runners Framework 35
3.4.1 Structure of the CS runners framework 36
3.4.2 Runner components . 36
3.4.3 Interaction of runner components 38
3.4.4 Handling grow and shrink messages 39
3.4.5 Launcher management 40

3.5 Koala-CS Job Flow Protocol . 41
3.5.1 Job submission . 41
3.5.2 Job growth . 42
3.5.3 Job shrinking . 43
3.5.4 Job completion . 44

3.6 Koala-CS Fault Tolerance . 44
3.6.1 Error and failure prevention 45
3.6.2 Component failure handling 45
3.6.3 System failure handling 47

3.7 The Policies of Koala-CS . 47
3.7.1 CS policies . 47
3.7.2 Application-level scheduling policies 48

4 Evaluation of Koala-CS 51
4.1 Methodology and Metrics . 51
4.2 The Efficiency of the Launcher Mechanism 52

4.2.1 Experimental setup . 52
4.2.2 Results and discussion 52
4.2.3 Conclusion . 53

4.3 The Unobtrusiveness of Koala-CS 54
4.3.1 Local job delay . 54
4.3.2 Grid job delay . 56
4.3.3 Conclusion . 57

4.4 The Effect of CS Fair Sharing Policies 58
4.4.1 Experimental setup . 58

viii

4.4.2 Results and Discussion 59
4.4.3 Conclusion . 63

5 Conclusions and Future Work 65

References 68

ix

x

Chapter 1

Introduction

Cycle scavenging (CS) is the process of using otherwise idle computational re-
sources to provide large, aggregate, amounts of computational power. It is the core
principle of so-called desktop grids, which use the idle cycles of desktop comput-
ers to do computations. Desktop computers can indeed provide large amounts of
computational power [33]. This power would otherwise be wasted as the computer
is active but running the screensaver or doing little more than I/O. By making their
desktops part of a desktop grid, the desktop owners can drastically increase the
efficient use of their computers.

However, desktop computers are not the only systems that can be idle while
still consuming energy. The resources of a multi-cluster grid likewise suffer idle
time and thus periods of low efficiency. Inefficiency of multi-cluster grids is even
greater, because while users normally switch off their desktops when, for instance,
leaving work or going to bed, grid users do not — cannot — switch off the grid. In
this thesis we design a CS system for multi-cluster grids to tackle this inefficiency.

The type of applications run on desktop grids is the Bag-of-Tasks (BoT). BoTs
are large collections of embarrassingly parallel tasks that may require a vast amount
of computational power. Grids can provide this power, yet have to deal with multi-
ple users, and usually assigning all the grid’s nodes to the same job is impossible.
A CS system avoids this problem by claiming only those nodes which would oth-
erwise be idle. That way, we can apply the grid to BoTs effectively, while at the
same time providing all the users with a fair share of the computational power.

The system we design in this thesis, KOALA-CS, is an extension of the KOALA

grid resource manager. We create a framework for submitting CS jobs through
KOALA, and implement several policies for fair sharing among such CS jobs. We
then validate the complete system, and demonstrate its capabilities, through a series
of experiments on a real grid system, the DAS-3. With these experiments, we show
that the CS extension to KOALA is unobtrusive to non-CS grid users, that it ensures
fairness among CS jobs, and that it is robust and fault tolerant.

1

Introduction

In the remainder of this chapter, we give a brief overview of background in-
formation in Section 1.1. We present related work in Section 1.2. Section 1.3
states the contributions of our work. Finally, we give an outline of this thesis in
Section 1.4.

1.1 Computational Grids and Cycle Scavenging

Computational grids are groups of computational resources connected through a
wide area network. These resources often have heterogeneous capabilities and be-
long to different organizations, which may impose further heterogeneity as differ-
ent organizations have, for instance, different security schemes and policies. The
core idea of grids is however that these computational resources can work together,
as a single coherent system, without the user having to deal with all the heterogene-
ity. In this thesis, we categorize computational grids as either multi-cluster grids or
desktop grids.

Multi-cluster grids consist of multiple computer clusters. Each of these clusters
generally consists of a number of nodes, each with one or more processors, con-
nected through a high-speed network backbone. A single node, the head node, is
used as an access point to the cluster, while the other nodes are used for computa-
tions only. Job execution on the computational nodes of a cluster is controlled by a
resource manager or scheduler. In a multi-cluster grid, these clusters are connected
in such a way that it is possible to submit jobs from any one cluster to any other
cluster if needed. The grid users can sometimes do this directly but it is often more
efficient to submit through the grid resource manager. The DAS-3 is such a multi-
cluster grid, and KOALA [30, 31] is a grid resource manager. We use the DAS-3,
and KOALA, for our research [35].

Desktop grids consist of collections of desktop computers. However, since each
desktop is in fact a single node, jobs can only be remotely run on such a computer
if it would otherwise be idle. There are quite a few so-called volunteer computing
projects, such as as Seti@Home [8], Compute Against Cancer [1], and the Great
Internet Mersenne Prime Search [12]. Desktop grids use CS systems, which detect
idle desktops and submit jobs to those desktops. When the desktop’s user once
again needs the desktop, the CS system must ensure that he can, all but immedi-
ately, use all the resources of his desktop again, i.e., the CS system must guarantee
unobtrusiveness.

1.2 Related Work

There are number of systems that use CS techniques to put idle cycles to good use.
Most of these systems facilitate desktop grids or volunteer computing, and some
provide CS capabilities to multi-cluster grids.

2

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

Amongst the CS systems for volunteer computing, BOINC [15] is perhaps the
most famous. BOINC supports such projects as Folding@home [3], Rosetta@home
[7], and Seti@home [8]. BOINC provides a set of tools that allow for installing
client software remotely on large numbers of desktops, and to subscribe to mul-
tiple projects. Desktop owners can then specify how their resources are allocated
among different BOINC-based projects. Another desktop grid system is Entropia
[17]. Entropia uses its binary sandboxing technology for ensuring security and un-
obtrusiveness. The architecture of Entropia allows for physical node management,
resource scheduling, and job management layers.

OurGrid [18] is an open platform that provides a form of peer-to-peer CS. Dif-
ferent research labs can share their idle computational resources. OurGrid uses a
peer-to-peer incentive mechanism called Network of Favors, which makes it in the
best interest of each participant to donate idle cycles. This mechanism ensures par-
ticipation and prevents the peer-to-peer problem of free riding. However, each user
is represented by an agent, and this agent competes with other agents to schedule
the user’s jobs. Therefore, OurGrid does not provide fair-share resource allocation
among users.

Condor [27], a well-known grid platform, was initially designed as a desktop
grid system, but it has also been extended to operate as a batch scheduler on top
of cluster systems and as a grid resource manager on top of Globus-based grids
[5, 22]. Condor can be used as a CS system for multi-cluster grids by configuring
each node such that it can execute Condor jobs when no jobs submitted by the local
scheduler are running. Instead of traditional scheduling, Condor uses the ClassAd
mechanism to match jobs to resources based on the job’s resource requirements.
The Up-Down [32] algorithm ensures fair-share resource allocation based on the
past resource usage of each user. Using this algorithm, Condor protects the light
users against resource monopolization by heavy users.

KOALA-CS does not rely on any historical information to ensure the fair sharing
of resources; instead, it dynamically partitions the idle resources evenly among
users, in real time. In addition, KOALA-CS does not require the installations (on
head or compute nodes) or modifications such as are required by, for instance,
Condor. KOALA-CS seamlessly integrates CS into grid-level scheduling.

1.3 Contributions

We aim to alleviate the inefficiency that exists in multi-cluster grids when nodes are
idle. To do this, we must provide these nodes with useful work when they would
otherwise do nothing. In addition, we recognize the need for large-scale computing
power to run BoTs, and the difficulties to run those BoTs on multi-cluster grids.
This, in turn, requires facilities for ensuring fairness to all grid users, i.e., that no
user with higher-priority jobs is hindered, and that all BoTs get a fair share of the
available power.

3

Introduction

The major contributions of this thesis are the following:

1. The design, the implementation, and the deployment of KOALA-CS, an ex-
tension to KOALA for cycle scavenging, as well as its experimental evalua-
tion and demonstration of its unobtrusiveness, robustness, and reliability, on
the DAS-3 testbed.

2. The design and experimental analysis (on the DAS-3 testbed) of two grid-
level CS policies: Grid-Equipartition and Site-Equipartition for fair sharing
processor power among CS jobs.

3. The design and testing of a framework for combining application-level schedul-
ing with fairness under CS conditions.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2 we give a
more detailed overview of grids (including the DAS-3), cycle scavenging, and the
KOALA grid resource manager. In addition, we provide a system and job model
for KOALA-CS, and discuss the applications we test it with. We present the design
of KOALA-CS in Chapter 3. We discuss the architecture of the new components
for KOALA and the extensions of the existing KOALA components. In that chapter
we also introduce the policies for scheduling and fair sharing that we implement.
In Chapter 4 we describe the experimental evaluation of KOALA-CS. Finally, in
Chapter 5, we present our conclusions and opportunities for future work.

4

Chapter 2

Cycle Scavenging in
Multi-Cluster Grids

CS systems were initially designed for desktop grids, with as a goal harnessing the
power of otherwise idle computational resources. In multi-cluster grids, this goal
remains unchanged; however, the structure of such grids differs significantly from
that of desktop grids. In this chapter, we present the complete problem setting of
this thesis by providing the reader with all necessary information for understanding
our work.

We discuss the background needed to understand our work in Section 2.1. This
background includes a more detailed discussion of grids and CS, as well as a de-
scription of our testbed, the DAS-3. In Section 2.2, we elaborate on KOALA, the
grid resource management system that we extend in this thesis. In Section 2.3,
we provide the system and job models that we employ in this thesis. We present
the type of applications (BoTs) suitable for a (multi-cluster) CS system, and the
specific applications we use for testing in Section 2.4. Finally, we give a detailed
problem statement in Section 2.5.

2.1 Background

In this section, we discuss background information needed to understand the rest
of this thesis. In Section 2.1.1 we discuss grids in general, while in Section 2.1.2
we discuss DAS-3, which is our test-bed and a real multi-cluster grid. Finally, we
cover cycle scavenging in Section 2.1.3.

2.1.1 Grids

There are many definitions of computational grids. The core idea of grids is that
they are a collection of interconnected, heterogeneous, geographically and admin-

5

Cycle Scavenging in Multi-Cluster Grids

istratively distributed resources. Ideally, all of these resources should be able to
have their own security protocols and other policies, while the grid as a whole
should be transparently accessible to all of its users. In practice, most grids are not
as heterogeneous as was originally expected, however, grids are not as transparent
as was originally hoped either. We give an example of a ”real” grid in Section 2.1.2,
the DAS-3 which is the grid we us as a development platform and testbed. In the
remainder of his section, we go deeper into three grid issues which are of con-
cern to the work in this thesis: grid heterogeneity, grid organization, and resource
availability.

Grid heterogeneity

Grid heterogeneity comes in different forms. First, grids may contain resources
with varying capabilities. The ”ideal” grid may consist of a collection of desktops,
multi-computer clusters, and specific equipment, among other resources. In reality,
grids are often more homogeneous concerning resource capabilities. Multi-cluster
grids, which we are concerned with, consist of collections of multi-computer clus-
ters. These clusters may still differ in processor speed, internal memory, secondary
memory, number of processor cores, and so forth, which may cause grossly varying
performance between clusters.

Second, there can be heterogeneity in the access control on each resource. While
some resources may be directly available to schedule jobs on, more often than not
jobs are scheduled on resources through a local scheduler of some sort. Most multi-
clusters need a local scheduler to handle jobs submitted locally, or there could be
contention and other problems on the cluster. How to manage jobs differs from
scheduler to scheduler, creating not a few problems for interoperability. Closely
tied to this issue is that of security: there may be different schemes in place on
different resources. Where one may require a username and password, others may
need public and private key-pairs. Also, the credentials can differ from resource to
resource.

Third and finally, there is administrative heterogeneity, which, to no small extent,
influences the other two issues. Different organizations may control different parts
of the grid. This reflects itself in naming conventions, the type and amount of
hardware used, utilization limits and other such topics.

All of these forms of heterogeneity have to be dealt with for effective grid oper-
ations. Most can be dealt with using grid middleware, such as Globus [5] and Fura
[4]. However, a great deal of complexity is eliminated when first and foremost the
administrative differences are addressed. A group of resource owners wishing to
build a grid may come to clear agreements beforehand, eliminating much of the ac-
cess control heterogeneity, synchronizing security practices, and agree on the type
of resources offered. Such consensus is readily apparent from, for instance, the
DAS-3.

6

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

Figure 2.1: A centralized grid architecture

Because of the agreements made between various owners of the clusters that
make up the DAS-3, KOALA-CS has only to deal with resource heterogeneity. We
discuss the specifications of the DAS-3, or at least those where it is heterogeneous,
in Section 2.1.2.

Grid organization

A second point that is important in grids is organization. To deal with the level of
complexity and heterogeneity that appears in the grid, its organization needs to be
well defined.

One issue regarding access control is the use of local schedulers. Without them,
grid schedulers (which can schedule tasks over multiple resources in the grid), have
direct control over a resource. Most grids however, have local schedulers in place
on every resource. With such grids, any higher-level scheduling device will have
to schedule through them. Furthermore, users may often submit jobs directly to
the local schedulers. In the coming discussion, we consider the local schedulers as
part of the resource they control. ”Direct” submission to the resources is thus equal
to submitting to the local scheduler, should the resource have one. We distinguish
three grid scheduling schemes: centralized, peer-to-peer, and hierarchical.

A centralized scheduling architecture is depicted in Figure 2.1. Here, we see
that a single grid scheduler (also known as a super- or meta-scheduler), has a direct
connection to every resource. The users ideally only submit jobs through the grid
scheduler. This scheme has all the advantages and disadvantages of other central-
ized systems: a high measure of control, yet poor scalability. Still, it is commonly
used, especially in relatively small grids. KOALA, which we discuss in Section 2.2
is a grid scheduler for such a grid.

The peer-to-peer architecture (see Figure 2.2) is not often implemented explic-

7

Cycle Scavenging in Multi-Cluster Grids

Figure 2.2: A peer-to-peer (grid) architecture

itly, but is often implicitly available in grids. A peer-to-peer grid would have users
submit to the local scheduler, which would then try to place the job locally, or move
it to a peer resource if there is no room for the job. In reality, this can often be done
by the user himself. If he cannot schedule his job on the local scheduler, he can
try again at a remote site in the grid. This kind of architecture may also be used
for communication between grid schedulers themselves, but then we move into the
realm of hierarchical grids.

Hierarchical grids, as illustrated with Figure 2.3, consist of layers of scheduling.
Such a grid can be divided into sub-grids, each with their own scheduling practices
(Figure 2.3 shows a typical two-level hierarchy with centralized scheduling on both
levels). Two or more of these sub-grids can then be connected with some other or
the same form of scheduling, forming a sub-grid which can then be connected to
others, and so forth. An example of this is Condor Flocking [20], which actu-
ally combines lower-level centralized scheduling with a peer-to-peer architecture
among sub-grids.

The type of grid architecture that we concern ourselves with is the centralized
type. However, the nature of the DAS-3, as we discuss in Section 2.1.2, allows
for direct submission to the individual clusters as well. Technically, this allows
for ”peer to peer” scheduling by the users themselves, where users can submit
their jobs directly to any of the local schedulers. In practice, this means that job
submitted through the grid scheduler have to contend with jobs submitted through
the local scheduler directly.

Resource availability

In previous sections, we discussed resource and administrative heterogeneity. These
have an impact on resource availability, because both influence whether or not a re-
source is available for use, and if it is the right resource to use. When a resource
breaks down, or is otherwise unavailable, it might not always be easily apparent be-

8

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

Figure 2.3: A hierarchical grid architecture

cause of administrative boundaries. Also, the resource owner may not bring it back
at all. Furthermore, because resources can differ substantially in capabilities, not
all resources may be suited for a specific job. In the DAS-3, it is easily detectable
if a resource is unusable at the moment, and, except for a few extreme cases, the
resources can more or less all be applied to the same kind of problems.

However, resource availability is still dynamic, and this has to be dealt with.
If a resource drops out while being in use, there are various ways to proceed. For
instance, the job may be checkpointed [25], a complex process that calls for exactly
recording the state of a job, moving it to another resource and resuming it from the
recorded state. Another approach is to just restart the job (or part of it) elsewhere,
which might be inefficient. Finally, the job can just be considered to have failed,
which is of course not desirable.

In the remainder of this thesis, it will become clear that the dynamic nature of
resource availability is even more apparent in our environment. This has to do with
the nature of CS, which we discuss in more detail in Section 2.1.3. We first give a
more concrete picture of a real grid, which we already mentioned in this section,
namely, the DAS-3.

2.1.2 The DAS-3 Multi-cluster grid

The Distributed ASCI Supercomputer 3 is a five-cluster wide-area distributed sys-
tem in the Netherlands, designed for doing experimental research on parallel and
distributed programming [9]. The five clusters are located at the Delft Univer-
sity of Technology (TUD), Leiden University (LU), Vrije Universiteit, Amsterdam
(VU), University of Amsterdam (UvA), and The MultimediaN Consortium (UvA-

9

Cycle Scavenging in Multi-Cluster Grids

Cluster Nodes Processor Storage Node HDD
VU 85 dual-core, 2.4 GHz 10 TB 250 GB
LU 32 single-core, 2.6 GHz 10 TB 400 GB

UvA 41 dual-core, 2.2 GHz 5 TB 400 GB
TUD 68 single-core, 2.4 GHz 5 TB 250 GB

UvA-MN 46 single-core, 2.4 GHz 3 TB 1.5 TB

Table 2.1: DAS-3 resource capabilities

MN, also located in Amsterdam). We present the capabilities of each cluster in
Table 2.1. These capabilities are quite heterogeneous. Although all nodes in the
DAS-3 are dual-processor nodes with 4 GB of memory, the processors themselves
differ, as do cluster- and node-specific storage. For the inter-node communication
there are 1 Gbps and 10 Gbps Ethernet connections in all the clusters. All but the
TUD cluster also have high speed Myri-10G connections.

The local schedulers on the individual clusters run the Sun Grid Engine [14] as
local resource manager. The WAN connections between the clusters are 1 Gbps
connections over Internet provided by the local university. Through these connec-
tions, the clusters connect to SURFnet, which provides connections to all other
clusters in the DAS-3. However, the StarPlane Project [13] allows the DAS-3 to
connect through dedicated 10 Gbps lightpath connections over SURFnet.

2.1.3 Cycle scavenging

As we state in Chapter 1, CS is the process of using otherwise idle computational
cycles for useful operations. We mention several CS systems in Section 1.2, such
as Condor, BOINC and Entropia. These systems are able to provide large amounts
of computational power to their users. Although they differ in several ways, they
share the same set of basic principles. We discuss those basics in this section.

Generally, CS systems work with a central server that hands out tasks to client
software on idle desktops. The owners of these desktops install the software and
register with the appropriate project. The function of the client software is to report
when the desktop becomes idle, run the tasks, preempt tasks, and provide a sandbox
to the tasks. This sandbox is a safe environment for the task to run in, preventing it
from making unwanted changes to the desktop it is running on. Likewise, it shields
the task from unwanted interference by the desktop user, who may, intentionally or
not, try to affect the task.

CS jobs always have a lower priority than the jobs initiated by the desktop user.
Once the user needs resources of his desktop that are currently in use by tasks of the
CS job, these tasks must be preempted in such a way that the user is not hindered by
it. This property of the CS environment makes these grids even more dynamic than
normal grids. Resource availability cannot be guaranteed. This has to be taken into

10

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

account when selecting CS applications. Parallel jobs that need multiple resources
at the same time and require individual tasks to synchronize, cannot efficiently run
in such an environment. Communication between tasks is, in general, difficult be-
cause a task may be preempted before it can reply. Also, because tasks may be
restarted at another location, their network address may change between commu-
nications, making the task that was restarted suddenly unreachable by other tasks.
Another property CS applications cannot have is a fixed ordering: no guarantees
can be given in a CS grid that one task is finished before the other. Taking all of
these issues into account, CS jobs must consist of tasks that do not communicate,
have no ordering constraints, and can be preempted without too much work.

Logically, these constraints also apply in multi-cluster grids. However, some can
be relaxed. Sandboxing for instance, is not that vital in a system that was meant to
be used for remotely issued job execution. Since every job generally incurs some
overhead before being able to run (it needs to be scheduled by a local scheduler)
and generally has a long, non-interactive, runtime, the time needed to preempt CS
jobs can be in the order of a few tens of seconds. Such a delay would be amortized
by the job runtime and normal scheduling overhead. Yet the dynamics of resource
allocation cannot be underestimated. These primarily influence the CS jobs. Since
they are at the bottom of the priority scale, they will be often preempted. Although
we do not claim this problem has more or less impact in multi-cluster grids than
in desktop grids, it is one of the core issues we have to, and do, deal with in this
thesis.

2.2 The Koala Grid Resource Manager

KOALA is a grid resource manager based upon a centralized scheduler structure. It
is actively developed at the Delft University of Technology [30, 31]. Originally, it
was intended to work with data-heavy grid applications. Its focus was therefore on
co-allocation, i.e., allocating processing power in multiple clusters simultaneously.
However, it evolved to become highly extensible for all kinds of grid applications.

The system we develop, KOALA-CS, is an extension to KOALA. Therefore,
we give an overview of KOALA’s main features in this section. In addition, we
go into more detail regarding those features which we extend with KOALA-CS.
We first give an overview of the layered structure and components of KOALA in
Section 2.2.1. We then present the basic KOALA job flow in Section 2.2.2. Finally,
we discuss each of KOALA’s components in Sections 2.2.3 through 2.2.5.

2.2.1 Architecture of Koala

KOALA’s architecture is by its very nature highly extensible. Although it works
with a centralized scheduler, many aspects of job submission and scheduling are

11

Cycle Scavenging in Multi-Cluster Grids

Figure 2.4: The layered structure of KOALA

delegated to other components in the system. These components are organized in
four layers, as illustrated in Figure 2.4.

The KOALA scheduler is the central point of control in KOALA. It is responsible
for detecting and reserving nodes for jobs. However, the actual submission of jobs
to these nodes is done by the runners. Each runner can be specialized to a specific
application (type of job), and it therefore acts as the primary controller for a job.
To communicate with the scheduler and interact with the grid, KOALA provides a
Runners Framework (RF). KOALA runners are built upon this framework. Finally,
we have the submission engines, which are third-party tools for job submissions to
KOALA. These tools use runners to do the actual submission, and include work-
load generators, such as GrenchMark [24], and submission scripts, among others.
It is beyond the scope of this thesis to discuss all the different types of submis-
sion engines, so we do not specifically elaborate on submission engines further.
However, we do present more detailed descriptions of the runners and the runners
framework, as well as the scheduler, in later sections. An additional component
of KOALA, which is not strictly part of any of its layers, is the KOALA Cluster
Manager (KCM). The KCM is used by some runners as a tool for submitting to the
local schedulers. The KCM is a key component of KOALA-CS, and we therefore
discuss this part of KOALA as well.

2.2.2 Koala job flow

In this section we give an overview of the basic job flow protocol in KOALA.
KOALA allows jobs to be split up into components. Each of these components
is typically assigned to a different cluster, and can sometimes be placed inde-
pendently of other components. This of course allows for more flexibility when

12

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

Figure 2.5: KOALA Running a single-component job

scheduling jobs.

The most simple of jobs consists of a single component, to be placed atomically.
We illustrate the scheduling of such a job in Figure 2.5. What follows is a high-
level description of what happens at every step, where the numbers correspond to
those in the figure.

1. The user submits his job to a runner.

2. The runner informs the scheduler of a new job, detailing the job characteris-
tics.

3. The scheduler looks for a suitable site to place the job. Note that the job
may remain in the scheduler’s queue for a while or may even be rejected if
it cannot be placed at all.

4. Once a site is found, the scheduler informs the runner that it may go ahead
and submit the job to this site.

5. The runner submits the job to the indicated site (in our case Cluster 0), and
waits for it to complete.

6. Upon job completion, the runner gathers the results and presents them to the
user.

For all types of jobs, the basic protocol is the same. The runners framework
standardizes the message exchange of steps 2 and 4. However, what happens at

13

Cycle Scavenging in Multi-Cluster Grids

Figure 2.6: The WRR scanning of placement queues

steps 1, 5, and 6 is largely application-specific. Different runners may use differ-
ent techniques for submission to the clusters. Also, the way users submit jobs to
the runners is also not fixed. For other types of jobs, for instance, those that are
split over several clusters (and thus consist of several components), the runner may
receive multiple site allocations from the scheduler at once, or some components
may be placed before others. Handling those situations is the responsibility of the
runner (see Section 2.2.4 for more details).

2.2.3 The Koala scheduler

The KOALA scheduler allocates nodes to jobs. It is the central authority in the
grid, and is aware of all the clusters in the grid. In this section, we first discuss
job placement and node claiming, two phases that a job goes through when it is
submitted to the scheduler. These two phases roughly cover steps 2 through 4 in
Figure 2.5. Second, we discuss the communication protocol used by other compo-
nents to communicate with the scheduler.

Job placement

The scheduler has four placement queues, which are labelled by priority: super-
high, high, low, and super-low. A job’s priority, as indicated at job submission
time, determines in which queue it originally resides. The KOALA scheduler scans
the queues at regular intervals using a Weighted Round Robin (WRR) scheme. We
illustrate WRR in Figure 2.6.

The super-high and high placement queues are grouped as the higher placement
queues, and the low and super-low as the lower placement queues. In each round,
the high queues are scanned Nh times, and the low queues Nl times, where Nh ≥
Nl ≥ 1. Each scanning of the high placement queues involves n1 times scanning
the super-high queue, and n2 times scanning the high queue, where again n1 ≥

14

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

n2 ≥ 1. Similar for the scanning of the low queues, where the scheduler scans the
low queue n3 times, and the super-low queue n4 times, with n3 ≥ n4 ≥ 1. So, this
results in, for instance, the super-high queue being scanned Nh ×N1 times before
the low or super-low queues are scanned.

Each time the scheduler scans a job, the scheduler tries to place that job. This
means that it tries to find the best cluster(s) to run the job’s component(s), according
to the job’s placement policy. Two of the policies possible in KOALA are Worst Fit
(WF), that places components in decreasing size order on clusters with the largest
number of idle processors, and Close-to-Files (CF), that places components such
that the file transfer time between execution and file sites is minimized. If the
scheduler fails, it moves on to the next job. If it succeeds, it moves the job to the
claiming queue.

The scheduler keeps track of the number of placement tries per job. A placement
try is an attempt to place the job at a cluster. KOALA has two parameters related
to placement tries, which both can be set to ∞. First, it has a maximum number
for placement tries. If a job’s number of placement tries exceeds this maximum,
KOALA aborts the job. Second, KOALA has a value P , which indicates how many
placement tries a job can have before the scheduler upgrades the job to a higher
placement queue. Note here that the scheduler never upgrades jobs in the super-
low queue.

Node allocation and reservation

When a job enters the claiming queue, KOALA estimates its File Transfer Time
(FTT) and Job Start Time (JST). The scheduler guarantees that the needed nodes
are available at JST. For data-heavy jobs, this is a challenge, since FTT may be
large and claiming processors while file transfer is in progress, but the job is not
running, is wasteful. If possible, the scheduler therefore reserves the needed pro-
cessors at the cluster where the job is placed. This requires the local scheduler
of that cluster to have such functionality, which is often not the case. Therefore,
KOALA defines the Incremental Claiming Policy (ICP). Globally, this policy tries
to claim the nodes for job at the cluster where it was placed at Job Claiming Time
(JCT), some point in time before JST. If this is impossible, it tries to place it some-
where else using the job’s placement policy, and claim the nodes there at a JCT
closer to the JST. If JCT and JST come to close, node claiming fails and the job in
question returns to the placement queue it came from. Note that the actual submis-
sion of the components to the clusters where they are placed, is the responsibility
of the runner. Once the nodes are claimed, the scheduler informs the runner, and
the runner submits the correct component to those nodes.

15

Cycle Scavenging in Multi-Cluster Grids

command#job-identifier#message body

Figure 2.7: The KOALA message format

Inbound communications

To communicate with the scheduler, the other KOALA components use a standard-
ized message protocol. A message to the KOALA scheduler is formated as in Fig-
ure 2.7. The first field, command, is one of the commands from Table 2.2. The
job-identifier consists of the job ID, component ID, and job try count, separated
by colons. This is used, obviously, to identify the job and component the message
concerns, but also which job try it belongs to. If the job try count in the message
does not reflect the latest job try, the message is discarded. The contents of the
field message body differs for each message type.

In Table 2.2, we see the commands that can be used in messages to the scheduler.
The JOB NEW command comes with a variety of job information, packed with the
message to inform the scheduler of the necessary information for running the job.
This information includes such things as the placement policy, whether or not to
use co-allocation for the job, user name, clusters to exclude for this job, intended
job priority, job type, and port number of the runner. In addition, it must contain a
job description in the job description language RSL [11]. Job type requires some
additional explanation. With job type, the runner can indicate how the scheduler
should treat the job. A job can be of rigid type, where it is allocated nodes and once
it has taken those nodes, it has to complete the job with those nodes. Another type
is malleable, where the job may be allocated new nodes, as well as be mandated to
release nodes, during runtime. With the JOB NEW command, the job-identifier is
irrelevant, since the scheduler replies by sending a JOB ID message to the runner,
informing the runner of its job’s ID (see Table 2.3).

JOB ABORT, JOB DONE, and JOB RESTART merely inform the scheduler of
the fact that the runner is aborting, respectively done with or restarting, its job. With
a restart, the scheduler increases the job try count that is sent with every message,
since this indicates with which run a message is associated. When a job is done or
aborted, the scheduler removes it from its queues.

Finally, ACK GROW and CLEAR COMPONENT RESERVATION are used to clear
KOALA’s node reservations for the job in question. The latter is the only command
where the component ID from the job identifier is of any relevance to the scheduler,
since node reservations are made per job component. Note that these messages are
only sent as replies to messages from the scheduler to the runners (see Table 2.3).

2.2.4 Koala runners

KOALA runners are based on the KOALA Runners Framework. The RF is a library
of Java classes that allows a runner to communicate with the scheduler. The RF

16

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

Command Description
JOB NEW Registers a new job with the

scheduler.
JOB ABORT Indicates a job is aborted. Re-

moves it from the scheduler’s
queues.

JOB RESTART Indicates a job is restarted.
JOB DONE Indicates job completion.
ACK GROW Acknowledges receiving one

or more JOB GROW mes-
sages. Clears the associated
reservations.

CLEAR COMPONENT RESERVATION Clears the reservations for the
indicated component.

Table 2.2: Scheduler commands

provides an abstract class, AbstractRunner that contains functionality all run-
ners share, and every implementation of a specific runner must extend this class.
This class is used by another RF class, the RunnerListener, that acts as a mes-
sage server. The RL, combined with the a subclass of AbstractRunner, makes
up a complete KOALA runner. In addition to handling communications between
the KOALA components, the RF provides access to KOALA’s data management
facilities, its Job Description Language (JDL) parsing, and various other utilities.

Runner operations

The user can start a runner with a set of command-line parameters that vary from
runner to runner, but generally includes a Job Description File (JDF) in a JDL
that the runner can parse. This JDF describes the job parameters. The runner
then starts acquiring nodes through the scheduler, and executing the job. Upon
job completion, it is responsible for clean up, gathering, and presenting job results
in some form or the other. Once active, a runner acts as a message server. Most
runners are purely event-driven, acting only in reaction to these messages.

Messages to the runner must be formatted in the same way as those to the sched-
uler. Therefore, they likewise follow Figure 2.7, and again, if the job try count
does not match what the runner knows about the job, the message is discarded.
The list of commands that can go in messages to the runner differ from those for
the scheduler. Table 2.3 shows the commands that the runner can receive.

The AbstractRunner class provides basic responses to most of these com-
mands. For some commands, there is no difference from runner to runner. With
JOB ID, it assigns this ID to the internal representation it has of the job. The
response to COMPONENT PLACED is to assign the indicated cluster and number

17

Cycle Scavenging in Multi-Cluster Grids

Command Description
JOB ID Indicates that the message contains the

job ID the scheduler has assigned to the
runner’s job.

JOB RESTART Tells the runner to restart the job (and
thus increase its try count by one).

JOB ABORT Tells the runner to immediately abort
the job.

COMPONENT PLACED Indicates at which location a compo-
nent of the runner’s job is placed. The
body contains the name of the clus-
ter and the number of nodes reserved
there.

SUBMIT COMPONENT Tells the runner to submit a previously
placed component.

TRANSFER FILES Tells the runner to start staging in rele-
vant files.

JOB SHRINK Tells the runner to decrease its node al-
location at a certain cluster for a certain
number, both of which contained in the
message body.

JOB GROW Informs the runner that it can claim an
additional number of nodes at a certain
cluster. Again, the message body con-
tains the name of the cluster and the
number of nodes.

APPLICATION CALLBACK Indicates that this is a message from the
application and not from the scheduler.
The body contains the actual message
from the runner’s job.

REPORTER Indicates that this is a status message
from the scheduler.

Table 2.3: Runner commands

18

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

of nodes to the runner’s representation of the component. It then replies with a
CLEAR COMPONENT RESERVATIONmessage (see Table 2.2). With REPORTER,
the default response is to print the message. It triggers no further action.

Other commands consist of a response that is partially fixed, partially application-
dependent. These include JOB ABORT and JOB RESTART. Both trigger an im-
mediate termination of the job. However, JOB RESTART also increases the job
try count by one and sets the job up for a new run. How the actual termination is
accomplished is left to the runner programmer. JOB GROW is only of interest to
runners that deal with malleable jobs. Whatever the response is (that will generally
include some form of claiming new nodes), it must include sending an ACK GROW
command (see Table 2.2).

Finally, the SUBMIT COMPONENT, TRANSFER FILES, JOB SHRINK, and
APPLICATION CALLBACK commands are completely dependent on the appli-
cation; however, they must naturally trigger a logical response to the information
in the message. A JOB SHRINK message, for instance, should not trigger the
opposite response of actually increasing the runner’s node allocation.

Application-specific operations

A KOALA runner consists, as mentioned before, of a AbstractRunner subclass
wrapped in a RunnerListener object. The AbstractRunner subclass must
provide application-specific mechanisms. Some messages to the runner must be
dealt with on an application-specific basis.

AbstractRunner provides several abstract methods that its sub-classes should
override in order to handle these messages. While an overview of these methods
would be superfluous here, we do give a list the key issues that a runner has to deal
with.

Placement Procedure This varies from application to application. Some require
all job components to be placed simultaneously or not at all, others can start
computing when only one component can be placed.

Deploying Order The order in which components are placed also differs between
applications. Some need synchronous placement of components, with others
the order is irrelevant.

Application-Level Scheduling A significant number of applications benefit from
application specific scheduling. Here, instead of sending job components
to the scheduler and letting the scheduler place them, the runner can ask the
scheduler for the execution sites only, then map the components to these sites
using some application-level policy.

Wide Area Communication between Components For jobs where the compo-
nents need to communicate, such as parallel applications, the runner needs

19

Cycle Scavenging in Multi-Cluster Grids

to link up with the appropriate communication libraries. Again, there are
applications where components need not to communicate, so those runners
do not need to implement these communication facilities.

Fault Tolerance The runner needs to deal with execution site failures. It must pro-
vide for appropriate responses to sudden job termination and similar events.
Errors generated by the application itself are passed by the RL to the sub-
class of AbstractRunner, and it needs to deal with these errors, other-
wise, the default framework action is executed, resulting in runner and job
termination.

2.2.5 The Koala component manager

The KOALA Component Manager (KCM) can be used by runners for submitting
job components to the local schedulers (of course, only after the KOALA scheduler
has placed the job on the associated cluster). It is a relatively new part of KOALA,
and is currently being developed as a part of KOALA version 2. It uses the DRMAA
[2] interface of the local resource manager, which is standardized, to acquire nodes
for the runner. The runner can then decide what to do with these nodes, and how to
schedule the tasks the component exists of over these nodes. The KCM therefore
allows the runner to bypass the local scheduler, granting the runner more flexibility
with scheduling.

Component submission using a KCM

As the name suggest, the KCM handles the components of a KOALA job. For each
component, there is one KCM. When a runner submits a component to a cluster
(i.e., step 5 of Figure 2.5) , it places a KCM on the head node of that cluster. We
illustrate the process in Figure 2.8, as it goes through the following steps.

1. The runner places a KCM on the head node of the cluster where the compo-
nent is to be placed. The runner provides this KCM with the runner’s port
number and host name, as well as the number of nodes to claim, and for how
long they should be claimed (i.e., the wallclock-time of the component).

2. The KCM submits one or more placeholder scripts to the local scheduler,
using that scheduler’s DRMAA interface.

3. The local scheduler schedules the placeholder script(s) to a set of its nodes.

4. The placeholder script reports the hostname of its node to the KCM.

5. The KCM compiles a list of the node hostnames it receives from the place-
holder scripts and sends them to the runner.

20

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

Figure 2.8: Component submission with a KCM

6. The runner uses the node hostnames to submit jobs directly to the nodes in
question.

The advantages of this approach include, among others, an increased amount
of control over job submission. Once the nodes are known to the runner, it may
then schedule the individual tasks of its job to those nodes as the runner sees fit. It
may actually schedule more than one task to the same node, while otherwise, all
these tasks would have to be submitted separately to the local scheduler, incurring
scheduling overhead for each of them. Using a KCM therefore improves both job
efficiency and runner control over the execution.

KCM Communications

As stated, a KCM offers more control over job execution. One factor of that con-
trol is that during runtime, the allocation of nodes can be actively reduced and
increased. In Table 2.4, we list the commands that the runner can send to the KCM
to do so. These commands need to be packed in a message with a simple, fixed
format. The message must contain first a command and then the body, separated
by a colon.

Most runners will not use the 101 command, since they run fixed jobs. Com-
mand 100, however, is commonly used to shut the KCM down when it is no longer
needed. It should be noted that a KCM simply schedules the placeholders to the
nodes, regardless of cluster capacity. Therefore, runners that do use the 101 com-
mand, may need to check for availability of nodes.

The KCM also sends messages to the runner. These messages follow a format of
first the command and then the body, separated by a percentage sign. The command

21

Cycle Scavenging in Multi-Cluster Grids

Command Desciption
100 Tells the KCM to reduce the node allocation by the

number included in the message body. In effect, it
causes the KCM to terminate that number of place-
holder scripts, thus, as far as the local scheduler is
concerned, releasing that node. Note that the KCM
terminates only the placeholder scripts; the runner
must terminate any tasks of its job running on that
node. If this command reduces the node allocation
to zero, the KCM terminates itself.

101 Tells the KCM to increase its node allocation by the
number indicated in the body of the message. The
KCM responds by scheduling that number of place-
holder scripts to the local scheduler through DR-
MAA.

Table 2.4: Message interface to the KCM

Command Description
STATUS Indicates that the body of the message contains the

KCM’s status: still active or just finished.
PORT Informs the runner of the KCM’s port number for

incoming communications.
NODES Indicates that the body contains a comma-seperated

list of the nodes currently allocated to the KCM.
ERROR Indicates that the KCM terminated with an error,

a description of which is included in the message
body.

Table 2.5: Messages from the KCM to the Runner

included in such a message must be one from Table 2.5. However, the KCM wraps
this message in a default KOALA messages (formatted as in Figure 2.7), with as
command the APPLICATION CALLBACK (see Table 2.3).

The NODES message is the most interesting to the runner. It indicates which
nodes are currently claimed by the KCM for the runner with placeholder scripts.
The runner can schedule its job over these nodes. PORT is primarily of impor-
tance to runners which might increase or decrease their node allocations at run-
time, which they do through the commands in Table 2.4; however, all runners need
this port if they need to terminate the KCM before the KCM’s wall-clock time is
over. Note that since the runner deploys the KCM, it is aware of its hostname. The
other messages only inform the runner of the KCM activities, and will generally
not generate a runner response, except perhaps for redeploying the KCM if needed.

22

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

2.3 System and Job Models

In this section, we present the model of a CS grid that we use in this thesis. Some
of the terminology contained in this section we used in previous sections already,
however, here we formalize them to facilitate further discussion about the sys-
tem. Section 2.3.1 contains are system model and definitions, while Section 2.3.2
presents the job model.

2.3.1 System model

Our system model is that of a centralized grid (see Figure 2.1). The grid exists
of a number of clusters or hosts, which each consist of a number of nodes or
resources. One of these nodes functions as a head node, and every cluster has a
local resource manager or local scheduler. Users can submit jobs directly to these
local schedulers, which will then schedule the job over nodes belonging to that
cluster. We call such jobs local jobs. Should a user wish to use potentially the
entire grid for his jobs, he needs to submit through the centralized grid scheduler
or grid resource manager. Analogous to the term ”local job”, we call any job
submitted through the grid scheduler a grid job. Whether submitting a grid job
or a local jobs, the user submits the job from one of the head nodes in the grid.
Likewise, we assume the user has the needed security credentials to access the
nodes on all the clusters he wishes to use.

2.3.2 Job model

A job is a single run of an application as defined by the user. Each job consists of a
number of tasks, where each task is a part of the job that can be run independently
of other parts of the job. All jobs are considered to be malleable. With malleable
jobs, the number of resources allocated may vary during the runtime of the job.
This means the system will have to respond to the allocation of more resources
to the job (job growth), as well as the forced release of resources (job shrinking).
The allocation of resources to a malleable job may be reduced if those resources
are needed by other jobs of higher priority. Likewise, the number of nodes may
increase as the number of idle nodes in the system increases. CS jobs have the
added property that they may, at times, have no resources allocated to them (CS
jobs can be ”shrunk” to size zero) at all, without being altogether cancelled. Also,
CS jobs can in theory be allocated a number of nodes up to the limits of the grid.

In relation to the two types of jobs named in Section 2.3.1 (local and grid jobs),
our CS jobs are always of the grid variety. Thus, they are always submitted through
the grid scheduler. However, CS jobs always have the lowest possibly priority,
meaning that they have to release nodes as soon as any other, non-CS, job requires
them. To make an easy distinction between the two, we refer to CS grid jobs simply

23

Cycle Scavenging in Multi-Cluster Grids

as CS jobs and refine the term ”grid job” as meaning any non-CS job submitted
through the grid scheduler.

2.4 Cycle Scavenging Applications

In this section we discuss the applications we run on KOALA-CS. In Section 2.4.1
we discuss the general type of applications. In the remaining subsections we dis-
cuss our two testing applications: the dummy application in Section 2.4.2, and the
Eternity II puzzle solver in Section 2.4.3.

2.4.1 Bag-of-Tasks applications

We limit the applications for KOALA-CS to those of the Bag-of-Task (BoT) variety.
BoTs basically consist of a (very large) set of tasks that are each fully independent
of the others. In other words, these are embarrassingly parallel applications, and
thus ideally suited for CS grids (see Section 2.1.3). Iosup et al. [23] identified
BoTs as the predominant application type in industrial grids today. Applications
include medical research such as molecular docking [36], examining large data
sets, and basically any application which requires searching through a large set of
parameters.

A common subtype of the BoT is the Parameter Sweep Application (PSA). The
difference between tasks in PSAs lies only in their input parameters. Every task
uses the same executable files. The applications we test on KOALA-CS fit into this
category.

2.4.2 Dummy application

For several tests, we use a dummy application. This application waits for a num-
ber of seconds, then prints a message. Both the waiting time and the message are
command line parameters. This dummy job does absolutely nothing functional,
yet an advantage is that it requires minimal staging in (copying files to the clusters
where they are needed). Also, we can calculate exactly how long such a job should
run under optimal circumstances, meaning that given a certain number of available
nodes, we can calculate how long the job would run if incurred no overhead what-
soever. The latter allows us to make fairly accurate estimates of the overhead and
efficiency of KOALA-CS. All in all, the dummy application is purely intended for
experiments.

24

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

2.4.3 Eternity II

The Eternity II puzzle [10] consists of a square board with 16×16 spaces for square
pieces. Each piece has a pattern on each of its four sides. This pattern can be gray,
identifying that piece as a border or corner piece. The goal of this puzzle is to place
all of the 256 pieces on the board in such a way that the patterns on adjacent sides
match. One piece is given as an anchor. Finding a solution is computationally hard.

Our goal with this application is to map it to subproblems which can be run as
CS jobs using KOALA-CS. These subproblems make up our testing application.
We use a random walk to create a certain setup of the board, then measure its
fitness. For a number of our experiments, we use this random walk program as the
target application. Based on the data thus acquired, we build our solution further,
however, that process is beyond the scope of our thesis.

2.5 Problem Statement

Now that we have a clear understanding of the environment we work in and the
systems we use, we define our problem statement. In this thesis, we ask ourselves
this question:

“How do we extend KOALA with cycle scavenging functionality?”

The question seems simple, yet is one with many layers. A CS extension for
KOALA has a number of requirements to fulfill.

First, KOALA-CS should be unobtrusive. This is the predominant quality of any
CS system: other, higher-priority, jobs should not be hindered by CS jobs. The
system must take this into account when growing and shrinking CS jobs. When
growing, KOALA-CS must allocate only those nodes to the CS job that are idle
and will remain idle in the foreseeable future. When there are jobs in a local queue
or KOALA’s placement queue waiting for those nodes, and they could be placed,
those nodes should not be allocated to a CS job. CS job shrinking should be swift.
KOALA-CS must detect local and grid jobs waiting, and take action to shrink CS
jobs as quickly as possible if to allow those waiting jobs to run. In desktop grids,
the return of control of the desktop to the user should be near-instant. Fortunately,
we can relax that requirement a little, since grid and local jobs usually have a
long, non-interactive runtime. In addition, they are already delayed by the usual
scheduling overhead. Therefore, we state that the additional overhead due to CS
jobs is allowed to be in the order of tens of seconds. A last note on unobtrusiveness
is that the CS job should not permanently affect the node it is running on. It must
clean up files and reverse any other changes it has made as soon as it vacates that
node.

25

Cycle Scavenging in Multi-Cluster Grids

Second, KOALA-CS must ensure fairness. Multiple CS jobs can be active in the
system at the same time. When a grow opportunity presents itself, or job shrinking
is called for, all CS jobs in the system must be fairly affected. The conclusion is that
the CS jobs should all have comparable throughput (in number of tasks completed
per second) when running comparable jobs.

Third, KOALA-CS must be robust and fault tolerant. Node allocations change
rapidly, CS jobs generally run for a long time, and the system and environment are
highly complex. Due to these reasons, KOALA-CS will encounter errors. These
must be prevented as far as possible. Otherwise, they must be detected and handled
properly. If they cannot be prevented or handled in any way, KOALA-CS must
ensure that as many valuable intermediate results are saved as possible.

Finally, KOALA-CS must handle all of the above in an efficient way. Therefore,
KOALA-CS must assign tasks to nodes in such a way as to minimize the runtime
of the CS job. Also, the number of messages sent between components should
be minimized. Shrinking must likewise be efficient, in that the CS job should
be shrunk the minimal amount needed without unnecessarily delaying the waiting
jobs.

26

Chapter 3

The Design and Implementation
of Koala-CS

In this chapter we cover the design choices we made regarding KOALA-CS and
how we implemented those choices. As stated in Chapter 1, KOALA-CS extends
KOALA with CS functionality. In addition to the three KOALA components de-
scribed in Chapter 2 (the KOALA scheduler, the runners, and the KOALA compo-
nent manager (KCM)), we define a new component, the launcher. The KOALA

scheduler already provides facilities for malleable jobs, with the ability to send
grow and shrink messages to runners. Since the scheduler is aware of all grid jobs,
it is the ideal component to govern this grid-wide malleability. The KOALA run-
ners provide application-specific operations, such as application-level scheduling,
job component management, file transfers, etc. Therefore, to handle the intricacies
of CS and BoTs, and allow for application-level scheduling policies, we must cre-
ate a CS runner. Furthermore, we adapt the runners framework to one specifically
suited for CS jobs. The CS runner fully utilizes KCMs for component submission.
In addition, we extend the KCM with the ability to grow its node allocation and
with the ability to inform the runner of the need for shrinking due to local jobs.
The extended KCM also deploys launchers instead of simple placeholder scripts.
KOALA-CS deploys such a launcher on every node KOALA-CS uses and acts as
both a placeholder and a parent process of the actual tasks for that node. This
mechanism allows us more control over task scheduling and task preemption.

In Section 3.1, we discuss how KOALA-CS utilizes and extends the capabilities
of the scheduler. We discuss the extended KCM in Section 3.2. In Section 3.3, we
describe the launcher mechanism. As the last of the components, in Section 3.4,
we present the CS runners/runners framework, since we cannot effectively describe
its activities without some prior knowledge of the other KOALA-CS components.
With a complete knowledge of the components of KOALA-CS in mind, we cover
the job flow procotol in Section 3.5. In Section 3.6 we address the fault tolerance
of KOALA-CS. Finally, we discuss the policies of KOALA-CS in Section 3.7 .

27

The Design and Implementation of Koala-CS

3.1 The CS Functionality of the Scheduler

In the context of KOALA-CS, the scheduler handles idle resource discovery, en-
sures fairness among CS jobs, and guarantees grid-level unobtrusiveness, along
with regular grid scheduling. Resources usable by CS jobs are those resources that
are not required by other, higher-priority, jobs, i.e., idle resources. Fairness among
CS jobs requires the scheduler to divide the available resources evenly among CS
jobs. Grid-level unobtrusiveness requires the scheduler to detect waiting grid jobs
and find the resources for them with minimal delay due to CS jobs. We present
the procedures and policies regarding resource detection, fairness, and grid-level
unobtrusiveness in the sections below.

3.1.1 Resource discovery

In KOALA-CS, resource detection follows the standard KOALA process, as de-
tailed in Section 2.2. The KOALA scheduler allocates nodes to CS jobs, which are
appended to the super-low queue of the KOALA scheduler, as soon as there are no
higher priority jobs that need those resources. The WRR policy (see Section 2.2.3)
ensures that nodes are allocated to CS jobs only if higher priority jobs have had the
opportunity to claim those nodes.

With a rigid job, as soon as there are nodes free, the job is moved from the
placement queue to the claiming queue of the scheduler. However, CS jobs are
malleable, and they remain in the placement queue even as parts of the job are
running. This way, the scheduler will consider CS jobs for node allocation even
if the job is already running on some nodes, thus allowing CS jobs to grow. In
addition, that the CS job remains in the queue allows the scheduler to track the CS
jobs for the purpose of shrinking them, which we discuss further in Section 3.1.3.
Note that the scheduler does not track whether or not the CS job is finished. This
requires the job’s runner to indicate to the scheduler if the job is done, otherwise
the job might stay in the placement queue forever. On the other hand, should the
scheduler at some point be unable to further contact a job’s runner, it will also
terminate that job.

Concluding, we see that CS jobs arrive in the super-low queue of the KOALA

scheduler and remain there until the runner signals that the job is done. They get
assigned nodes (i.e., they are allowed to grow) as soon as nodes are free and no
job in the higher priority queue requires them any longer. These nodes are divided
among the available CS jobs, a process we describe further in Section 3.1.2.

3.1.2 Fair allocation of resources

The scheduler handles fairness for CS jobs because the scheduler is the only com-
ponent aware of all CS jobs. It is therefore the only component that can actually

28

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

divide the nodes over CS jobs in such a way that all get a comparable number of
nodes.

When nodes become available to assign to CS jobs, the scheduler must first be
divide them among CS jobs to give each job a fair share of the nodes. The KOALA

scheduler determines which CS jobs get allocated which nodes through a CS policy
(CSP). Conversely, when there is a need to decrease the total node allocation of CS
jobs, the CSP determines which CS jobs must release nodes, on which cluster they
must release them, and how many they must release.

The CSP is a modular component of the scheduler. KOALA-CS may therefore
run with different policies, where each uses a different methodology to provide
fairness among CS jobs. However, only one CSP can be active at a time, and to
switch CSPs we must reset the scheduler. Therefore, we define multiple policies in
Section 3.7.1 and we test which of these policies is superior in Section 4.4.

3.1.3 Grid-level unobtrusiveness

In this section we discuss how the scheduler deals with grid-level unobtrusiveness,
which is one part of the unobtrusiveness requirement of KOALA-CS (the other
being unobtrusiveness towards local jobs). The unobtrusiveness towards grid jobs
is the responsibility of the scheduler, since it is the only component aware of all
the grid jobs, both CS and non-CS.

When jobs arrive in the higher placement queues or the low placement queue, the
CS jobs (in the super-low queue) may be forced to release nodes in order to let the
higher priority jobs run. This must be done in such a way that the higher priority
jobs are not considerably delayed. To ensure this, the KOALA scheduler keeps
track of how many nodes are assigned to each CS job and to which cluster those
nodes belong. When a new, higher priority, job arrives, the scheduler calculates
how many nodes must be freed up from CS jobs, and then sends the appropriate
runners shrink messages. The CSP must ensure that this happens in fair way, i.e.,
that all CS jobs suffer equally. When enough nodes have been freed, the non-CS
job that caused the shrinking can be placed.

The procedure, which we illustrate in Figure 3.1 is as follows.

1. A non-CS grid job arrives at the scheduler.

2. The scheduler looks on which cluster(s) it could place the components of
that job, and determines that the entire job must be placed on Cluster 1. If
it cannot place a component on a cluster because of CS jobs in the way,
it determines how many nodes must be freed on that cluster. In this case,
it finds that CS jobs A and B on Cluster 1 must shrink. Using its CSP, it
determines how much each of the two jobs must shrink.

29

The Design and Implementation of Koala-CS

Figure 3.1: The scheduler enforcing grid unobtrusiveness

3. The scheduler sends shrink messages to the runners of CS jobs A and B,
indicating on which cluster (in this case, Cluster 1), and how many they
must shrink their jobs.

4. The scheduler places the new job on Cluster 1.

3.2 The Extended Koala Component Manager

The KCM plays a key role in KOALA-CS. In addition to allowing submission
of tasks through the DRMAA interface of the local scheduler (as is its normal
mode of operation, see Section 2.2.5), in KOALA-CS, it also detects local jobs.
Therefore, the KCM supports unobtrusiveness for local jobs, i.e., it is a part of the
functionality that guarantees that local jobs are delayed as little as possible by CS
jobs. Furthermore, the KCM places placeholder scripts with more functionality
(i.e., launchers, which we discuss further in Section 3.3) in KOALA-CS, and in
doing so, plays a slightly different part in component submission than for non-CS
grid jobs.

3.2.1 Local job detection

The KCM does local job detection (and thus plays a crucial role in unobtrusiveness
towards local jobs) by polling the queue of the local scheduler every t seconds.

30

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

The default value for t is ten seconds, and can, with the current implementation,
not be changed without recompiling the KCM. When polling the local scheduler,
the KCM checks for the total number of nodes needed by jobs currently waiting,
and the total number of nodes claimed by CS jobs. It can distinguish CS tasks
from other tasks by checking the task name as it appears in the queue listing of the
local schedulers. If there is at least one non-CS job waiting, and at least one node
claimed by a CS job, the KCM sends a message with command SHRINK to the
runner. This message contains the total number of nodes needed by waiting jobs,
and total number of nodes claimed by CS jobs. It is then up to the runner to act
appropriately to the situation.

By letting KCMs send messages every poll interval, the situation would be little
different from the runner or scheduler polling the local scheduler regularly. And
that is exactly a situation we avoid by letting the KCM poll the local scheduler.
The KCM is at the cluster, located on the cluster’s headnode, and can thus access
the local scheduler directly. Other components in KOALA-CS would need some
form of messaging to reach the local scheduler of remote clusters. Therefore, the
KCM contains this local scheduler polling mechanism, and sends messages to the
runner only as shrinking is needed.

In Figure 3.2 we show the situation of one cluster with multiple KCMs on it.
When a local job arrives, the following happens.

1. As stated, a local job arrives at the local scheduler of a cluster, but remains
in the queue because there are no nodes free for it.

2. The KCMs detect the local job in the queue and the fact that there are CS
jobs active on the cluster.

3. The KCMs each send a message to their respective runners, indicating the
total size of jobs waiting in the local queue, and the total number of nodes
claimed by CS jobs on the cluster.

3.2.2 Component submission

The default KCM deploys placeholder scripts on nodes that send the name of their
node back to the KCM, which then gathers these names and sends them to the
runner (see Section 2.2.5). The extended KCM developed as part of KOALA-CS
deploys launchers and then waits for those jobs to terminate. It deploys these
placeholder jobs with all the information they need to run independently of the
KCM. The KCM follows a likewise procedure when it receives a grow message;
it simply submits the number of launchers indicated in the message. When all
placeholders scripts are done, the KCM terminates.

31

The Design and Implementation of Koala-CS

Figure 3.2: KCMs enforcing local unobtrusiveness

3.3 The Launcher Mechanism

The launcher mechanism consists of the launchers deployed by KCMs in KOALA-
CS. It is a system like those used in Condor Glide-In [22] and Falkon [34]. These
launchers are in themselves recognized as tasks to be executed by the local sched-
uler; however, they execute the actual tasks of the CS job as child processes. This
way, KOALA-CS has more control over the scheduling of individual tasks, and can
more easily preempt tasks and schedule new ones on the same node.

3.3.1 Deployment protocol

The launcher’s controller (which is usually a CS runner) deploys launchers through
a KCM, either with a new deployment of that KCM, or by growing that KCM (see
Section 3.2). We illustrate the process in Figure 3.3, which shows the following
steps.

1. The controller directs a KCM to deploy a launcher.

2. The KCM deploys the launcher while passing it the following parameters:
the controller’s hostname, the controller’s port number, and the name of the
sandbox directory the launcher should use.

3. Once deployed, the launcher informs the controller of the launcher’s host-
name and port number.

32

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

Figure 3.3: Launcher deployment

4. The controller informs the launcher of its launcher ID, with which it can
further identify itself.

3.3.2 Scheduling control

The launcher allows more scheduling control because it takes the scheduling of the
individual tasks that the job consists of away from the local scheduler and gives that
control to the launcher’s controller. Because the launchers act as placeholder tasks
on the nodes, as far as the local scheduler is concerned, that node is currently in use
and nothing can be scheduled there. However, the launchers themselves contain a
list of tasks that they execute as child processes on the node. Between these tasks,
there is none of the scheduling overhead that would occur when each task of a job
would have to be scheduled by the local scheduler individually, although there is
some delay as the launcher collects results and sends them to the controller.

3.3.3 Task management

The launcher has a list of tasks that it executes during its lifetime. This list may
grow and shrink, and even may be empty, causing the launcher to be idle. Through
messages, other KOALA-CS components may add and remove tasks from this list.

The launcher gets its original task assignment from its controller as soon as the
controller becomes aware of the launcher’s existence (see Section 3.3.1). After
receiving this (list of) task(s), it starts by executing those task(s), assuming that all
the necessary files are in the sandbox directory or otherwise available to the node
the launcher is running on. It captures the standard output of the task in a file in
the sandbox directory. Upon the completion of each task, it sends the controller a
message indicating so, including the name of the file that contains the output of the

33

The Design and Implementation of Koala-CS

Command Description
DROP Tells the launcher to drop a task.
ID Tells the launcher its ID, which it must

include in future messages to its con-
troller.

POLL Polls the launcher if it is still active.
PREEMPT Tells the launcher to terminate immedi-

ately.
TASKS Adds a task to the launcher’s task list.

Table 3.1: Message interface to the launcher

task. The launcher then removes the task from the list; if this leaves the list empty,
it enters a waiting cycle.

In addition to normal task completion, a task may be terminated in two ways
that do not yield results. First, a task may fail. The launcher detects a task failure
only if the child process running the task returns an exit code that is not zero. In
that case, the launcher sends any relevant information, including the exit code, to
its controller and removes the task from its list as if completed. Second, when the
launcher is preempted, any task it is running is terminated, and no further action is
taken.

3.3.4 Communications

In this section, we discuss the communication between the launcher and other com-
ponents of KOALA-CS. Table 3.1 shows the message interface that other compo-
nents can use to control the launcher, while Table 3.2 shows the messages that the
launcher sends to its controller. Messages consist of one of the commands from Ta-
ble 3.1 or 3.2, a separator, and the message body. Outgoing messages are prefixed
with LAUNCHER and a separator, after which they are wrapped in the standard
KOALA message format, with the APPLICATION CALLBACK command.

In Table 3.1 we list the commands that can be issued to the launcher. The ID
command has been explained in Section 3.3.1. It is this message that informs the
launcher of its ID. TASKS and DROP are two related, but opposite, commands.
The former informs the launcher of a task to execute, the body of the message
containing the actual command line, together with the task ID. The launcher than
adds this task to its task list (see Section 3.3.3). The DROP command contains a
task ID of a task that has to be dropped from the list. Should the launcher already
be running that task, it will complete it, however. POLL is used to check if the
launcher has not crashed. If it is still alive, it will reply with an ACTIVE message
as described in Table 3.2. Finally, PREEMPT causes the launcher to immediately
stop everything it is doing — most importantly, the task it is currently running as

34

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

Command Description
ACTIVE Indicates that the launcher is (still) ac-

tive.
ADDRESS Informs its controller of the host name

and listening port of the launcher.
ERROR Informs the controller that an error oc-

curred while executing a task.
FAILURE Informs the controller that a task failed,

i.e., completed with an exit code other
than zero.

RESULT Informs the controller that a task was
just completed, together with the task’s
runtime and the name of the standard
output file of the task.

STATUS Indicates that this is a status message.

Table 3.2: Messages from the launcher

child process —and terminate.

Table 3.2 contains the commands for messages from the launcher to its con-
troller. These outgoing messages are a collection of informative messages, where
STATUS is the message used to indicate anything that does not fit in with the
other messages. ACTIVE is the proper response to the POLL message from Ta-
ble 3.1. The ADDRESS message is sent as part of the launcher’s deployment. With
it, the launcher informs its controller of the launcher’s host name and listening
port. RESULT and FAILURE are two possible messages that the launcher sends as
it completes a task. RESULT comes with the runtime needed for the task and the
name of file containing the task’s standard output; this message follows successful
task completion. FAILURE, on the other hand, contains the exit code of the task,
if it ”completed” with an exit code other than zero (which should indicate the task
failed). Finally, the ERROR message is a general-purpose message to indicate that
some terminal exception was encountered by the launcher. It contains the error
message itself, and implicitly informs the launcher’s controller that the launcher
has terminated due to this error.

3.4 The CS Runner and Runners Framework

The CS runner is the core of KOALA-CS. It provides all the application-level
scheduling and task management functionality. It handles the needs of the KOALA

scheduler and the local schedulers when those require the CS job to release nodes.
In addition, it guarantees job continuity in case of a system crash (see Section3.6.3).
The CS runner also handles file transfers and various other tasks. For KOALA-CS,

35

The Design and Implementation of Koala-CS

we extend the runners framework, as we create a version dedicated to CS jobs.
This new framework allows for the creation of different CS runners with different
policies, while adhering to the same protocols.

3.4.1 Structure of the CS runners framework

The CS runners framework provides an abstract base class for all CS runners,
namely the ACSRunner class. This class enforces the job flow and communi-
cation protocol of all the CS runners. Also, like the runners framework, there is a
RunnerListener class that acts as a message server for messages to the runner.
RunnerListener relays the messages to the callback methods of ACSRunner.
In order to define a different application-level scheduling policy, the runner pro-
grammer must create a subclass of the ACSRunner class with the new policy. In
addition, the programmer may override how data and grid information are man-
aged in the runner, how job submission to the runner works, and how to handle
application callbacks that are not from a KCM or launcher. However, default func-
tionality is provided in those cases, as opposed to the application-level scheduling,
which must be defined by the programmer. The CS runners framework provides
constants and easy access to several of KOALA’s entity classes, such as the job
and component representations. In addition, the framework provides a number of
utility libraries for such things as remote execution.

3.4.2 Runner components

The runner consists of five components: the Runner Controller (RC), the User in-
put Manager (UM), the Information Manager (IM), the Data Manager (DM), and
the Application-level Scheduler (AS). Of these components, the RC is fixed be-
cause it enforces the KOALA-CS message and control flow protocols. The other
components are modular, provided the implementations adhere to the correct in-
terface. For the UM, the IM, and the DM, the runners framework provides default
implementations, while the AS is runner-specific and must be provided by the run-
ner programmer. In the remainder of this section, we discuss each component in
more detail.

The runner controller

The RC enforces the control flow protocols in the runner. It also handles all mes-
saging and component polling. Upon starting the runner, the RC enforces that
any command line parameters given to the runner are parsed, including any job
description files that may be passed to the runner.

The RC first creates a new runner object of the class (which must be a sub-
class of ACSRunner) that is passed to the main function. It then ensures that

36

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

this object first parses any command line parameters, including any job descrip-
tion files that may be passed to the runner. Once this is done, the RC initializes
a RunnerListener object with the runner object as argument. It then starts
this object, which creates a separate thread of control for the RunnerListener.
Within that thread, the RC first registers the runner’s job with the scheduler (through
a JOB NEW message, see Table 2.2), then it starts the launcher polling thread (see
Section 3.6.2) and threads for active AS and UM, if they exist. Having started the
RunnerListener thread, the RC enters a waiting loop where it regularly checks
whether or not all tasks are completed. Once all tasks are completed, the RC ini-
tializes the necessary clean-up and post-termination phases, before terminating the
runner.

The RC further functions as a message listener. The RunnerListener hands
all incoming messages to the callback methods of the RC, which handles them ap-
propriately. Every message is handled in its own thread, allowing concurrent mes-
sage handling. The RC contains callback methods for messages from the sched-
uler, from the KCMs, and from the launchers. The RC determines which message
is from which component (based on the message headers), and relays them to the
appropriate handler. In addition, the RC contains a general message handler, for
messages from any custom components. The default response to such messages
is to discard them, but the runner programmer can override this behavior. For
instance, a remote user interface can communicate with the runner through this
method.

The manager components

The manager components handle different aspects of the CS job. Each manager
is modular, with default versions provided for each. The UM handles command
line parsing, job definition languages, and interactive user input. The default UM
handles only command line parsing and the parsing of a job definition file. An
advanced UM may take commands from the user at job runtime, allowing adding
and removing tasks, or viewing results. The IM tracks all information regarding
tasks, such as the state they are in, which launcher is running them, runtime, etc. In
addition, it tracks information regarding nodes, launchers, clusters, and file loca-
tions. The IM contains functionality to make a so-called state dump to secondary
storage, so the runner can be aborted at any time and restarted with its tasks in
the same state, and with as little as possible loss of result data. The default im-
plementation of the IM uses a collection of entity objects to track the data, and
uses Python’s cPickle [6] library to create the state dumps. Finally, the DM pro-
vides the possibility to (asynchronously) transfer files. The default DM uses secure
copy (SCP) to transfer the files, and assigns each transfer a thread so as to allow
asynchronous transfers.

37

The Design and Implementation of Koala-CS

Figure 3.4: Interaction of runner components

The application-level scheduler

The AS is another modular component, for which no default implementation is pro-
vided. The runner programmer must provide his own AS implementation, which
provides the application-level scheduling policy. We discuss our policy in Sec-
tion 3.7.2. In its most primitive form, the AS must provide a method for assigning
tasks to launchers, and for determining which launchers should preempt in case
of shrinking. In addition, to AS may provide an alternate method for determining
by how much to grow (up to the size allowed by the scheduler, off course), which
defaults to accepting everything the scheduler offers. Finally, the AS may provide
an active scheduling function, that is run as a separate thread, and may actively
change the assignment of tasks to launchers, without being prompted by the RC to
do so.

3.4.3 Interaction of runner components

The interaction between runner components takes place through method invoca-
tions and function calls on the various components. Central to this scheme is the
RC, which governs runner activities. However, the UM and AS components may
exert some control depending on their implementations. In Figure 3.4 we give an
overview of the relations of the components.

Figure 3.4 illustrates the central role of the RC. The RC receives and sends all
messages to and from the runner. It also starts the active parts of the UM and AS
components, if any, and initiates command line parsing by the UM. Finally, it up-
dates the IM and commands it to dump its state when required, and orders the DM
to transfer any files. The UM receives any and all user input, be it from the com-
mand line or otherwise, and updates the IM with the information it thus acquires.
The IM is a passive component; albeit a vital one, that stores all information rele-
vant to the CS job. The DM again is passive; its role is to transfer files to and from
the file sites, and to delete files if necessary. The AS communicates with both the
IM and the RC. From the IM it acquires the information needed for scheduling. In

38

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

Figure 3.5: Runner response to grow and shrink messages

case of an active AS, it commands the RC to effectuate any scheduling changes the
AS makes.

3.4.4 Handling grow and shrink messages

One of the dominant operations in KOALA-CS concern the malleability, or the
growing and shrinking of CS jobs. In this section, we focus on the activities within
the runner when a grow or shrink message arrives. In Section 3.5 we place the
runner’s activities within the greater perspective of KOALA-CS.

We identified two reasons for job shrinking: jobs waiting in the local queue
and grid jobs waiting in one of the queues of the KOALA scheduler. Conversely,
job growth is always initiated by the scheduler. Therefore, we have two messages
from the scheduler (growth and shrinking due to grid jobs) and one from the KCM
(shrinking due to local jobs). We illustrate the job flow for all three types of events
with a single graph in Figure 3.5.

In the figure, we see six steps for each type of event. In case of a grow message,
KOALA-CS proceeds as follows.

1. A grow message arrives at the RC, containing a set of cluster/nodecount
pairs. This set indicates the clusters where the runner’s job can grow, and
how many nodes are potentially available on each cluster.

2. The RC asks the AS how many nodes to accept on each cluster.

3. The AS acquires the information that it needs for its scheduling decisions
from the IM.

4. The AS answers the RC’s query from step 2.

5. The RC registers the changes with the IM.

6. The RC sends the appropriate messages to other KOALA-CS components,
to affect the changes.

39

The Design and Implementation of Koala-CS

The steps for a shrink message, regardless whether the message originates at a
KCM or at the scheduler, are the following.

1. A shrink message arrives at the RC, containing the name of the cluster where
the RC is to shrink (the name is implied if the message comes from a KCM)
and the number of nodes to release there.

2. The RC asks the AS to determine the shrink schedule, i.e., set of launchers
to be preempted in order to fulfill the shrink command.

3. The AS acquires the information that it needs to determine the shrink sched-
ule from the IM.

4. The AS answers the RC’s query from step 2.

5. The RC registers the changes with the IM.

6. The RC preempts the launchers in the shrink schedule.

3.4.5 Launcher management

An important activity of the runner is to manage the launchers. The runner must
manage launchers, keep track of what they are doing, if anything, and if they can
do what they are ordered to do.

For the deployment of launchers, the runner uses a KCM. Upon deployment, the
launchers send their hostname and listening port to their controller, which is the
runner. The runner logs this information in the IM, which in response supplies a
unique launcher ID. The RC submits this ID to the launcher.

When launchers need to be preempted, the AS determines which launchers ex-
actly, and the RC sends PREEMPT messages (see Table 3.1) to those launchers. It
likewise makes the required changes in the IM. The IM ensures that any tasks that
the preempted launchers were working on are updated to reflect their new state; the
IM also administratively removes these launchers from their nodes.

The RC handles any information from the launchers (results, failures, errors) and
stores it in the IM. This information may require further action from the runner. Er-
rors indicate the launcher has terminated, and the IM needs to make the appropriate
changes. Results and failures indicate that a task has completed or failed. The RC
updates the state of said task in the IM, and, in case of results, commands the DM
to start transferring any output files from the launcher’s file site to the runner’s file
site.

When a launcher sends a message stating it has completed a task, failed at one, or
has just become active, the launcher may (or, in the latter case, does) have nothing
to do. Therefore, the runner may need to assign tasks to this launcher, or preempt it.

40

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

Figure 3.6: Launcher management

This requires a complex procedure which includes four out of five runner compo-
nents. We illustrate this procedure in Figure 3.6. The seven steps in this procedure
are as follows.

1. The RC receives a message that a launcher has a possible need for more
tasks.

2. The RC asks the AS for a task assignment for the launcher.

3. The AS acquires the necessary information from the IM and makes a task
assignment for the launcher, or decides it must be preempted.

4. The AS returns this decision to the RC.

5. The RC commands the DM to transfer any files needed by the launcher to
the launcher’s file site.

6. The RC makes the necessary updates in the IM.

7. The RC submits the new task assignment, or a preemption message, to the
launcher.

3.5 Koala-CS Job Flow Protocol

In this section, we cover the five phases of a CS job’s life cycle. We describe job
submission, job growth, job shrinking due to grid jobs, job shrinking due to local
jobs, and job completion, in the following subsections.

3.5.1 Job submission

CS job submission follows the same procedure as for any other KOALA job. Every
KOALA job must have at least one component, and for that purpose, the CS runner

41

The Design and Implementation of Koala-CS

submits a single component that requires a single node. Upon submission of the
job to the scheduler, the CS runner informs the scheduler of the properties of the
job, such as user name, port number of the runner, and the type of job, which is
malleable. We choose a size of one to make placement of the component as easy as
possible. The scheduler, once it has placed this component, informs the runner on
which cluster this component is placed. The runner places this component using
a KCM, as described in Section 2.2.5 and illustrated with Figure 2.8. Note here,
however, that the placeholder script is replaced by a launcher. Once this launcher
is placed, the application-level scheduling can begin. After job submission is com-
pleted, the CS job can start to grow and shrink, until it is completed.

3.5.2 Job growth

CS job growth is initiated when the scheduler detects idle nodes, that are not needed
by other (non-CS) jobs. When this happens, the scheduler divides the idle nodes
among CS jobs as in Section 3.1.2. It informs the corresponding CS runners of the
grow possibility with a message that consists of (a list of) cluster(s) and for each
cluster, the number of nodes the runner can claim there. The runners respond by
acknowledging the message. Afterwards, the runner either sends a grow message
to the KCM on each cluster with the associated number of nodes, or it places a
KCM on the cluster (with the number of nodes as parameter) if there is no KCM
there yet. This KCM then deploys launchers as usual. We describe this procedure
with Figure 3.7. The steps in the figure are the following.

1. The scheduler sends a grow message with a site s and a node count n to the
runner.

2. The runner determines a number of nodes m, where m ≤ n, to accept,
and sends an acknowledgement (ACK GROW) of the grow message to the
scheduler.

3. The runner sends a grow message to its KCM on s for m. If there is no KCM
on s, the runner deploys a new KCM there with initial size m.

4. The KCM schedules m new launchers to the local scheduler of s.

5. The local scheduler places the launchers on nodes of s.

6. Each launcher sends an ADDRESS message to the runner.

7. The runner responds by sending each launcher that launcher’s ID, and an
initial task assignment.

The described procedure concerns the activities of KOALA-CS for a grow mes-
sage with a single site/nodecount pair; however, in most cases, the scheduler sends

42

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

Figure 3.7: Job growth

multiple such pairs in the same message. For simplicity, we limit the message in
Figure 3.7 to a single pair; however, activities for multiple pairs in a single message
are essentially the same. Note that a message with multiple pairs is always an-
swered with a single acknowledgement regardless of the number of site/nodecount
pairs.

3.5.3 Job shrinking

Job shrinking occurs when either the scheduler detects grid jobs waiting (see Sec-
tion 3.1.3) or the KCM detects jobs in the local queue (see Section 3.2.1). Whatever
the source, the component in question sends a message to the runner, which then
determines how to comply with the shrink command, depending on its application-
level scheduling policy (see Section 3.4.4). We illustrate the procedure with Fig-
ure 3.8. There are two basic steps to this procedure, and these are as follows.

1. The scheduler or one of the runner’s KCMs sends a shrink message to the
runner. This message contains the number of nodes to free (n) and an explicit
site s in case of a shrink message from the scheduler. With a message from
a KCM, s is implied because the runner knows the location of the KCM in
question.

2. After the runner determines a set of k launchers to preempt in order to fulfill
the request for n nodes to free, or, if the runner does not have launchers on n
nodes at s, it preempts all launchers on s. It sends all the launchers that have
to be preempted a PREEMPT message.

43

The Design and Implementation of Koala-CS

Figure 3.8: Job shrinking

3.5.4 Job completion

Job completion comes about when the runner detects that all tasks are finished.
When this happens, the runner saves the results of the tasks to file, and aborts its
launchers. The termination of these launchers triggers the termination of the KCMs
belonging to the runner. Also, the runner informs the scheduler of the successful
completion of the job.

The results of the tasks consists of the standard output files generated by the
launchers (see Section 3.3.3), and the output files generated by the tasks them-
selves. KOALA-CS guarantees that these files have all been transferred to the run-
ner’s file site when the runner terminates. Also, the runner generates a results index
file, in which, for each task, the actual command line (executable file plus parame-
ters) is mapped to the standard output file. The runner creates this file because the
task IDs the runner’s IM generates are internal, and mean little to the user, while
the command line does. In case the user terminates the runner before the job is
completed, the runner also generates a state dump of the tasks in its IM. This al-
lows a later restart of the runner from that state file, so tasks are not needlessly
completed more than once.

3.6 Koala-CS Fault Tolerance

KOALA-CS needs to be robust and fault tolerant, reducing as much as possible the
likelihood of failures and their impact on the system. In this section, we deal
with those issues. First, Section 3.6.1 deals with failures prevention. Second,
in Section 3.6.2, we discuss how KOALA-CS detects and handles the failures of
components. Finally, we discuss how KOALA-CS can recover from system crashes
in Section 3.6.3

44

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

3.6.1 Error and failure prevention

There are a number of reasons a system, especially one of the complexity of
KOALA-CS, can fail. We seek here to prevent two: programming errors and sys-
tem overloading. How KOALA-CS deals with other failures is the topic of the
following two sections.

We reduce the impact of programming errors through the normal methods of pro-
gram testing. For KOALA-CS, this means we unit test what can be unit tested (such
as the IM) and test other code (for instance, the inter-component communications)
by executing a reduced version of the system that emphasizes the functionality of
that specific piece of code. Finally, our experimental runs are incremental: we
run the least complex (e.g., those that require the least functionality) experiments
first, so we can be sure at least that functionality works correctly. By using this in-
cremental approach, we can detect the majority of programming errors, and catch
those that would cause the system to crash under normal operating conditions.

System overloading is a term we use to indicate the concurrent claiming of so
many nodes that the grid as a whole crashes, which is of course something we need
to prevent at all costs. To do this, the scheduler enforces limits on how many nodes
can be claimed for CS, such that the grid is not filled up entirely.

However, as we mentioned at the beginning of this section, there are those errors
that we cannot (reasonably) prevent. With such failures, components will crash.
To deal with this, KOALA-CS must detect such component failures and act appro-
priately to minimize their impact. Failure detection and handling is the topic of the
next section.

3.6.2 Component failure handling

Since KOALA-CS uses four types of components, and each could potentially fail,
KOALA-CS must be prepared to deal with this issue. Not all failures of components
are catastrophic however, and for some failures explicitly dealing with them is
not necessary. Note that the measures we take are sometimes drastic; this is to
absolutely ensure unobtrusiveness.

Koala-CS scheduler

The KOALA scheduler has proven itself to be a highly reliable component [29],
that has yet to crash since its initial deployment in 2005. A theoretical problem —
which we are yet to encounter — is that if the scheduler crashes, and there are any
CS runners active, they will no longer receive grow or shrink messages from the
scheduler after restart, since it is unaware of their existence. This may cause the
grid to be heavily loaded with CS jobs, a load which can only be reduced by local
job submissions or launcher crashes. Needless to say, this will drastically reduce

45

The Design and Implementation of Koala-CS

unobtrusiveness towards grid jobs. One potential solution is the runner polling the
scheduler for activity, and terminating itself if it cannot confirm that the scheduler
is active. Another solution, as presented by Mohamed [29], is for the scheduler to
write the content of its queues to disk at regular intervals, allowing the scheduler
to restart with full knowledge of which runners are active. Since a scheduler crash
is an extremely rare occurrence, we leave determining which is the better method,
and implementing either, as future work.

CS runners

A runner crash could be catastrophic to the system. Of key importance is protecting
the information about tasks, which we discuss in Section 3.6.3. The launchers will
detect the runner’s crash because of connections from them to the runner being
refused, or because of runner time-out, i.e., when a launcher does not receive a
message from the runner for more than two minutes. When a launcher detects this,
it terminates as if having received a PREEMPTmessage (see Table 3.1). Eventually,
this causes all launchers to terminate, which in turn causes all KCMs to terminate.
In that way, all processes are neatly cleaned up, although sandbox directories will
need to be deleted manually.

KOALA component managers

A KCM crash is another rare happening, which we did not encounter during testing.
The runner will detect the KCM crash as it tries to send a grow message to the KCM
and the connection is refused. This will cause the runner to deploy a new KCM in
place of the crashed one. Also, the runner will check whether or not the KCM is
alive on a regular basis. It does this by simply connecting to the KCM, and if the
connection is refused, it considers the KCM to be crashed, and replaces it with a
new one. Since KCM crashes are rare, we did not implement an explicit polling
system as with the launchers.

Launchers

Finally, KOALA-CS detects launcher through the runner tracking the last message
received by a launcher. If a launcher has not send a message in a while (which can
be common with large tasks) the runner sends a POLL message (see Table 3.1).
If a launcher does not reply to such a message by means of a ACTIVE message
(see Table 3.2), the runner registered this as a launcher time-out in the runner’s IM.
In addition, if a connection to a launcher is ever refused, it is likewise registered.
The runner responds by sending a PREEMPT message to make sure the launcher is
indeed terminated, and updates the status of that launcher’s task in the IM.

46

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

3.6.3 System failure handling

KOALA-CS, like any other software system, cannot prevent all crashes. Because
of the lengthy nature of CS jobs, this poses a significant problem, as potentially
months of results may be lost. Therefore, key information must be regularly saved
to secondary storage, in stead of being stored only in primary memory. Fortunately,
all information relevant to the job itself is stored by a single component: the runner.
The RC component of the runner regularly forces a state dump of the information
stored in the runner’s IM. The IM component can be restarted from that state dump.
This state-dump only contains information about the tasks themselves, because
information about launchers, nodes, clusters, and file locations may be invalid after
the state is dumped, and is not necessary to protect the results of the tasks. With
this scheme, we can prevent significant loss of results data, even as the results
gathered between the last state dump and the crash are lost. The interval for saving
the state is defined by the runner’s UM; the standard UM allows the user to change
the interval, but defaults to 150 seconds, so as not to burden the system too much.

3.7 The Policies of Koala-CS

In previous sections, we focussed on the architectural design of KOALA-CS. How-
ever, in those sections we already refer to the policies of KOALA-CS. In this
section, we cover those policies in detail. We first discuss the CS policies in
Section 3.7.1. Second, we discuss application-level scheduling policies in Sec-
tion 3.7.2.

3.7.1 CS policies

The CS policy (CSP) needs to provide fairness among CS jobs. This means that,
should there be multiple CS jobs in the system, the CSP assures that the total
number of idle nodes is divided equally amongst the CS jobs. With our policies,
we opt for those that do not require historical information, which would require
tracking such information for CS jobs. We prefer simple policies that are easy to
implement and test in favor of more complex policies. We deem this sufficient
because of the best-effort nature of CS, where node allocation is very irregular,
and historical data and predictions may not provide so much more efficiency as to
validate the added complexity.

We have created two policies based on the well-know EquiPartition policy [28].
This policy takes all the resources available, and allocates them such that at each
period in time, all jobs have an equal allocation of nodes. There is a possibility
to re-evaluate the current resource allocation at fixed intervals, possibly requiring
redistribution. However, our policies only evaluate the situation as soon as either

47

The Design and Implementation of Koala-CS

there are more idle nodes to allocate (i.e., grow opportunities for CS jobs) or there
is a need to shrink CS jobs.

The first policy is Grid-EquiPartition (GEP). GEP considers all the idle nodes,
regardless of which cluster they are on, as a single set that is to be divided amongst
the CS jobs. GEP simply divides this set evenly over the CS jobs in the system; it
does not consider to which clusters these nodes belong and therefore may assign
one CS job nodes that are all on the same cluster, and another CS jobs nodes that
are spread throughout the system. GEP does not grow any job if the total load of
the grid is 80% or higher, to prevent overloading the grid. Shrinking is site-based,
i.e., a shrink request is tied to a specific cluster. The policy checks which CS jobs
are active on that cluster and orders each to shrink an equal amount in order to
satisfy the shrink request.

The second policy is Site-EquiPartition (SEP). SEP considers each cluster sepa-
rately, and divides the set of idle nodes on each cluster over the CS jobs. Like GEP,
SEP does not grow when there is a load of 80% or higher, but SEP measures it per
site: it does not grow on a cluster if that cluster is loaded for 80% or more. For
shrinking, the SEP policy acts the same as GEP.

In Figure 3.9 we illustrate a typical allocation of nodes to different CS jobs. We
see that GEP allocates nodes regardless of cluster, while SEP divides the CS jobs
evenly over all clusters. The advantage of the SEP approach is that all jobs can
benefit from faster or more reliable hardware, and are all equally disadvantaged by
slower or less reliable hardware. On the other hand, GEP is somewhat simpler to
implement.

3.7.2 Application-level scheduling policies

In this section, we cover the application-level scheduling policies, which can be
based on a variety of job, task, and grid properties, among other things. The ALS
policy is implemented in the modular AS component of the CS runner. Note that
these policies therefore only deal with the tasks and launchers of one specific run-
ner. Other CS runners in the system may have different policies. The policy con-
sists of two components: the Task Scheduling Algorithm (TSA) and the Launcher
Preemption Policy (LPP).

The TSA handles the assignment of tasks to launchers. We can apply any of a
number of scheduling policies, such as WQR [19], MQD [26], Backfilling [21], or
XSufferage [16]. Furthermore, the runner’s AS component may provide an active
scheduling thread, which can re-evaluate the current schedule and redistribute tasks
if needed. However, like with our CS policies, we prefer a simple TSA, which we
call Single task Launcher Pull (SLP). When a launcher needs a task (it is either
just deployed or just completed its previous task list), SLP assigns that launcher
a random task from amongst the currently uncompleted, unassigned tasks. If no
such task exists, SLP indicates that the launcher should be preempted. SLP is a

48

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

Grid-EquiPartition

Site-EquiPartition

Figure 3.9: Node allocation with GEP (top) and SEP (bottom) policies

deliberately simple TSA, which facilitates the testing of the system. We leave the
design, implementation, testing, and comparison of other TSAs as future work.

The LPP responds to shrink commands. As parameters, it receives a number
of nodes to release and a cluster where these nodes are to be released. It converts
these parameters into a list of launchers that have to be preempted in order to fulfill
the shrink command. If the LPP cannot completely fulfill the node demand, it will
indicate that all launchers on that cluster should be preempted. Like with TSAs,
a variety of LPPs are possible. The LPP must match with the TSA, and therefore
will base decisions on the same information as the TSA, in order to complement
rather than obstruct the TSA. LPPs can be based on runtime of tasks, the task loads
of launchers, the number of launchers running the same task, the number of times
a task was preempted, etc. For our initial LPP, we use the converse of our TSA: we
preempt a random set of launchers on the indicated cluster. Again, this provides us
with a simple policy, and we leave more complex LPPs as future work.

49

The Design and Implementation of Koala-CS

50

Chapter 4

Evaluation of Koala-CS

In this chapter, we evaluate KOALA-CS through experiments in a real grid system,
the DAS-3. We test whether or not KOALA-CS satisfies the requirements stated
in Section 2.5, namely if it is unobtrusive, fair, efficient, robust, and fault tolerant.
We did not evaluate robustness and fault tolerance in a separate experimental set;
rather, we used all the experiments to identify and correct errors and bugs, hence
improving those aspects. We ran three sets of experiments and we ran those exper-
iments that require less KOALA-CS functionality first. This allowed us to use the
experimental results directly during development.

The first experimental set assesses the efficiency of the launcher mechanism. We
discuss this experiment in Section 4.2. The second set concerns the unobtrusive-
ness requirement. We tested for unobtrusiveness towards local and towards grid
jobs; in Section 4.3, we present our findings. In Section 4.4, the final set assesses
the fairness of the CS policies, by measuring throughput and node preemptions.

4.1 Methodology and Metrics

Our general methodology for testing KOALA-CS is as follows. We run our tests in
the DAS-3 grid. Depending on the type of experiment, we can limit it to use only
a subset of the clusters in the DAS-3. This can be useful if we need to guarantee
that certain conditions are in place. Using the DAS-3 has the advantage of testing
KOALA-CS in a real grid. However, changing conditions in the grid enforce the
need for closely monitoring certain tests, as changing conditions may invalidate
any comparison between different experiments. Likewise, the real, live, nature of
the DAS-3 may cause incidental, extreme, results, which may influence the out-
come of the experiments and could make them non-representative; we therefore
take appropriate measures to reduce the impact of these results. Which measures
we need are experiment-specific and therefore we discuss them in the section of
the experiment in question.

51

Evaluation of Koala-CS

We use two metrics: makespan and throughput. We define the makespan of a job
as the difference between its submission time and the completion time of the last
task of that job. We measure it in seconds, unless otherwise stated. Our definition
of throughput is the number of tasks completed per time period. We measure it in
tasks per second, again unless otherwise stated.

4.2 The Efficiency of the Launcher Mechanism

In this section, we discuss a set of experiments that determines the efficiency of
using launchers. With these tests, we aim to validate the launcher mechanism. To
do this, we compare the runtime of a set of tasks when submitted through launchers
with the runtime when submitted directly to the local scheduler.

4.2.1 Experimental setup

We execute the launcher test on the 68-node Delft cluster of the DAS-3. We do
this because we simply compare performance between using launchers and direct
submission through the local schedulers. Using only one cluster makes it easier
to ensure the same conditions for both methods, since it is easier to find a cluster
that is free of background load than a period during which the entire grid is free.
Also, it would make the testing scripts more complex, only to make both methods
finish faster, which, considering these experiments do not have a long runtime any-
way, we find to be an unneeded trade-off. We run the experiments when the Delft
cluster has no background load, and mitigate any extreme results by running each
experiment five times and taking the average values of the results.

We run our experiment with the dummy application described in Section 2.4.2.
The experimental job consists of 1000 tasks of the dummy application, set to run
for 30 seconds. In the ideal case, the makespan of this job on the Delft cluster
would be (1000 × 30)/68 ≈ 441.177 seconds. However, the makespan must be
a multiple of 30 seconds, since the dummy tasks are atomic. Therefore, the ideal
makespan is 450 seconds. This means an ideal throughput of 1000/450 = 2.22
tasks completed per second. We measure, for both submission techniques, how
much it deviates, in both makespan and throughput, from the ideal case.

4.2.2 Results and discussion

We summarize the results in Table 4.1. Table 4.1(a) contains the comparison be-
tween the makespan of the direct submission and launcher submission methods
with the ideal makespan. In Table 4.1(b) we compare the throughputs (in number
of tasks completed per second) in a similar fashion.

52

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

Method Makespan Deviation from Ideal
Ideal 450.00 -

Direct Submission 685.01 152.2 %
Launcher Submission 474.85 105.5 %

(a)

Method Troughput Deviation from Ideal
Ideal 2.22 -

Direct Submission 1.46 65.7 %
Launcher Submission 2.11 94.8 %

(b)

Table 4.1: Performance comparison between launcher submission and direct sub-
mission.

From Table 4.1 we find that launcher submission is far more efficient, and ap-
proaches the ideal makespan to within 6%. The explanation for this is that direct
submission requires, for each task, to detect an available node and then submit the
task, which creates considerable overhead. Arguably, this can be reduced by wait-
ing, per task, for it to finish, and then submit a new one the moment the old one
is done. However, this still not completely eliminates the overhead of submitting
a task to the local scheduler and it being queued in the local scheduler. Also, the
KOALA scheduler is responsible for detecting and assigning free nodes, and the
jobs that we run with KOALA-CS are CS jobs. CS jobs reside in the lowest place-
ment queue (see Section 2.2.3), and thus can be made to wait for free nodes even
more than during our experiments. Launchers, once submitted, stay in place until
preempted. They thus all but eliminate the time between one task finishing and the
next starting on the same node.

4.2.3 Conclusion

The results presented in Section 4.2.2 show that the use of the launcher mecha-
nism increases efficiency. Using launchers increases the throughput and decreases
the makespan of jobs. Since there is not a significant amount of additional work
in using a launcher system, we believe that this validates the use of the launcher
mechanism.

53

Evaluation of Koala-CS

4.3 The Unobtrusiveness of Koala-CS

In this section, we discuss the testing of whether or not KOALA-CS is unobtrusive.
We do this by measuring the additional delay that grid and local jobs incur when
CS jobs are ”in the way”. As stated in Section 2.5, this delay must be measurable in
tens of seconds, and the aim of this experiment is to show that KOALA-CS limits
the delay to less than a minute. We first discuss the tests for local job delay in
Section 4.3.1. In Section 4.3.2 we discuss the grid job tests.

4.3.1 Local job delay

In this section, we discuss the unobtrusiveness tests for local jobs.

Experimental setup

We define six workloads, each consisting of jobs running the dummy application
from Section 2.4.2. Each job consists in total of 40 dummy tasks, which each run
for 60 seconds. The jobs are however submitted in a different fashion. With each
job, we divide the tasks over several atomic ”chunks”, i.e., the tasks are submitted
such that they appear to be a task that requires multiple nodes at once, on the same
cluster. We use jobs of consisting of 1 chunk of size 40, 2 of size 20, 4 of size 10,
10 of size 4, 20 of size 2, and 40 of size 1. We run our tests on the Delft cluster
of the DAS-3. We choose a total size of 40 to guarantee the job will run as fast
as possible, because we cannot guarantee that the cluster we test on is completely
empty. Using a total size of 40, we allow room for considerable background load if
we run the test on the Delft or Vrije Universiteit clusters, giving us more flexibility
in planning the experiments. We run each job a total of 10 times, 5 times without
any CS load and 5 times with a CS load that fills the cluster almost completely, and
then we take the average in both cases.

Results and discussion

In Table 4.2 we summarize the results. The table contains, for each job, the
makespan without CS jobs active and with CS jobs active, as well as the differ-
ence between the two.

From the table it is apparent that the difference in makespan for the same job un-
der different conditions varies between 7.9 and 29.2 seconds, which is well within
the acceptable range. An additional 30 second delay may seem like a lot com-
pared to the runtimes of these jobs, however, most jobs run on a grid actually have
longer runtimes. When jobs have runtimes of 15 minutes or more, 30 seconds of
overhead is easily amortized. A possible source of delay is that the KCM checks
the local queues every 10 seconds, and in the worst case, will detect local jobs in

54

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

Job Without CS load With CS load Difference
1× 40 67.932 83.058 15.126
2× 20 66.696 95.931 29.235
4× 10 68.586 92.827 14.241
10× 4 76.076 94.038 17.962
20× 2 82.477 94.978 12.501
40× 1 90.188 97.975 7.887

Table 4.2: Makespans (in seconds) of the test jobs with and without CS load.

the queue while those have been there almost 10 seconds. Reducing this polling
interval could potentially reduce the overhead further. Therefore, we conclude that
with local jobs, KOALA-CS is sufficiently unobtrusive.

However, we also conclude from Table 4.2 that finer grained jobs suffer less
from a CS load than coarser grained ones. When there is no CS load, makespans
vary between approximately 67 and 90 seconds, where the finer grained jobs take
longer. When a CS load is in place, the difference in makespans is less pronounced:
from around 83 to around 98 seconds, and only one makespan is shorter than 92
seconds. We attribute this to a form of scheduling ”pipelining”, i.e. that local
scheduling and CS task preemption overlap.

In Figure 4.1, we present an abstract overview of what happens. It shows the
makespan of individual chunks of a 4 × 10 job in Figures 4.1(a) and 4.1(b) and
the makespan of a job consisting of one chunk of size 40 in Figures 4.1(c) and
4.1(d). For all figures, the submission of a chunk occurs at time 0, and chunk
completion occurs at the end of the bar. The colors indicate different stages in a
chunk’s lifetime: blue indicates waiting time, green indicates the time needed to
preempt CS in order to make room for the chunk, orange indicates the time needed
by the local scheduler to schedule the chunk, and red is the actual runtime of the
chunk. Note that the makespan of a job runs from the submission of its chunks to
the completion time of the chunk that completes last.

In Figure 4.1(a) we see that each chunk incurs scheduling overhead (in orange)
and that while one chunk is being scheduled, the others must wait (in blue). The
result is that the final chunk must wait for all the chunks to be scheduled before
it can run (in red). Figure 4.1(c) shows that the scheduling time of the single-
chunk job is comparable to that of a single chunk in the Figure 4.1(a). Since the
runtime is the same, this larger job will complete at approximately the same time
a the first chunk of the 4 × 10 job. However, as we consider the situation with a
CS load, we get the figures as in Figure 4.1(b) and in Figure 4.1(d). As is clear
from Figure 4.1(b), the scheduling of the first chunk can begin as soon as only 10
nodes are free, and while this chunk is being scheduled, node preemption for the
second chunk already begins, causing these phases to overlap. The result is that
the fourth chunk can be scheduled as soon as 40 nodes are preempted, because

55

Evaluation of Koala-CS

(a) (b)

(c) (d)

Figure 4.1: The effect of scheduling pipelining without CS ((a) and (c)) and with
CS ((b) and (d)).

the other chunks have already been scheduled. The single size 40 chunk from
Figure 4.1(d) must also wait for all 40 nodes to be preempted, because it needs
them all, before it can be scheduled. There can be no overlap between scheduling
and node preemption in this case, causing the job consisting of the single large
chunk to have the same makespan as job consisting of four smaller chunks while
there is CS load.

4.3.2 Grid job delay

In this section, we discuss the unobtrusiveness tests for grid jobs.

56

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

Job Without CS load With CS load Difference
4× 20 91.425 99.919 +8.494
8× 10 87.533 87.428 -0.105
16× 5 141.150 149.387 +8.237

Table 4.3: The additional delay incurred by grid jobs due to CS jobs, in seconds

Experimental setup

For this experiment, we define three jobs, each of total size 80. This total size
ensures that in most cases, the load should be divided amongst clusters, since only
the Vrije Universiteit cluster of the DAS-3 can provide 80 nodes on its own. All of
the jobs are again dummy jobs, which run for 60 seconds (per task). Also, like the
local job tests, we divide them into atomic ”chunks”. We run jobs of 16 chunks of
size 5, 8 chunks of size 10, and 4 of size 20.

Since the DAS-3 is a dynamic environment, we once again run each experiment
10 times, 5 times with CS jobs active in the system and 5 times without. We
alternatively run jobs without CS load and with CS load, so as to make sure that
the experiments run in as similar circumstances as possible. This CS load is such,
that it fills the DAS-3 up almost completely. Afterwards, we take the average of
the values obtained.

Results and discussion

We collect the results in Table 4.3, which contains for each job the makespan with-
out a CS jobs load and with such a load, as well as the difference between the two.
From the results, it is clear that the additional delay cause by the CS load is negli-
gible. Less than 10 seconds of additional delay is well within the acceptable range
of one minute. The result of the 8× 10 run is especially good, with the difference
being in favor of the job ran with CS load.

4.3.3 Conclusion

Both sets of experiments show that KOALA-CS meets its unobtrusiveness require-
ment. The largest additional delay does not exceed 30 seconds, which is not sub-
stantial in grids. We are therefore confident that KOALA-CS is unobtrusive.

If there is any improvement to be made, we believe it lies with the local shrink-
ing. Increasing the frequency with which the KCM polls the local scheduler will
decrease the time that local jobs wait due to CS jobs, however, it will increase the
processor load on the head node of the cluster in question. There may also be a
minor improvement in local job unobtrusiveness by modifying the local shrink al-
gorithm. We leave determining the ideal local scheduler polling frequency and the

57

Evaluation of Koala-CS

ideal local shrinking algorithm as future work.

4.4 The Effect of CS Fair Sharing Policies

With the fairness tests described in this section, we aim to determine which of the
two CS policies (CSPs) defined in Section 3.7.1 provides the most fair allocation
of nodes to CS jobs. In order to test this, we test the performance of multiple CS
runners running identical jobs over the same period, where during each period we
run scripts that enforce significant background load. These loads will trigger grow
and shrink events, causing the CSP to cope with these.

4.4.1 Experimental setup

The application we use in these experiments is the Eternity II application described
in Section 2.4.3. We define a job that consists of running 10,000 instances of the
Eternity II solver program, to guarantee that each job would need more than an hour
to run even if there are no other jobs running on the DAS-3. We let three CS runners
each run a copy of this job, and compare their throughputs, number of launcher
time-outs, and the number of node preemptions. Combining this information, we
can create an accurate view of the fairness of CS policies.

We run each of the two policies, Site-EquiPartition (SEP) and Grid-EquiPartition
(GEP). We test these policies with the following three workloads, which each con-
sists of approximately an hour of runtime.

1. Free. This workload consists of the CS jobs we run and any local jobs in the
grid at the time of the experiment. We do not submit nor terminate any of
these local jobs.

2. Block. In addition to the Free workload, we submit dummy jobs through
KOALA. We submit these jobs as follows. We divide the experiment’s run-
time in three twenty-minute periods. At a random moment within such a
period, we submit a grid job that requires a hundred nodes for a period of ten
minutes. This workload simulates large, constant loads of grid jobs.

3. Spike. Similar to the Block workload, only we divide the experiment’s run-
time into ten minute periods, and during each period we submit a grid job
that requires a hundred nodes, yet for only one minute. This workload sim-
ulates a more dynamic load of high ”spikes” of grid activity.

We cannot guarantee the exact same conditions in the DAS-3 for each exper-
iment. Neither can we guarantee the exact shape that the background load will
take. There is simply too much non-determinism in the DAS-3 for that. However,
since we compare the results of three jobs that run at the same time, we can draw

58

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

accurate conclusions about how fairly these jobs are treated by the CSP, and then
conclude whether the policy is fair enough, and which policy is the most fair of the
two.

4.4.2 Results and Discussion

In this section, we first present an overview of the load of the DAS-3 for each
experiment (see Figure 4.2). Here, we see the DAS-3 load ratio on the vertical
axis, as a function of time. The orange area depicts the load due to CS jobs. The
blue area is the load due to KOALA jobs and the green area consists of any local
jobs active in the DAS-3 at the time. These areas are stacked, meaning that the
top of the orange area is the total aggregate load at that time in the system. The
left column consists of the tests with SEP, while the right column consists of GEP
experiments. The top row are run with the Free workload, the middle row with the
Block workload, and the bottom row with the Spike workload.

Immediately apparent from Figure 4.2 are the many spikes at the top of the
graph. Of course, the top of the brown area is the aggregate load of the system
at that time, and therefore shows more spikes if the background loads has more
spikes. However, the pattern of spikes of the orange area does not exactly match
the pattern of the combined green and blue areas, most noteworthy in Figure 4.2(b),
where the green area is almost constant, but the top of the graph is very ragged. We
contribute this to launcher time-outs. In a dynamic grid system, failures are not
uncommon, and the launcher time-out count represents those failures. A more
complex launcher polling system may alleviate this problem somewhat, however,
would also require computation time and memory for the runner. We therefore
deem the current solution sufficient and leave a more complex system as future
work; even more so since CS jobs already deal with a large number of preemptions.

In Table 4.4 we show the throughput, the number of launcher time-outs, and
the number of preemptions incurred during the SEP experiments. We see a reg-
ular pattern here, where the worst case difference in throughputs is 18.6% of the
throughput of the slowest job, see Table 4.4(c). In addition, we see that the number
of preemptions that each job incurred differs at most by 17 (see Table 4.4(a)). We
also note that in the cases where the throughput differs relatively much, the number
of launcher time-outs of the slower job is usually considerably higher. Taking all of
this into account, we believe that SEP indeed provides fair allocation to all CS jobs.
Interesting is the high number of preemptions in Table 4.4(a), since there was no
artificial background load in that experiment. However, we do see a rather regular
pattern of small bursts of background jobs in Figure 4.2(a), which shows the cor-
responding grid load. This pattern frequently creates the need for local shrinking,
and therefore a large number of preemptions. Once again, like in Section 4.3.3, a
less drastic local shrinking policy might reduce this number. Also, synchroniza-
tion between the local scheduler, the KCMs, and the runner plays a significant role

59

Evaluation of Koala-CS

Site-EquiPartition Grid-EquiPartition

(a) (b)

(c) (d)

(e) (f)

Figure 4.2: The grid load during the fairness experiments: without background
load (top), with block background load (middle), and spike background load (bot-
tom).

60

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

Throughput Number of Number of
Runner (tasks/s) Launcher Time-outs Preemptions

1 0.0413 85 636
2 0.0405 46 658
3 0.0449 40 653

(a)

Throughput Number of Number of
Runner (tasks/s) Launcher Time-outs Preemptions

1 0.0435 36 323
2 0.0399 47 321
3 0.0471 37 333

(b)

Throughput Number of Number of
Runner (tasks/s) Launcher Time-outs Preemptions

1 0.0427 33 568
2 0.0391 39 564
3 0.0360 47 565

(c)

Table 4.4: The performance of the Site-EquiPartition policy with (a) no artificial
background load, with (b) block background load, and with (c) spike background
load.

61

Evaluation of Koala-CS

Throughput Number of Number of
Runner (tasks/s) Launcher Time-outs Preemptions

1 0.0858 167 119
2 0.0366 87 507
3 0.0258 16 588

(a)

Throughput Number of Number of
Runner (tasks/s) Launcher Time-outs Preemptions

1 0.0280 42 346
2 0.0546 4 304
3 0.0322 103 333

(b)

Throughput Number of Number of
Runner (tasks/s) Launcher Time-outs Preemptions

1 0.0438 50 525
2 0.0336 147 470
3 0.0644 109 309

(c)

Table 4.5: The performance of the Grid-EquiPartition policy with (a) no artificial
background load, with (b) block background load, and with (c) spike background
load.

in this; when a KCM signals the runner to shrink, its response will always be de-
layed, and the local scheduler will detect that response even later, which may cause
the KCM to send another shrink message to the runner because it stills sees jobs
waiting in the local queue. Increasing the time between subsequent checks by the
KCM of the local queue may alleviate the problem somewhat; however, this will
hinder unobtrusiveness, which is a more pressing concern. Determining the ideal
polling interval and designing a more subtle local shrinking policy are therefore
left as future work.

Table 4.5 shows the the throughput, the number of launcher time-outs, and the
number of preemptions for the GEP experiments. We see a drastic difference with
the SEP experiments. In the most dramatic case, the throughput of one runner is
almost triple that of another runner in the same experiment, see Table 4.5(a). Here
we see the effects of one runner having all its launchers on a cluster with relatively
little background activity, while other runners are allocated nodes on more dynamic

62

Adding Cycle Scavenging Support to the Koala Grid Resource Manager

clusters. The jobs on the ”empty” cluster then get relatively more throughput than
the ones on the dynamic clusters. Even with a constant background load, GEP may
yield different throughputs for different jobs, because of grid heterogeneity. With
GEP, some jobs will be scheduled on slower resources then others, instead of an
even distribution of jobs over all types of resources. Therefore, we conclude that
fairness is not guaranteed with Grid-EquiPartition.

Obviously, with a more regular non-CS load, fairness can more easily be en-
forced. Also, the launcher time-outs do not always seem to have an extremely
damaging effect on throughput, which is due to the fact that launcher time-outs can
occur during any moment of a launcher’s lifetime. If the majority occurs during a
period where the launcher has no work, these time-outs may not cause task restarts,
and thus have less effect on throughput than time-outs occurring while the launcher
is running a task. The same holds, of course, for preemptions.

4.4.3 Conclusion

In conclusion, we see that SEP is certainly the policy that guarantees the more fair
operation of KOALA-CS. Comparing GEP to SEP may seem unfair in light of, for
instance, the case of the GEP experiment without background load; however, the
SEP policy always allocates a roughly equal number of nodes of each cluster to
each runner, and therefore each runner would suffer or benefit equally from the
behavior of local jobs on that node. We see that the best performance of GEP
(see Table 4.5(b)) is inferior to the worst performance of SEP (see Table 4.4(c)).
We believe further improvements can be made by increasing the ideal KCM local
queue polling interval, by improving the local shrinking policy, and by creating
a more complex policy for polling the launchers. Most of these improvements
require trade-offs in other fields, such as scalability and robustness, as well as
unobtrusiveness. We therefore leave these studies as future work.

63

Evaluation of Koala-CS

64

Chapter 5

Conclusions and Future Work

In this thesis, we have developed, implemented, and tested (on a real multi-cluster
testbed) KOALA-CS: a Cycle scavenging (CS) system for multi-cluster grids. KOALA-
CS extends the reliable KOALA grid resource manager, and requires no additional
modifications to local schedulers or other grid components. We designed and im-
plemented extensions to three KOALA components: the scheduler, the runner and
the KOALA Component Manager (KCM). In addition, we designed an additional
component, the launcher. Together, these four components provide unobtrusive,
fair, efficient, fault tolerant, and robust facilities for CS jobs, while also being ex-
tensible for a variety of applications. With our experiments, we have shown that
KOALA-CS is unobtrusive to both grid jobs and local jobs. While the non-CS
grid and local jobs do incur some delay, we have shown that this delay is negli-
gible. In addition, we developed two CS policies that enforce fair sharing among
CS jobs. We have shown, through our experiments, that one of these policies,
Site-EquiPartition, ensures comparable throughput for all CS jobs. An effective
CS policy must take into account the heterogeneous and dynamic nature of the
grid. Site-EquiPartition does not explicitly consider these properties. However, by
putting parts of each job on each available cluster, this policy drastically reduces
any negative impact those fundamental grid properties might have.

Our work shows that a CS system must process a relatively large amount of
information regarding the grid to perform unobtrusively. A CS system needs to
keep track of local queues and grid queues, as well as the tasks that belong to
the system’s active job. Obviously, a CS system that tracks all this information
centrally would allow for more efficient growing and shrinking. However, such a
centralized system would suffer from a lack of scalability. Therefore, we believe
that the tiered approach of KOALA-CS is preferable, with a KCM on the head
node of each cluster and a launcher on each node, that only sends information to
the runner when it is necessary, restricting the number of messages sent and the
number of programs and scripts remotely executed.

As future work, we would consider the unobtrusiveness for local jobs. First,

65

Conclusions and Future Work

the frequency with which the KCM checks the local scheduler’s queue should be
investigated. We believe that a higher frequency will make KOALA-CS more un-
obtrusive to local jobs. However, the cost of this is that the KCM will require more
processing power. In addition, the KCM may send shrink messages to the runner
before the runner could handle previous messages, causing the runner to preempt
more launchers than necessary. To make KOALA-CS less unobtrusive to local jobs,
therefore, requires careful tuning of both the KCM and the runner.

There is also room for improving the efficiency of local job shrinking. In the
current implementation, the shrinking because of local jobs is very drastic and may
cause far more launchers to be preempted than strictly necessary. In our current
design, each active runner releases the number of nodes needed by the waiting job.
However, with each runner having multiple launchers on the same site, the number
of nodes to be released should be divided amongst the different runners. While
all the information to do this is already available in each runner, the algorithm
that governs this local shrinking must not interfere with the CS policy. One way
to do this is to relay the information to the scheduler, which must then calculate
how many nodes each runner must release. However this will cause timing and
synchronization issues.

In this thesis, we have not investigated the effect of Application-Level Schedul-
ing (ALS) policies other than Single task Launcher Pull (SLP). We believe job
throughput may be improved by using, for instance, task replication. For data-
heavy applications, such as data mining, there could be an ALS policy that takes
file locations into account and attempts to minimize transfer times.

More advanced issues include the incorporation of checkpointing, a framework
for developing more efficient applications specifically for KOALA-CS, and using
KOALA-CS for other types of applications, such as workflows or parallel jobs.

66

Bibliography

[1] Compute Against Cancer. http://www.computeagainstcancer.org.
[2] Distributed Resource Management Application API.

http://www.drmaa.net/w/.
[3] Folding@home. http://folding.stanford.edu/.
[4] Fura grid middleware. http://www.gridsystems.org.
[5] Globus monitoring and discovery system. http://www.globus.org/mds/.
[6] pickle - Python Object Serialization http://docs.python.org/library/pickle.html.
[7] Rosetta@home. http://boinc.bakerlab.org/rosetta/.
[8] SETI@home. http://setiathome.ssl.berkeley.edu/.
[9] The Distributed ASCI Supercomputer 3. http://www.cs.vu.nl/das3/.

[10] The Eternity Puzzle. http://www.eternityii.com.
[11] The Globus Resource Specification Language (RSL) v1.0

http://www.globus.org/toolkit/docs/2.4/gram/rsl spec1.html.
[12] The Great Internet Mersenne Prime Search (GIMPS).

http://www.mersenne.org.
[13] The StarPlane Project. http://www.starplane.org.
[14] The Sun Grid Engine (SGE). http://http://www.sun.com/software/gridware/.
[15] D. Anderson. BOINC: A System for Public-Resource Computing and Stor-

age. In Proc. of the Fifth IEEE/ACM International Workshop on Grid Computing
(GRID’04), pages 4–10, 2004.

[16] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. Heuristics for Scheduling
Parameter Sweep Applications in Grid Environments. In Proc. of the 9th Heteroge-
neous Computing Workshop (HCW 2000), pages 349–363, 2000.

[17] A. Chien, B. Calder, S. Elbert, and K. Bhatia. Entropia architecture and performance
of an enterprise desktop grid system. Journal of Parallel and Distributed Computing,
63(5):597–610, 2001.

[18] W. Cirne, F. Brasileiro nd N. Andrade, L. Costa, A. Andrade, R. Novaes, and
M. Mowbray. Labs of the world, unite!!! Journal of Grid Computing, 3(4):225–
246, 2006.

[19] D. Paranhos da Silva, W. Cirne, and F. Vilar Brasileiro. Trading Cycles for Informa-
tion: Using Replication to Schedule Bag-of-Tasks Applications on Computational
Grids. Lecture Notes in Computer Science, 2790:169–180, 2004.

[20] D. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne. A worldwide flock
of Condors: load sharing among workstation clusters. Future Generation Computer
Systems, 12(1):53–65, 1996.

[21] D. Feitelson and A. Weil. Utilization and Predictability in Scheduling the IBM SP2
with Backfilling. Parallel Processing Symposium, International, 0:542, 1998.

67

BIBLIOGRAPHY

[22] J. Frey, T.Tannenbaum, I. Foster, M. Livny, and S Tuecke. Condor-G: A Computation
Management Agent for Multi-Institutional Grids. Cluster Computing, 20:237–246,
2002.

[23] A. Iosup, C. Dumitrescu, D. Epema, H. Li, and L. Wolters. How are Real Grids
Used? The Analysis of Four Grid Traces and Its Implications. In Proc. of the Seventh
IEEE/ACM International Conference on Grid Computing (Grid), pages 262–269,
2006.

[24] A. Iosup and D. Epema. GRENCHMARK: A Framework for Analyzing, Testing,
and Comparing Grids. In Proc. of the sixth IEEE/ACM International Symposium on
Cluster Computing and the GRID (CCGrid’06), pages 313–320, 2006.

[25] R. Koo and S. Toueg. Checkpointing and Rollback-Recovery for Distributed Sys-
tems. IEEE Transactions on Software Engineering, 13(1):1150–1158, 1987.

[26] Y. Lee and A. Zomaya. A Grid Scheduling Algorithm for Bag-of-Tasks Applica-
tions Using Multiple Queues with Duplication. In Proc. of the 5th IEEE/ACIS In-
ternational Conference on Computer and Information Science and 1st IEEE/ACIS
International Workshop on Component-Based Software Engineering,Software Archi-
tecture and Reuse (ICIS-COMSAR ’06), pages 5–10, 2006.

[27] M. Litzkow, M. Livny, and M. Mutka. Condor: A Hunter of Idle Workstations.
In Proc. of the Eigth International Conference on Distributed Computing Systems
(ICDCS’88), pages 104–111, 1988.

[28] C. McCann and J. Zahorjan. Processor Allocation Policies for Message-Passing Par-
allel Computers. In Proc. of the 1994 ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems (SIGMETRICS’94), pages 19 –32, 1994.

[29] H. Mohamed. The Design and Implementation of the KOALA Grid Resource Man-
agement System. PhD thesis, Delft University of Technology, 2007.

[30] H. Mohamed and D. Epema. The Design and Implementation of the KOALA Co-
allocating Grid Scheduler. Lecture Notes in Computer Science, 3470:640–650, 2005.

[31] H. Mohamed and D. Epema. KOALA: A Co-Allocating Grid Scheduler. Concur-
rency and Computation: Practice and Experience, 20:1851–1876, 2008.

[32] M. Mutka and M. Livny. Scheduling remote processing capacity in a workstation-
processing bank computing system. In Proc. of the Seventh International Conference
on Distributed Computing Systems, pages 2–9, 1987.

[33] M. Mutka and M. Livny. The available capacity of a privately owned workstation
environment. Performance Evaluation, 12(4):269–284, 1991.

[34] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde. Falkon: a fast and light-
weight task execution framework. In Proc. of the 20th International Conference
for High Performance Computing, Networking, Storage and Analysis (SC’07), pages
1–12, 2007.

[35] O. Sonmez, B. Grundeken, H. Mohamed, A. Iosup, and D. Epema. Scheduling
Strategies for Cycle Scavenging in Multicluster Grid Systems. 2008. Accepted
by the Ninth IEEE International Symposium on Cluster Computing and the Grid
(CCGrid’09).

[36] M. Teodoro, G. Phillips, and L. Kavraki. Molecular Docking: A Problem with Thou-
sands of Degrees of Freedom. In Proc. of the 2001 IEEE International Conference
on Robotics and Automation (ICRA’01), pages 960–966, 2001.

68

