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Chapter 1

Introduction

Condor is a facility for executing UNIX jobs on a pool of cooperating workstations. Jobs

are queued and executed remotely on workstations at times when those workstations would

otherwise be idle. A transparent checkpointing mechanism is provided, and jobs migrate from

workstation to workstation without user intervention. Condor is meant for long-running,

computation-intensive jobs that require no user interaction. Examples of this kind of jobs

are simulations and combinatoric searches. Condor was developed by the Computer Science

department of the university of Wisconsin - Madison. The Condor system is described in

Chapter 2. Some of the data structures and algorithms used internally by the Condor control

software are described in Chapter 3.

A Condor 
ock is a collection of Condor pools that share the load of Condor jobs in some

way. For instance, the 
ock may consist of the Condor pools of institutes working together

on a project, departments of a company, or faculties of a university. We make a distinction

between the situation where one user has the right to run his jobs in several pools, and the

situation where the owners of a number of Condor pools have reached agreement to share

the load of jobs between their Condor pools. In the �rst situation, the user will want to

distribute his jobs over the pools in such a way, that the total turn-around time is minimal.

In the second situation, the objective depends on the kind of agreement reached between the

owners of the Condor pools. In most cases the objective will be to decrease the wait-while-idle

time, that is, to decrease the time that Condor jobs are waiting while there are idle machines

in the 
ock on which these jobs could execute. Another distinction we make is based on

whether or not it is possible to use the remote execution mechanism of Condor in the 
ock

situation.

My assignment consisted of designing and implementing a �rst version of a Condor 
ock,

for the situation where the owners of the pools have decided to couple their pools, and where

it is acceptable to use the remote executing mechanism of Condor. In Chapter 4 we discuss

some general design decisions for this situation. These decisions form together the ideal design

for this situation as we see it.

Chapter 5 describes the design of the Condor 
ock such as it has implemented during my

six month graduating term. A very important restriction posed to the design was that as

1



Introduction

little as possible should be changed to the existing Condor software. The design presented in

Chapter 5 di�ers therefore from the ideal design. Chapter 6 describes how this system has

been implemented. The Condor 
ock has been implemented by adding a virtual machine to

each Condor pool, called the World Machine. The World Machines of a Condor 
ock work

together to run Condor jobs of one pool on free machines of other pools.

The results of some performance tests concerning remote execution across wide area net-

works are presented in Chapter 7. In Chapter 8 the possible directions of future development

are indicated. The source code of the World Machine is provided in the appendix.
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Chapter 2

Overview of the Condor System

Many organizations own hundreds of powerful workstations which are connected by local area

networks. These workstations are often allocated to a single user who exercises full control over

the workstation's resources. Litzkow and Livny [13] stated that in such an environment you

can �nd three types of users, casual users who seldom utilize the full capacity of their machines,

sporadic users who for short periods of time fully utilize the capacity of the workstation they

own, and frustrated users who for long periods of time have computing demands that are

beyond the power of their workstations. The throughput of these frustrated users is limited

by the power of their workstations. In a paper by Mutka and Livny [16] it was shown that

in a computing environment of workstations connected by a local area network, about 70%

of the workstations is available for remote execution.

Condor is a software package for executing long-running, computation-intensive jobs on

workstations that would otherwise be idle. Condor was designed to meet the challenge posed

by the frustrated users, namely to provide convenient access to unutilized workstations while

preserving the rights of their owners. Condor has been developed by the Computer Science

department of the university of Wisconsin - Madison. This chapter gives a summary of the

documentation [2] [3] [11] [12] [13] [14] [15] on Condor.

2.1 Design Features

Several principles have driven the design of Condor.

� Workstation owners should always have the resources of the workstation they own at

their disposal. Workstation owners are generally happy to let somebody else compute

on their machines while they are out, but they want their machines back promptly

upon returning, and they don't want to have to take special action to regain control.

Immediate response is the reason most people prefer a dedicated workstation over access

to a time sharing system. Condor handles this automatically.

� Remote capacity should be easy to access. The Condor software is responsible for lo-

cating and allocating idle workstations. Condor users do not have to search for idle
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Overview of the Condor System 2.2 Remote System Calls

machines. The local execution environment is preserved for remotely executing pro-

cesses. Users do not have to worry about moving data �les to remote workstations

before executing programs there. Users of Condor may be assured that their jobs will

eventually complete, because jobs are periodically checkpointed. If a user submits a job

to Condor which runs on somebody else's workstation, but the job is not �nished when

the workstations owner returns, the job will be restarted from the latest checkpoint as

soon as possible on another machine.

� No special programming should be required to use Condor. Condor is able to run normal

UNIX programs, only requiring the user to relink, not to recompile them or change any

code. Condor does its work completely outside the kernel, and is compatible with

Berkeley 4.2 and 4.3 UNIX kernels and many of their derivatives. Because it requires

no changes to the operating system, Condor is portable and can be used in environments

where access to the internals of the system is not possible. Condor does pay a price for

this 
exibility in both the speed and completeness of its process migration [14].

2.2 Remote System Calls

The user program is provided with the illusion that it is operating in the environment of

the initiating machine. In some circumstances �le I/O is redirected from the machine where

execution actually takes place to the initiating machine. In other situations �les on the

initiating machine are accessed more e�ciently by use of NFS.

Every UNIX program, whether or not written in the C language, is linked with the C

library. In the normal situation this library provides the interface between the user program

and the UNIX kernel. This interface is implemented as stubs, which perform the system call

on behalf of the user program. Figure 2.1 illustrates the normal UNIX system call mechanism.

C l ibrary

Application
  Program

trap

UNIX Kernel

Figure 2.1 Normal UNIX system calls.

Figure 2.2 shows how the system call mechanism has been altered by providing a special

version of the C library which performs system calls remotely. This special library, like the

normal library, has a stub for each UNIX system call. These stubs either execute a request

locally by mimicking the normal stubs or pack the request into a message which is sent to the

4



Overview of the Condor System 2.3 Checkpointing

C library

trap

UNIX Kernel

C library

trap

UNIX Kernel

 Application
  Program
(UID=User )

  Shadow
 Program
(UID=User)

RSC

Figure 2.2 Remote system calls.

Shadow process. The Shadow executes the system call on the initiating machine, packs the

results, and sents them back to the stub. The stub then returns to the application program

in exactly the same way the normal system call would have, had the call been local. The

Shadow runs with the same user and group ids, and in the same directory as the user process

would have had it been executing on the initiating machine.

If a network �le system such as NFS is in use, an important optimization is possible.

Performance can be increased in these cases by avoiding remote system calls, and accessing

the �le directly. This mechanism works as follows. At the time of an open request, the stub

sends a name translation request to the initiating machine. The Shadow process responds

with a translated pathname in the form of hostname:pathname, where hostname may refer to

a �le server, and the pathname is the name by which the �le is known on the server (which

may be di�erent from the pathname on the initiating machine, because of mount points

and symbolic links). The stub then examines the mount table on the machine where it is

executing, and if possible accesses the �le without using the Shadow process. Whenever a

process is checkpointed and restarted on another machine, the name translation process is

repeated, since access to remotely mounted �les may vary among the execution machines.

2.3 Checkpointing

Condor provides a transparent checkpointing mechanism which allows it to take a checkpoint

of a running job, and migrate that job to another workstation when the machine it is cur-

rently running on becomes busy with non-Condor activity. This allows Condor to return

workstations to their owners promptly, yet provide assurance to Condor users that their jobs

will make progress, and eventually complete.

Ideally, checkpointing and restarting a process means storing the process state and later

restoring it in such a way that the process can continue where it left o�. In the most general

case, the state of a UNIX process may include pieces of information which are known only

to the kernel, or which may not be possible to recreate. Condor is meant for jobs whose

state is simple enough that they can be checkpointed. In the current version of Condor only

single process jobs are supported. This means that the fork(2), exec(2), and similar calls
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are not implemented. Signals and signal handlers (the signal(3), sigvec(2), kill(2) calls), and

interprocess communication (IPC) calls (socket(2), send(2), recv(2), etc) are not supported.

The state of a UNIX process includes the contents of memory (the text, data and stack

segments), processor registers and the status of open �les. The approach of the designers of

Condor to saving and restoring the state of a process is to rely on basic UNIX mechanisms

to keep Condor easy to port. The checkpoint �le is itself a UNIX executable �le.

Other Info

Stack

Data

Text
Other Info

Stack

Data

Text

Other Info

Stack

Data

Previous Checkpoint

New Checkpoint

Core

Figure 2.3 Creating a checkpoint �le.

Figure 2.3 shows that a new checkpoint �le is created from pieces of the previous checkpoint

and a core image. The text segment of the new checkpoint is an exact copy of the text

segment of the old checkpoint. The data area and stack area are copied from the core �le

into the new checkpoint �le. The setjmp/longjmp facilities of the C library have been used

to save the register contents and program counter. Information about currently open �les is

gathered by the stubs of the open, close and dup system calls, of Condor's special C library.

The exact way in which Condor makes a checkpoint �le can be found in a paper by Litzkow

and Solomon [14]. Before a Condor process is executed for the �rst time, its executable �le is

modi�ed to look exactly like a checkpoint �le, so that every checkpoint is done in the same

way.

2.4 Control Software

The Condor control software consists of two daemons which run on each member of the

Condor pool, the Schedd and the Startd, and two daemons which run on a single machine

called the Central Manager Machine, the Collector and the Negotiator. The Collector and

the Negotiator are separate processes, but they can be viewed as one logical process called

the Central Manager. An additional daemon, the Kbdd, is necessary on machines running the

X window system.

The Condor daemons are started and (if necessary) restarted by the Condor Master. This

daemon starts those Condor daemons that are appropriate for the machine it is running on. If
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one of the daemons it is monitoring dies, the Condor Master will attempt to restart it. It will

also send mail to the Condor administrator describing the problem. The Condor Master limits

its restart attempts to a certain number per hour. If this limit is exceeded, the Condor Master

will abort. The Condor Master should also be started by /etc/rc or /etc/rc.local so that it

will be restarted in the event of a crash.

The Condor daemons have the following tasks:

� The Schedd maintains the queue of Condor jobs that have been submitted from the

machine on which the Schedd is running. The Schedd has the responsibility of prioritiz-

ing the jobs in the queue. The Schedd will periodically send a message to the Collector

to give information about its job queue.

� The Startd determines whether the machine on which it runs, is idle, and is responsible

for starting and managing the foreign job if one is running on its machine. The Startd

periodically informs the Collector about the state of its machine.

� The Kbdd informs the Startd about the keyboard and mouse \idle time".

� The Collector collects information about the state of the Condor pool. The Collector

is informed periodically by the Startd and Schedd of each machine on whether the

machine is available or not, and how many jobs that machine wants to run.

� The Negotiator is responsible for allocating the idle machines to other machines which

have Condor jobs to run. Periodically, the Negotiator asks information about the state

of the pool from the Collector. It updates the priorities of the machines, does the

scheduling, and returns the updated priorities to the Collector.

To illustrate how the daemons work together, we will follow a Condor job from the moment

of submitting to the moment that it �nishes or the owner of the hosting workstation returns.

Figure 2.4 illustrates the situation when there are no Condor jobs running.

Initiating Machine Execution Machine

Central Manager Machine

Central Manager

ScheddStartd

Kbdd Kbdd

Startd Schedd

Figure 2.4 Condor daemons with no jobs running.

The Central Manager keeps track of which machines are idle, and which machines have Condor

jobs to run. Periodically, the Central Manager will allocate the idle machines to machines that
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want to run jobs. The Central Manager will contact the Sched-daemons of machines that want

to run jobs, and determines for these jobs if they can run on one of the idle machines. The

Central Manager will give permission to the initiating machine to run a job on the execution

machine. The Schedd on the initiating machine spawns o� a Shadow process to serve the job.

The Shadow will then contact the Startd on the execution machine to ask if the machine is

still idle. If the situation on the execution machine hasn't changed since the last update to

the Central Manager, the execution machine will still be idle, and will respond with an OK.

The Startd on the execution machine then spawns a process called the Starter. The Starter

is responsible to start and manage the remotely running job (Figure 2.5).

Initiating Machine Execution Machine

Central Manager Machine

Central Manager

ScheddStartd

Kbdd Kbdd

Startd Schedd

Shadow Starter

Figure 2.5 Condor processes while starting a job.

The Shadow on the initiating machine will transfer the checkpoint �le to the Starter on the

execution machine. The Starter spawns o� the remote job. The Starter is responsible to give

the user job periodically a \checkpoint" signal, causing the user job to save its �le state and

stack, and then to make a core dump. A new checkpoint �le is made by the Starter and stored

temporarily on the execution machine. The Starter restarts the job from the new version of

the checkpoint and sets a timer for the next time it has to give the user job a checkpoint

signal. The Shadow process on the initiating machine will handle the system calls for the

user job (Figure 2.6).

If the user job �nishes, the Starter and Shadow clean up, and the user is noti�ed by mail

that the job has �nished. If the owner of the execution machines returns, the Startd on the

execution machine will detect this, and it will send a \suspend" signal to the Starter, which

will temporarily suspend the user job. This is because frequently the owners of machines are

active for only a few seconds, then become idle again. This would be the case if the owner was

just checking if there was new mail for example. If the execution machine remains busy for a

certain period, the Startd will send a \vacate" signal to the Starter, who will abort the user

job and return the latest checkpoint �le to the Shadow on the initiating machine. If the user

job had not run long enough to reach a checkpoint, the job is just aborted. No new checkpoint

is made when the owner returns, because making a checkpoint is an I/O intensive activity

and it should be avoided that the returned owner notices any interference from Condor.
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Initiating Machine Execution Machine

Central Manager Machine

Central Manager

ScheddStartd

Kbdd Kbdd

Startd Schedd

Shadow

Starter

User Job

Figure 2.6 Condor processes with one job running.

2.5 The Condor Con�guration Files

Condor can be customized by means of the Condor con�guration �les. There is one generic

con�guration �le with de�nitions for all machines in a Condor pool, and for every machine a

local con�guration �le. A de�nition in the local con�guration �le overrules a de�nition in the

generic con�guration �le. In this way the generic con�guration �le can be used to globally

con�gure a Condor pool, and the local con�guration �le can be used to make changes for

individual machines. The generic con�guration �le and the local con�guration �les together

will be called the Condor con�guration �les.

There are two sorts of de�nitions in the Condor con�guration �les, macros and control

functions. Macros provide string-valued constants which do not change throughout the life

of a daemon. Examples of these are names of log �les and action intervals. Control functions

provide arithmetic, boolean, or string-valued expressions which can be evaluated dynamically

at run time. Examples of control functions are functions to update priorities and functions

that determine when a machine should host a job. The rest of this chapter describes the

working of a Condor system con�gured with the original con�g �les, as distributed by the

University of Wisconsin|Madison.

2.6 The Scheduling Algorithm

Condor uses a two-level scheduling algorithm to allocate idle machines to Condor jobs. On

each machine the Schedd maintains the queue of Condor jobs that have been submitted from

the machine on which the Schedd is running. The Schedd must prioritize its own jobs. The

Central Manager does not keep track of individual jobs on the member machines. Instead it

keeps track of how many jobs a machine wants to run, and how many it is running at any

particular time. The Central Manager has the job of prioritizing the machines which want to

run jobs.
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The following assumptions were made:

� All users are entitled to equal rights.

� A workstation is owned by one or more users, which will always submit their jobs on

this workstation. This means that the words user(s) and workstation are used in the

same context.

The Central Manager uses the up-down algorithm to prioritize the machines. The up-down

scheduling algorithm was presented in a paper by Mutka and Livny [15]. The goal of the

up-down algorithm is to give all users a fair share of available remote processing cycles. Fair

allocation is achieved by trading o� the amount of execution time already allocated to a user

and the amount of time the user has waited for an allocation. The up-down algorithm tries to

protect the rights of light users when a few heavy users try to monopolize all free machines,

without degrading throughput.

Every machine (i.e. user) in the Condor pool has a priority to run jobs. Initially all

the machines have the priority 0. Periodically (normally every 300 seconds), the Negotiator

updates the priorities of the machines in the Condor pool, and negotiates with the machines

that want to run jobs. The control functions used by the Negotiator to update the machine

priorities are:

INACTIVE : Users <= 0

UPDATE_PRIO : Prio + Users - Running

\Prio" is the previous priority of the machine, \Users" is the number of di�erent users that

have Condor jobs in the queue, and \Running" is the number of Condor jobs the machine has

currently running. If a machine is active (Users > 0), the control function UPDATE PRIO is

used to update the priority of this machine. If a machine is inactive (Users � 0), the priority

will be incremented by one if the priority is negative, and decremented by one if the priority

is positive. The result is that machines which are running lots of jobs will tend to have low

priorities, and machines which have jobs to run, but can't run them, will accumulate high

priorities.

The Schedd is responsible for prioritizing its own jobs. The following control function is

used by the Schedd to assign priorities to its jobs.

PRIO : (UserPrio * 10) + Expanded - (Qdate / 1000000000)

\UserPrio" is de�ned by the job owner in a similar (but opposite) way as the UNIX \nice"

value. These values range from -20 to +20, with higher numbers corresponding to greater

priority. \Expanded" will be 1 if the job has already done some execution. This is done to

preserve disk space, an expanded job is bigger than an unexpanded job. \Qdate" is the UNIX

time (seconds since 1-1-1970) the job was submitted. The constants make that \UserPrio"

is the major criteria, \Expanded" is less important and \Qdate" is the minor criteria in

determining job priority.
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Overview of the Condor System 2.7 Machine States

2.7 Machine States

The standard interval at which the Startd checks if its state should be changed is 5 seconds.

Every 120 seconds the Negotiator is informed by the Startd about the machine status. The

state of a machine is NOJOB when the keyboard has been idle for 15 minutes and the load

average is below 0.3. A Condor job will be suspended if the load average becomes higher than

1.5 or when the keyboard is touched. The maximum time a Condor job can be suspended is

10 minutes. A Condor job will be resumed if the load average is below 0.3 and the keyboard

has not been touched for 5 minutes. If a Condor job is not resumed within 10 minutes, the

job will be vacated (the checkpoint �le will be moved from the execution host to the initiating

host). If a job has not been vacated within 10 minutes, the Condor job is killed. All of the

above mentioned intervals can be changed to meet a workstation owner's wishes. Figure 2.7

shows all the di�erent states a machine can be in.

CONDOR
 DOWN

  CHECK
POINTING

USER
BUSY

NOJOB
   JOB
RUNNING

SUSPENDED

KILLED VACATING

Figure 2.7 States of Condor machines.

The Starter is responsible for giving the Condor job a checkpoint signal at the appropriate

time. In the condor con�guration �les the minimum and maximum interval is de�ned at

which the Starter should give a checkpoint signal. Normally the �rst checkpoint is made

after 30 minutes. After the �rst checkpoint the interval is doubled, until it is as big as the

maximum interval (normally 2 hours). This is done, because the expectation of the period

that a given machine will stay idle increases as the period that this machine is already idle

increases.

2.8 User Interface

No source code changes are required for use of Condor, but executables must be specially

linked. UNIX provides a startup routine and a library, (crt0.o and libc.a) which are automat-

ically linked with all user programs by the UNIX compilers (cc, f77 etc.). Condor provides
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its own version of crt0.o and libc.a, that have to be linked with the user program instead of

the normal versions. On systems where programs are linked with shared libraries by default,

the linker should be told explicitly to use static linking, since Condor does not support the

use of shared libraries.

The Condor user interface consists of the programs shown in Table 2.1.

condor submit Submit jobs to the Condor job queue.

condor rm Remove jobs from the Condor job queue.

condor prio Change priority of jobs in the Condor job queue.

condor q Display the Condor job queue.

condor globalq Display the Condor job queue of all machines in the pool.

condor status Examine the status of the Condor machine pool.

condor summary Summarize the Condor usage on the local machine.

Table 2.1 Condor user interface.

Condor submit reads a description �le which contains commands that direct the queuing of

jobs. It is possible to submit many Condor jobs at once, a \job cluster". These jobs must share

the same executable, but may have di�erent input and output �les, and di�erent arguments.

Submitting multiple jobs in this way is advantageous, because only one copy of the checkpoint

�le is needed until the jobs begin execution. The description �le must contain the name of

the executable, and the requirements which a remote machine must meet to execute the job.

Their are three kinds of requirements; \Memory", \Arch", and \OpSys". \Memory" is an

estimation of the amount of physical memory that will be required, and \Arch" and \OpSys"

describe the particular kind of UNIX platform for which the executable has been compiled.

Another important item in the description �le is the Condor job priority.

Condor jobs can be removed with the program condor rm. Only the owner of a job or the

super user can remove the job. The program condor prio can be used to change the priorities

of Condor jobs. Note that condor prio will not preempt a job that is running, even if it's

priority is lower than other jobs.

Condor q displays information about jobs in the job queue of the machine on which the

condor q program is run. Condor globalq displays information about all the jobs in the

Condor pool. For each machine in the pool, condor globalq displays the hostname followed

by a one line summary of information for each Condor job on that machine. The summary

format is as follows:

Id The cluster/process id of the Condor job.

Owner The owner of the job.

Submitted The date and time the job was submitted.

CpuUsage The accumulated remote CPU time. If the job is currently running, time

accumulated during the current run is not shown.

St Current status of the job, U=unexpended, R=Running, I=Idle (waiting

for a machine to execute on), C=completed, and X=removed.

12
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Pri The user speci�ed priority of the job.

Size The virtual image size of the executable in megabytes.

ArchOS The architecture/operating system the executable is submitted to run

on.

Command The name of the executable.

The following is an example of the output of the condor globalq program.

Hostname: paramount

ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE ARCH_OS COMMAND

337.0 andrzej 3/6 17:36 4+08:11:12 R 0 1.7 SPARC_SUNOS41 /home/p

353.0 andrzej 3/10 10:38 1+10:51:25 R 0 1.7 SPARC_SUNOS41 /home/p

364.0 ernie 3/12 10:26 0+00:02:22 C 0 0.6 SPARC_SUNOS41 /home/p

364.1 ernie 3/12 10:26 0+00:00:00 R 0 0.6 SPARC_SUNOS41 /home/p

365.0 zisis 3/12 10:58 0+00:00:00 R 0 0.6 SPARC_SUNOS41 /home/p

365.1 zisis 3/12 10:58 0+00:44:13 R 0 1.7 SPARC_SUNOS41 /home/p

365.2 zisis 3/12 10:58 0+00:58:37 I 0 1.7 SPARC_SUNOS41 /home/p

365.3 zisis 3/12 10:58 0+00:14:14 R 0 1.7 SPARC_SUNOS41 /home/p

365.4 zisis 3/12 10:58 0+00:29:24 R 0 1.7 SPARC_SUNOS41 /home/p

Condor status displays information about machines in the Condor pool. For each machine,

condor status displays a one line summary with the following information:

Name The network name of the machine.

Run The number of Condor jobs the machine is executing remotely.

Tot The total number of Condor jobs in the machine's job queue.

Prio The priority of the machine for obtaining machines on which to run jobs.

State State of the machine regarding hosting Condor jobs for others.

LdAvg The 1 minute load average.

Idle The keyboard idle time.

Arch The CPU architecture of the machine.

OpSys The operating system running on the machine.

The following is an example of the output of the condor status program.

Name Run Tot Prio State LdAvg Idle Arch OpSys

briesje 0 0 0 Run 1.16 01:24:58 SPARC SUNOS41

damp 0 0 0 NoJob 1.06 00:57:54 SPARC SUNOS41

donder 0 0 0 Susp 0.38 7+21:56:26 SPARC SUNOS41

ijs 0 0 0 NoJob 0.00 00:00:00 SPARC SUNOS41

ijzel 0 0 0 Susp 0.79 23+21:51:15 SPARC SUNOS41

miezer 0 0 0 NoJob 0.10 00:00:02 SPARC SUNOS41

mist 0 0 0 Run 1.00 17:10:17 SPARC SUNOS41

orkaan 0 0 0 Susp 0.13 00:04:33 SPARC SUNOS41

paramount 7 8 -20323 NoJob 2.66 00:00:00 SPARC SUNOS41

passaat 0 0 0 NoJob 1.04 00:13:58 SPARC SUNOS41

regen 0 0 0 Run 1.00 1+22:52:20 SPARC SUNOS41

rijp 0 0 0 Run 0.76 00:51:14 SPARC SUNOS41
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sneeuw 0 0 0 NoJob 0.00 00:02:07 SPARC SUNOS41

stoom 0 0 0 NoJob 0.00 00:00:04 SPARC SUNOS41

storm 0 0 -196 NoJob 0.07 00:00:00 SPARC SUNOS41

SPARC/SUNOS41 15 machines 8 jobs 4 running

15 machines 8 jobs 4 running

Since each machine periodically sends the Central Manager a snapshot of its situation, and the

information returned by condor status is a collection of such snapshots (all taken at varying

times), the total picture may not be completely consistent. For example, the reported total

number of jobs running and the sum of machines reported to be serving a job should match,

but they may not.

Each machine keeps information about completed Condor jobs in the history �le. Con-

dor summary displays a summary of all the Condor jobs listed in a history �le. The listing

summarizes the use by each user on a single line containing the following items:

Name The login name of the user.

Jobs The number of jobs which have been completed for this user.

Local Cpu The total local CPU time used to support Condor jobs for this user.

Remote Cpu The total remote CPU time accumulated by Condor jobs for this user.

Leverage The ratio of remote CPU time to the local CPU time.

Leverage is a new performance measure that has been introduced by Litzkow, Livny and

Mutka [12]. The leverage of a job is the ratio of the capacity consumed by a job on the

executing machine to the capacity consumed on the initiating machine to support remote

execution. The capacity on the initiating machine is the combination of capacity used to

support placement, checkpointing and system calls.

The following is a part of the output of the condor summary program.

Name Jobs Local Cpu Remote Cpu Leverage

rvd 42 0+00:01:22 6+07:29:37 6650.9

maart 7 0+00:12:01 24+00:00:55 2876.1

vdhoef 27 0+00:57:54 163+00:52:24 4054.8

. . . . .

TOTAL 852 0+02:33:03 300+10:45:24 2826.8

2.9 Discussion

Three months ago the Condor pool at NIKHEF-K has been enlarged with 10 machines. The

pool now consists of 18 SPARC stations. Condor has provided around 375 days of CPU time

in the last 10 months. The average leverage of a Condor job in the NIKHEF-K pool is 3500,

this means that only one minute of local capacity was consumed for nearly two and a half

days of remote capacity. Table 2.2 shows the top ten Condor users of the NIKHEF-K pool of

the last ten months.

14



Overview of the Condor System 2.9 Discussion

Rank Name Jobs Local Cpu Remote Cpu Leverage

1 vdhoef 27 0+00:57:54 163+00:52:24 4054.8

2 janv 336 0+00:15:42 64+01:28:14 5875.7

3 zisis 156 0+00:26:16 33+15:08:43 1843.7

4 maart 10 0+00:12:21 28+16:13:10 3343.6

5 ericj 36 0+00:08:34 28+11:16:50 4785.6

6 jean 21 0+00:10:36 19+02:00:26 2592.5

7 hansrp 12 0+00:08:05 12+05:40:45 2179.9

8 andrzej 17 0+00:03:18 8+04:00:20 3563.7

9 rvd 42 0+00:01:22 6+07:29:37 6650.9

10 ernst 206 0+00:12:40 3+08:58:58 383.6

Table 2.2 Top ten Condor users.

2.9.1 Security Hazards

In this section three security hazards of Condor are discussed. The �rst two possible ways of

attack suppose that the malicious user owns a machine, that he can do anything he wants with

this machine, and that he has the possibility to communicate with the machines of the Condor

pool (via the Internet for example). The third possibility supposes that the malicious user

has a login on a machine of the Condor pool, or that he uses one of the �rst two possibilities

to run jobs on machines of the pool. The fact that the Condor sources are available via

anonymous ftp, makes it easier for a hacker to write programs that act as Condor daemons.

� It is possible to add a machine to somebody's Condor pool if you know the network

address of the Central Manager machine. This and the next security problem are caused

by the fact that there is no knowledge about which machines are supposed to be part

of the pool. By adding a machine to a Condor pool, a malicious user can run his jobs

on machines of the pool, and he can accept Condor jobs of other users. In this way he

can lay his hands on executables that may be con�dential. The new machine will show

up in the Condor status reports and the log �les, but it can take some time before this

is noticed. A malicious user can use this time to e�ace traces by erasing the log �les or

killing Condor daemons for example.

� If a Schedd of a machine, the initiating machine, has received permission from the

Central Manager to run a job on another machine, the execution machine, the Schedd

starts a Shadow process with as arguments the name of the machine where the job

may be run and the cluster id/job id pair. The Shadow will contact the Startd of the

execution machine with the request to run the job. The Startd has no information on

whether the initiating machine has really received permission from the Central Manager,

nor whether the initiating machine is part of the pool. A malicious user can start jobs

on machines that run Condor, by writing a special version of the Shadow that contacts

the Startd directly. The most dangerous problem is that the malicious user can decide

under which UID and GID the job will run.
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� Condor cannot guarantee that a remotely running user jobs won't do (unallowed) local

system calls. A user is supposed to link its job with the Condor version of the start-up

routine and C library (condor rt0.o and libcondor.a). The Condor version of the C

library contains (among other things) the system call stubs which do remote system

calls to the initiating machine. A malicious user can write a new version of the Condor

C library which does some system calls local.

The �rst two security hazards can be minimized by adding global knowledge to Condor about

the participating machines of a Condor pool. The Condor daemons could then ignore message

coming form unknown network addresses or port numbers.

The third security hazard is inherent with the concept of allowing users to run jobs on

somebody elses workstation. The users of the workstations that form a Condor pool together

will have to trust each other. A possible way to prevent the third security hazard is to compile

and link the Condor job on the execution machine.

2.9.2 Future Work

Litzkow and Solomon [14] described the following areas of future work on Condor.

� In some circumstances it would be better to transfer processes directly between execu-

tion sites rather than always sending a checkpoint �le back to the originating site.

� Data compression could be used to reduce the volume of data transferred and stored.

� The stack and data segments could be read directly from the core �le into a new instan-

tiation of a process rather than converting the core �le to an executable module (which

includes copying the text segment of the old checkpoint �le).

� Support for signals. This is a non-trivial feature because the information maintained by

the kernel has to be checkpointed. This information is maintained in a way that varies

among UNIX implementations.

Unfortunately, the last two optimizations work against portability. A solution to a problem

will work for some platform, but not for others.

The following is a collection of other areas of development.

� At the moment Condor is machine oriented. The central manager is responsible for

prioritizing the machines of a pool, and the Schedd of each machine has as task to

prioritize the jobs submitted on that machine. This mechanism only works well if each

user would always submit his/her jobs from the same machine. In practice this is not

always the case due to the possibility of remote login. Another problem is multi-user

systems that are shared by a large group of people. These people now have a shared

priority that will be very low. In the future, Condor will become user oriented. There

are two possible architectures. One possibility is to give each user his own queue of

Condor jobs. In this situation the same scheduling mechanism can be used, each user

has a priority and it is the responsibility of the user to prioritize its jobs. The second
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possibility is to make one global queue for all the jobs of all users. This means that a

new scheduling mechanism for the jobs in the global queue will be needed.

� Support for shell scripts. The possibility to run a shell script is interesting, because

in this way one can have the script compile and link the job on the 
y on the remote

machine. This is useful in a multi-architecture environment. It should be possible to

let the script end with the execution of a checkpointed program.

� The possibility to submit a number of programs connected by pipes as one Condor job.

A test version of this feature has recently been implemented in Wisconsin on request of

the CERN/SMC project. They have simulation programs and data processing programs

that simulate each a part of an experiment. These programs can be con�gured together

in a pipeline for simulating a whole experiment. The problem with submitting the

programs as separate Condor jobs is that a program cannot be executed before the

previous program in the pipeline has generated its output. This problem is solved when

the programs are submitted as one Condor job.
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Chapter 3

The Condor Control Software

This chapter describes some of the data structures and algorithms used by the Condor control

software. In the �rst section we look at the most important data structure of Condor, context.

This data structure is used to describe characteristics of jobs and machines, and to store the

control functions from the Condor con�guration �les. Section 2, 3, and 4 describe the data

structures of the Startd, Schedd, and Collector, respectively. Section 5 contains `pseudo' code

which indicates how the Negotiator does the scheduling. Finally, Section 6 describes exactly

how a Condor job is started.

3.1 The Context Data Structure

Condor can be customized by means of the Condor con�guration �les (See Section 2.5).

Every daemon will, as part of its initialization process, con�gure itself by reading in the

condor con�guration �les. The macros are inserted into a con�guration table, and a context

is created from the control functions. The daemon uses the con�guration table to initialize

parameters that are relevant for it. Context is a list of expressions, an expression is a list of

elements, and an element can be a string, an integer or a 
oating-point number. Context is

de�ned as:

typedef struct {

int len;

int max_len;

EXPR **data;

} CONTEXT;

typedef struct {

int len;

int max_len;

ELEM **data;

} EXPR;
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typedef struct {

int type;

union {

int integer_val;

float float_val;

char *string_val;

} val;

} ELEM;

An example of the context created when a daemon starts up is:

OpSys = SUNOS41;

Arch = SPARC;

Machine = hoos;

START = LoadAvg <= 0.300000 && KeyboardIdle > 15 * 60;

SUSPEND = LoadAvg >= 1.500000 || KeyboardIdle < 5;

CONTINUE = LoadAvg <= 0.300000 && KeyboardIdle > 5 * 60;

VACATE = CurrentTime - EnteredCurrentState > 10 * 60;

KILL = CurrentTime - EnteredCurrentState > 10 * 60;

PRIO = UserPrio * 10 + Status != 0 - QDate / 1000000000.000000;

INACTIVE = Users <= 0;

UPDATE_PRIO = Prio + Users - Running;

This context will be called the start-up context of a daemon. The �rst three expressions

describe the machine on which the daemon is running. The expressions START, SUSPEND,

CONTINUE, VACATE, and KILL are used by the Startd and de�ne when it should change

state. The Schedd uses the expression PRIO to calculate the priority of user jobs, and the

expressions INACTIVE and UPDATE PRIO are used by the Negotiator to update the priority

of the machines. The data structure context is also used by the Schedd and Startd to send

information about the state of a machine to the Collector and additionally by the Schedd to

send information about the jobs to the Negotiator.

3.2 The Start-Daemon

The Startd evaluates the load on the local machine every �ve seconds, and makes decisions

whether to suspend, resume, or abort a foreign job, if one is running on the machine. Every

two minutes the Startd will update the Central Manager regarding conditions on the local

machine. It sends a message to the Collector consisting of the start-up context plus the

following expressions:

State State of the Startd (NoJob, Running, Suspended, Vacating,

or Killed).

EnteredCurrentState Time when current state was entered (seconds since 1-1-

1970).

Memory Physical memory installed on the machine in megabytes.
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Disk Free diskspace in kilobytes on the �lesystem where foreign

checkpoints are stored.

KeyboardIdle Time in seconds since last activity on any tty or pty.

Cpus Number of CPUs installed.

LoadAvg Current value of the UNIX one-minute load average.

VirtualMemory Swap space available on the machine in kilobytes.

Subnet Name of the subnet the machine is on in \dot notation".

MaxJobsRunning Maximum number of jobs this machine will run at any one

time.

3.3 The Sched-Daemon

The Schedd is responsible for maintaining the queue of Condor jobs that have been submitted

from the machine where the Schedd is running. The queue consists of clusters of related

processes. All processes in a cluster share the same executable (and thus the same initial

checkpoint), and are submitted as a group via a single description �le. Individual processes

are identi�ed by a cluster id/proc id pair. Cluster ids are unique for all time, and process ids

are in the range 0 - n when there are n processes in the cluster. Individual processes are not

removed from a cluster, they are just marked as \completed", \deleted", \running", \idle",

etc. A Cluster is removed when all processes in the cluster are completed, but the cluster ids

are not re-used.

The low-level database operations are accomplished by the ndbm(3) library. The functions

in this library maintain key/content pairs in a database. The cluster id/proc id pair is used

as key. The database is stored in two �les. One �le is a directory containing a bitmap and

has .dir as its su�x. The second �le contains data and has .pag as its su�x. By storing

the job queue on disk, no information will be lost if a Schedd dies. The queue consists of job

records that are de�ned as follows:

typedef struct {

int version_num; /* version of this structure */

PROC_ID id; /* job id (cluster and proc) */

char *owner; /* login of person submitting job */

int q_date; /* UNIX time job was submitted */

int completion_date; /* UNIX time job was completed */

int status; /* Running, unexpanded, completed, .. */

int prio; /* Job priority */

int notification; /* Notification options */

int image_size; /* Size of the virtual image in K */

char *cmd; /* a.out file */

char *args; /* command line args */

char *env; /* environment */

char *in; /* file for stdin */

char *out; /* file for stdout */

char *err; /* file for stderr */

char *rootdir; /* Root directory for chroot() */
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char *iwd; /* Initial working directory */

char *requirements; /* job requirements */

char *preferences; /* job preferences */

struct rusage local_usage; /* accumulated usage by shadows */

struct rusage remote_usage; /* accumulated usage on remote hosts */

} PROC;

The Condor jobs are placed in the job queue by the command condor submit and can be

removed from the queue by the command condor rm. It is possible to change the priority of a

job in queue with the command condor prio. With the command condor q it is possible to get

an overview of only the local queue, with the command condor globalq one gets an overview

of all the queues. Every �ve minutes the Schedd checks the local job queue and updates the

Central Manager by sending a context to the Collector consisting of the start-up context and

the following expressions:

Running Number of jobs.

Idle Number of idle jobs in the queue.

Users Number of di�erent users with jobs in the queue.

3.4 The Collector

The Collector manages three data structures:

� a priority database,

� a linked list of machine records,

� an array of status lines.

The priority database is implemented with the ndbm(3) library. The network address of a

machine is used as key. The database is read in when the Collector starts up, and saved every

time the Negotiator has updated the priorities. In this way the priorities will not be lost if the

Collector dies. Periodically, the Schedd and the Startd send a message to the Collector. With

this information the Collector updates two data structures. The �rst of these is a linked list

of records, each containing information about a machine. Such a machine record is de�ned

as:

typedef struct mach_rec {

struct mach_rec *next;

struct mach_rec *prev;

char *name;

struct in_addr net_addr;

short net_addr_type;

CONTEXT *machine_context;

int time_stamp;

int prio;

int busy;

STATUS_LINE *line;

} MACH_REC;
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The members name, net addr and net addr type are set when the Collector receives informa-

tion for the �rst time about a machine. Time stamp is the most recent time at which the

Collector received information from the Schedd or Startd of a machine. It is used to deter-

mine if Condor is still running on that particular machine. The prio member contains the

priority of the machine and is consistent with the value in the priority database. The busy

member is used by the Negotiator when it is scheduling, to indicate that a Condor job has

already been scheduled to this machine. The member machine context is a combination of

the context received from the Schedd and the Startd. The member STATUS LINE contains

a selection of the information from the machine context and is de�ned as:

typedef struct status_line {

char *name;

int run;

int tot;

int prio;

char *state;

float load_avg;

int kbd_idle;

char *arch;

char *op_sys;

} STATUS_LINE;

The second data structure that the Collector updates, is an array with status lines of all

machines. This array is used when a user asks the status of the Condor pool with the

command condor status.

3.5 The Negotiator

Every 5 minutes the Negotiator allocates the idle machines to machines which have Condor

jobs to run. The following `pseudo code' indicates how the Negotiator does the scheduling.

First of all the Negotiator asks all machine records from the Collector. The Negotiator updates

the priorities and sorts the machine records in order of priority. The Negotiator �rst schedules

the machine with the highest priority.

RESCHEDULE

1) send Collector GIVE_STATUS command

2) receive all machine records

3) update priorities

4) sort machine records in order of priority

5) for (machine with highest priority to machine with lowest priority)

6) if (machine information is up to date and the machine has idle jobs)

7) send Schedd NEGOTIATE command

8) while (priority is higher then priority of the next machine and

this machine has idle jobs)

9) SIMPLE NEGOTIATE

10) send Schedd END_NEGOTIATE command

11) send Collector NEGOTIATOR_INFO command

12) send priorities to the Collector
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The Negotiator asks the Schedd of this machine, by means of the SEND JOB INFO command,

to send information about the job it wants to run. The Schedd will respond by sending

information about the job with the highest priority, or the command NO MORE JOBS. The

job information consists of the job requirements, the job preferences, and the login-name of

the owner of the job. The job requirements is an expression which states the architecture and

operating system needed, the physical memory the server should have, and an estimation of

the required disk-space and virtual memory.

SIMPLE NEGOTIATE

1) while (not SUCCUSS and not FAIL)

2) send Schedd SEND_JOB_INFO command

3) receive operand

4) case JOB_INFO

5) receive job_context

6) FIND SERVER

7) if (FOUND SERVER)

8) send Schedd PERMISSION command and name of server

9) decrement the counter of idle jobs for this machine

10) decrement the priority of this machine

11) mark server as busy

12) return SUCCESS

13) else

14) send Schedd REJECTED command

15) case NO_MORE_JOBS

16) return FAIL

The Negotiator will try to �nd a server for the job by walking through the list of machines

in search of a machine that is idle, not running a Condor job, and that both meets the job

requirements and job preferences. If no server was found, the Negotiator walks a second time

through the list of machines, this time without trying to meet the job preferences.

FIND SERVER

1) for (first machine in MachineList to the last one)

2) if (the machine is not running a Condor job, and the machine is idle,

and the machine meets the job requirements and job preferences)

3) return FOUND SERVER

4) for (first machine in MachineList to the last one)

5) if (the machine is not running a Condor job, and the machine is idle,

and the machine meets the job requirements)

6) return FOUND SERVER

7) return NOT_FOUND_SERVER

If the Negotiator has found a server for the job, it sends the name of the server to the Schedd,

otherwise the command REJECTED. The Negotiator decrements the priority of the machine

that it is negotiating with by one if a server was found. The Negotiator tries to �nd servers

for the jobs of the machine it is negotiating with until the priority of the machine is lower

than the following machine (in order of priority), or all the jobs in the queue of the machine

have been tried. When the Negotiator has negotiated with all machines that wanted to run

jobs, it sends the updated priorities to the Collector.
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3.6 The Starter and Shadow Processes

The following list describes what happens when a Condor job is started.

1. The Schedd has received the PERMISSION command and the name of the server

from the Negotiator. It starts a Shadow process with as arguments the name of the

server and the cluster id/process id pair. The Schedd marks the job as running (in

the queue) and keeps a `Shadow record' which consists of the PID of the Shadow, the

cluster id/process id pair and the name of the server.

2. The Shadow reads the job record from the job queue and sends the START FRGN JOB

command and a context consisting of the job requirements, job preferences and the

owner of the job to the Startd of the server.

3. The Startd of the server receives the context and checks if the machine and job meet

each other's requirements. If so, it sends the OK command to the Shadow and changes

its state to JOB RUNNING, otherwise it sends the NOT OK command to the Shadow.

4. The Startd creates two stream socket ports, sends the port numbers to the Shadow

process and waits until the Shadow has connected to the ports. It then starts the

Starter process with as argument the name of the initiating machine.

5. The Shadow sends the job record to the Starter (via the ports created by the Startd).

The Shadow now executes a fork. The parent runs under the UID of Condor and takes

care of updating the information in the job queue, sending mail upon completion of the

job, etc. The child handles the remote system calls and runs with the UID of the owner

of the job.

6. The Starter copies the checkpoint �le from the initiating machine to the execution

machine, either by NFS or via the Shadow with a so called `pseudo' remote system call.

Then the Starter executes a fork. The parent sets the alarm for the current checkpoint

interval and executes a wait3 system call. The child sets its UID and GID to those of

the owner of the job and executes an exec system call to start the user job. The parent is

responsible for restarting the job after a checkpoint, sending remote usage information

to the shadow, sending back the checkpoint �le when the job was aborted, etc.

Figure 3.1 shows the situation when the Condor job is running.

The Startd and the Starter only communicate via signals. The Startd can send the Starter

a signal to checkpoint, suspend, resume, vacate or kill the job. When the Starter exits, the

Startd will change its state to NO JOB. The Schedd and the Shadow communicate only

indirectly through the job queue. The Shadow updates the information in the job queue, and

marks the job as IDLE if the Condor job had to vacate the remote machine, REMOVED if

the owner removed the job from the queue, and COMPLETED if the job has completed.
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Initiating Machine Execution Machine

Schedd Startd

Shadow-Child
  UID = User

     Starter
UID = Condor

 User Job
UID = User

Shadow-Parent
  UID = Condor

    Remote
System Calls

   Status
Information

Figure 3.1 Starter and Shadow processes.
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Chapter 4

Condor Flocking

A Condor 
ock is a collection of Condor pools that share the load of Condor jobs in some

way, to provide a better turn-around time to some or all users. The terminology used in this

chapter was invented by Miron Livny.

The �rst situation at which we will look in this chapter is when a user has the right to

submit his Condor jobs in more than one pool. This user will want to distribute his jobs in

such a way over the pools that the total turn-around time is minimal. This kind of 
ock is

called a private 
ock because it is a 
ock for one user.

The second situation is when two or more owners of Condor pools (institutes working

together on a project, departments of a company, etc.) have decided to couple their pools

so that jobs of one pool can be executed in another pool. This will be called a group 
ock

because it is a 
ock for all the users of a pool. We call the pool where the job was submitted

the initiating pool, and the pool where the execution machine is situated the execution pool.

In both of these situations it is possible to make a distinction between an administrative

relation and a physical relation between pools. The distinction is based on the delay of inter-

process communication between machines of two di�erent pools. If the delay is low enough to

allow remote system calls (comparable to the delay of inter-process communication between

machines of one pool), we talk about an administrative relation. If the delay is high, the

remote system call mechanism will no longer be usable in most cases, and another mechanism

should be used to preserve the local execution environment for a remotely executing process.

In this case we talk about a physical relation.

4.1 A Private Flock

When a user has the possibility to submit Condor jobs in several pools, he or she will have

to choose in which pool to submit his jobs. If the user submits his jobs in only one pool, it is

possible that Condor jobs of this user are waiting, while in another pool they could be run.

The jobs of this user may be waiting for an idle machine, or they may be waiting because

there are other Condor users with a higher priority, that want to run jobs. Another problem

of submitting the jobs in only one pool is that the priority of this user will only increase in
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the pool where he has submitted the job. It is possible to submit the jobs in all the pools, but

it is undesirable that duplicates of a job are running. These duplicates will waste resources

and they will decrease the priority of the user which means that his other jobs will have to

wait longer. Another problem is that the user will have to make duplicates of the input and

output �les.

A possible way to implement a private 
ock is:

� Jobs are submitted in all the pools, so that the priority of the user will be increased in

all the pools as long as a job is not running.

� When a job is scheduled in one of the pools, the job should be marked in the other

pools so that it will not be run, and no longer in
uences the priority of the user in these

pools.

� When a job �nishes, the job is removed from all the queues.

4.2 A Group Flock

Within a Condor pool there is a wide variation in the number of Condor jobs that are waiting

for service. Sometimes there is a large collection of jobs, and sometimes there are no jobs

while there are idle machines. By coupling Condor pools, work from \overloaded" pools can

be transferred to pools with idle machines. This means that agreement should be reached

between the owners of Condor pools. There are several kinds of agreements that can be made

between the owners of Condor pools:

� When there are idle machines in a pool that cannot be used for jobs of users of that

pool, then these machines may be used for jobs of users of other pools. This kind of

agreement is similar to the agreement between owners of workstations within a Condor

pool. A workstation may only be used when the owner does not need it.

� If pool A uses some machines of pool B now, it gives pool B the right to use some

machines of pool A in the future. This may mean that a Condor pool has to run jobs

from another pool to pay back for used capacity in the past, even when there are jobs

that were submitted in this pool.

The initiating pool should decide when and where to move a Condor job. The execution pool

has to decide which machines may be used and with which priority the \foreign" Condor job

should run.

4.3 General Design of the Group Flock

This section describes the general design of the Condor group 
ock. This is the ideal design

of the group 
ock as we see it. Chapter 5 describes what has been implemented during my

six month graduating term.
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4.3.1 Centralized versus Distributed Approach

The �rst design issue involves whether one machine should collect the status information of

all the Condor pools and take the decisions, or whether the decision-making process is to

be distributed among the Condor pools. The most important feature of making decisions

centrally is simplicity. However, an important drawback of the centralized approach is the

low reliability of such system; failure of the machine which takes the decisions results in the

collapse of the entire management system.

Therefore we decided that in the Condor group 
ock situation, it should still be the Central

Manager of a pool who allocates the idle machines to waiting Condor jobs. In the normal

Condor pool situation the Central Manager allocates idle machines of the pool to waiting

Condor jobs. In the Condor group 
ock situation the set of idle machines is enlarged with the

set of idle machines of other pools that may be used. The set of waiting jobs is enlarged with

waiting Condor jobs from the other pools of the 
ock. Figure 4.1 shows the new functionality

of the Central Manager.

Machines Jobs

Jobs initiated
in this pool.

Available
machines
in this
pool.

Jobs initiated
in other pools.

Available
machines
in other
pools.

Figure 4.1 New Central Manager functionality.

Each Condor pool may have di�erent policies that determine which idle machines may be

used by which Condor pool. The Central Manager may have di�erent policies for prioritizing

the waiting Condor jobs, and di�erent scheduling algorithms that determine which Condor

job is executed on which machine.

4.3.2 Source-initiative versus Server-initiative Approach

There are two possible ways in which Condor pools can decide to move a Condor job from

one pool to another pool, a source-initiative and a server-initiative way.

In the source-initiative approach, a Condor pool goes searching for a server when it has

a Condor job which it wants to run on a machine of another pool. The initiating pool may

decide that a job should be run on a machine of another pool, when there are no idle machines

in the own pool that can serve this job, or when it expects that there is a better (faster) server

available in one of the other pools. The following is an example of a source-initiative algorithm.
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1. The initiating pool sends a request for an idle machine that can serve the job, to the

other Condor pools of the 
ock.

2. When an execution pool receives this request and decides that one of its machines may

be used for this job, it tells so with a message to the initiating pool.

3. The initiating pool can then decide whether it will run the job on this machine.

In the server-initiative approach, the Condor pool that has idle machines that may be used

for jobs of the other Condor pools of the 
ock, goes searching for work. The following is an

example of a server-initiative algorithm.

1. A pool that has idle machines that may be used by the other Condor pools, sends a

message to these pools, advertising the idle machines.

2. When the initiating pool schedules the waiting Condor jobs, it may decide that a job

can be best served by one of the advertised machines. The initiating pool will ask

permission from the execution pool to use one of its idle machines for the Condor job.

3. The execution pool can then decide whether it will let the initiating pool use the idle

machine.

We have chosen the server-initiative approach, because in this way the Central Manager of a

pool knows which machines are available in the 
ock when it starts scheduling. The Central

Manager can therefore schedule the waiting Condor job with the highest priority to the best

server available in the 
ock.

4.3.3 Server-values

A powerful idea is to give every machine a server-value. This value should give an expression

of the relative processing power of the server. For every platform there should be a standard

assignment of values, which is used by all the pools that are part of a 
ock, so that servers of

di�erent pools can be compared. Server values make it possible for the Central Manager to

compare all the idle machines of the 
ock and to choose the best server for a job. It is possible

to take all kind of factors into account, for example the time that the server is already idle

and the average length of an idle period of this machine. It is also possible to adjust the

server-values of the idle machines of the other pools for the expected performance loss due to

transmission delays of remote system calls, higher cost of migration, etc.

4.3.4 User Identity

Within a Condor pool, jobs run under the UID and GID of the owner of the job, so that �les

can be accessed via NFS. In the Condor 
ock situation it will normally not be possible to run

the jobs under the UID and GID of the owner, because the owner has no UID on the machines

of the execution pool. In the 
ock situation, jobs can be run under the UID \nobody" (this

was the case before the NFS optimization) or under one or several special Condor 
ock UID's.
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In this case, �les that could be accesses via NFS from the execution machine, now have to be

accessed via remote system calls because the job doesn't run under the UID of the owner.
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Chapter 5

Design of a Group Flock

My assignment consisted of designing and implementing a �rst version of an administrative

group 
ock, that is, a group 
ock where the relations between all the pools are administrative.

In an administrative group 
ock it is possible to use the remote system call mechanism to

preserve the local execution environment for remotely executing jobs. Neither are changes

required to the checkpointing mechanism. The Condor control software should be changed

or extended in such a way that it is possible that jobs of one Condor pool are served by idle

machines of other Condor pools.

The following requirements were posed to the design:

� It should be transparent for the user (except for somewhat poorer performance) whether

a job is executed in the initiating pool or in another Condor pool.

� It should be possible for a user to prevent that one of his Condor jobs is executed in

another pool.

� A Condor pool has a set of pools that are allowed to run jobs on the machines of the

pool, and a set of pools where this particular pool is allowed to run jobs. It should be

possible to change the relation between pools.

� Failure of processes concerned with Condor 
ocking should not a�ect the working of

the Condor daemons. In other words, failure of Condor 
ocking should not make it

impossible for the Central Manager to allocate idle machines of the pool to Condor jobs

of the initiating pool.

An additional very important restriction is that nothing may be changed to the Central

Manager, and as little as possible to the other Condor software. This restriction was posed

by Miron Livny to prevent the existence of several versions of the Central Manager, which

would make providing support for the Condor design team very di�cult. The design presented

in this chapter is therefore a compromise between the ideal Condor group 
ock situation as

presented in Chapter 4, and the restriction to change as little as possible to the existing

Condor control software. Only the Schedd has been changed.
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Section 1 of this chapter gives an overview of the design. Section 2 describes the limitations

of the design, and the assumptions that were made. The other sections describe particular

parts of the design.

5.1 The World Machine

The basic idea is to implement the group 
ock by adding a virtual machine to each Condor

pool, called theWorld Machine. This virtual machine represents in the local pool all the other

Condor pools that are part of the 
ock. The World Machine looks to the Central Manager

like a normal machine in the way that it can o�er jobs for execution, and can serve jobs of

machines of the pool. The World Machine consists of two daemons, the W-Schedd and the

W-Startd. Figure 5.1 shows three Condor pools, which together form a 
ock.

Schedd

Startd

Schedd

Startd

Collector

Negotiator

W_Schedd

W_Startd

Schedd

Startd

Schedd

Startd

Collector

Negotiator

W_Schedd

W_Startd

Schedd

Startd

Schedd

Startd

Collector

Negotiator

W_Schedd

W_Startd

Schedd

Startd

Machine 1 Machine 2

Central Manager World Machine World Machine Central Manager

Machine 3 Machine 4

Machine 6

Machine 7 Machine 8Central Manager

World Machine

WAN

LANLAN

LAN

Figure 5.1 A Condor 
ock.

We want the Central Manager of the initiating pool to give permission to machines of that

Condor pool to run jobs on the World Machine, and the Central Manager of the execution

pool to give permission to its World Machine to run jobs on machines of the execution pool.

To achieve that the Central Manager gives permission to machines of its pool to run jobs on
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the World Machine, the W-Startd presents itself to the Central Manager as an idle machine.

Periodically, the W-Startd daemons of a 
ock exchange information about the idle machines

in their pool. The W-Startd chooses one of the idle machines of the other pools, and presents

itself to the Central Manager as a machine with the same characteristics as this idle machine.

When the Central Manager has given permission to one of the machines of its pool to run

a job on the World Machine, the Schedd that runs on this machine will ask the W-Startd

to give it the name of a real server on which it may start the job. The W-Startd will then

request a idle machine from the W-Schedd of a pool that has idle machines that can serve

this job.

So the W-Schedd receives requests for idle machines from the other World Machines.

To achieve that the Central Manager of the execution pool gives permission to the World

Machine to use machines of the pool, the W-Schedd acts like a normal Schedd that has jobs

in the queue. The W-Schedd periodically tells the Central Manager how many jobs it wants

to run, and negotiates with the Central Manager in the same way as a normal Schedd. If the

W-Schedd receives permission from the Central Manager to use a machine, it tells so to the

W-Startd of the initiating pool, who tells it to the Schedd. The Schedd will start a Shadow

process that starts the job on the machine of the execution pool, in the same way as when

this machine had been part of the initiating pool.

5.2 Limitations and Assumptions of this Design

The restriction that nothing may be changed to the Central Manager implies the following

limitations.

� The W-Schedd and the W-Startd have to use the same port numbers as the normal

Schedd and Startd processes, therefore it is not possible to run the daemons of the

World Machine on a machine that is part of the pool. A machine should be given the

role of World Machine.

� The priority of the World Machine will be calculated by the Central Manager in the

same way as the priority of a normal machine.

� The Negotiator will give permission to only one machine per schedule interval, to run

a job on the World Machine.

The assumption has been made that the pools (of a 
ock) consist of machines that have the

same architecture and operating system. This assumption is necessary because the World

Machine presents itself to the Central Manager as one of the idle machines of the other pools.

If there would be di�erent machine types in the 
ock then the probability that there is a job

that can run on the World Machine would be very small.

The question under which UID the Condor jobs from another pool should run has been

avoided by demanding that the owners of these jobs have an account on the machines of the

execution pool. This means that the Condor jobs can run with the UID of the owner.
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The remainder of this chapter explains how the World Machines and the Condor daemons

work together to start jobs in other pools. The implementation of the W-Startd and the

W-Schedd is described in the next chapter.

5.3 Flock Con�guration

Information about the pool con�guration is stored in a special �le, the 
ock con�guration �le.

This �le contains for every pool of the 
ock the following information:

� The name of the pool.

� The network address of the World Machine.

� Whether or not that pool is allowed to run Condor jobs in this pool.

� Whether or not this pool is allowed to run Condor jobs in that pool.

The following parameters are de�ned in the Condor con�guration �les:

� The name of the machine where the W-Startd and the W-Schedd run (the World Ma-

chine).

� The name of the 
ock con�guration �le.

� The name and the length of the log�les. The W-Startd and the W-Schedd log important

actions and write debug information in these log�les.

� The value of the debug 
ags. The value of these debug 
ags decides what kind of

information is written into the log�les.

� The interval at which the W-Startd determines the state of the Condor pool, sends

information about idle machines to the other pools, and updates the Central Manager.

� The interval at which the W-Schedd updates the Central Manager.

5.4 Information Exchange

The W-Startd periodically determines the state of the pool. It sends the command

GIVE STATUS to the Collector, which replies by sending all the machine records.

With this information the W-Startd makes a list of the idle machines in the pool. The

information about the idle machines consists of the name, address, and the context of the

machine. A machine is considered to be idle if the START expression is true, and the state

of the machine is NOJOB. The W-Startd sends the list of idle machines to all the other

W-Startd processes of pools that have the right to run jobs in this pool.

The W-Startd receives lists of idle machines from the other W-Startd processes. The

W-Startd will keep the latest received list of idle machines from each pool in a list. If the
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Collector
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Figure 5.2 Information exchange.

W-Startd has not received a new list of idle machines from a pool that is part of the 
ock

during a certain period, then this pool is considered to be \down". The list of idle machines

of this pool will then be deleted.

5.5 Starting a Job in Another Pool

Figure 5.3 shows the situation where a machine receives permission from the Central Manager

to run a job on the World Machine.

Negotiator

Schedd W-ScheddW-Startd

Negotiator
Initiating Pool   Execution Pool

Central Manager

World Machine World Machine

Central Manager

Startd

Shadow
Star ter+
UserJob

Initiating Machine Execution Machine
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Figure 5.3 Flocking a job.

The following actions are taken by the daemons to start the job in another pool.

1. The Schedd of the initiating machine receives permission (during the negotiations) from

the Central Manager to run a job on the machine \world", the World Machine.

2. The Schedd marks the job as running (in the queue). The Schedd reads the job record

from the job queue and sends the GIVE MACHINE command and a context consisting

of the job requirements, job preferences and the owner of the job to the W-Startd. The

Schedd does not wait for the reply, because it is negotiating with the Negotiator.

3. The W-Startd receives the job context and checks if there is a idle machine in another

pool that meets both the job requirements and job preferences. If no machine was

found, the W-Startd searches for a idle machine that only meets the job requirements.
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If still no machine was found, the W-Startd sends the command NO MACHINE to the

Schedd, which marks the job as idle. If a idle machine was found, the W-Startd sends

the command REQUEST MACHINE and the job context to the W-Schedd of the pool

with the idle machine.

4. The W-Schedd tells its Collector that it wants to run a job and waits for the Negotiator

to schedule. The W-Schedd negotiates with the Central Manager in the same way as a

normal Schedd.

5. If the W-Schedd receives the PERMISSION command, it sends the FOUND MACHINE

command and the name of the execution machine to the W-Startd that requested the

server, if the W-Schedd receives the REJECTED command it will send the

NOT FOUND command to the W-Startd.

6. If a server was found, the W-Startd sends MACHINE and the name of the execution

machine to the Schedd of the initiating machine, otherwise it sends the NO MACHINE

command to the Schedd.

7. If the Schedd receives the NO MACHINE command, it marks the job as idle so that it

can be scheduled the next time the Central Manager schedules. If the Schedd receives

the MACHINE command, it starts a Shadow process for the job, with as arguments

the cluster id/process id pair of the job, and the name of the execution machine. The

Shadow will send the START FRGN JOB command and a context consisting of the job

requirements, job preferences and the owner of the job to the Startd of the execution

machine. If the situation on the execution machine hasn't changed since the last update

of this machine to its Central Manager, the Startd will respond with an OK.

8. The job is now started by the Shadow and the Startd in the same way as described in

Section 3.6.

All the messages concerned with starting a job contain the name of the initiating machine

and the cluster id/process id pair of the job. This is necessary because the daemons of the

World Machines may be working for many jobs of di�erent machines and di�erent pools at

the same time.
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Chapter 6

The Implementation of the World

Machine

This chapter describes the data structures of the W-Startd and the W-Schedd, and the actions

they perform upon reception of the di�erent commands. The W-Startd and W-Schedd have

been implemented as servers, which are activated when a process connects to their socket, or

when a certain period has elapsed. All messages begin with an integer called the command,

which indicates the required action. The communication between the Condor daemons is via

stream sockets, except for the periodic SCHEDD INFO and STARTD INFO messages from

the (W-)Startd and (W-)Schedd to the Collector, which are via datagrams. All communi-

cation is done with use of the eXternal Data Representation (XDR) to ensure that data is

represented the same way on the di�erent platforms.

6.1 External Data Representation

XDR is a set of library routines that allow a C programmer to describe arbitrary data struc-

tures in a machine-independent fashion. XDR library routines should be used to transmit

data that is accessed (read or written) by more than one type of machine. A program can

use XDR to create portable data by translating its local representation to the XDR standard

representation; similarly, a program can read portable data by translating the XDR standard

representation to its local equivalents.

A record stream is an XDR stream built on top of the UNIX �le or 4.2 BSD connection

interface. The routine xdrrec create(xdrs, sendsize, recvsize, iohandle, readproc,

writeproc) provides an XDR stream interface that allows for a bidirectional, arbitrarily

long sequence of records. The routine initializes an XDR stream pointed to by xdrs. The

steam does its own data bu�ering. The parameters sendsize and recvsize determine the

size in bytes of the output and input bu�ers. When a bu�er needs to be �lled or 
ushed, the

routine readproc() or writeproc() is called, respectively, with as parameters the iohandle,

a pointer to the bu�er, and the number of bytes that need to be transferred. The programmer

has to write these routines. The XDR stream is destroyed by the routine xdr destroy(xdrs).
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The contents of the records are meant to be data in XDR form. The XDR library provides

primitives to translate between numbers, C's 
oating point types, strings, arrays, unions,

etc, and their corresponding external representations. For each data type, xxx, there is an

associated XDR routine of the form xdr xxx(xdrs, xp), where xp is a pointer to xxx.

The routines return FALSE if it fails, and TRUE if it succeeds. XDR routines are direction

independent, that is, the same routines can be called to encode or decode data.

The XDR stream provides means for delimiting records in the byte stream. The routine

xdrrec endofrecord() causes the current outgoing data to be marked as a record. The

routine xdrrec skiprecord() causes an input stream's position to be moved past the current

record boundary and onto the beginning of the next record in the stream. The routine

xdrrec eof() returns TRUE if there is no more data in the stream's input bu�er.

6.2 Signal Handlers

The W-Startd and the W-Schedd both have signal handlers for the ALARM, SIGPIPE,

SIGINT and SIGHUP signal. These signal handlers have the following tasks.

ALARM The W-Startd and the W-Schedd set the alarm when a daemon connects to their

socket (the client socket). The alarm is set to prevent that the W-Startd or W-Schedd

will wait forever when the daemon that connected to the socket is supposed to send

some information, but doesn't do so. The W-Startd also sets an alarm when it requests

the status records from the Collector. The alarm is stopped if the connection is closed.

When the alarm goes o�, the connection is closed so that the read() will fail. The

service routine involved will clean up.

SIGPIPE If the W-Startd or W-Schedd is communicating with another daemon and the

connection goes away, it receives a SIGPIPE signal. The signal handler will close the

corresponding connection, so that the write() will fail. The service routine involved

will clean up.

SIGHUP The SIGHUP signal can be used to make the W-Startd or the W-Schedd re-read

the Condor con�guration �les and the 
ock con�guration �le. In this way it is possible

to change the relations between pools of the 
ock, without having to restart the daemons

of the World Machine.

SIGINT The W-Startd and the W-Schedd write a last message in the log�les and exit when

they receive the SIGINT signal.

6.3 Flock Con�guration

When the W-Startd and the W-Schedd start up, they read in the Condor con�guration �les

and the 
ock con�guration �le. The information from the 
ock con�guration �le is stored in

an array that consists of records de�ned as follows.
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typedef struct config_rec {

char *pool_name;

char in;

char out;

struct in_addr net_addr;

short net_addr_type;

} CONFIG_REC;

The member pool name contains the name of the pool. The members in and out contain the

value TRUE or FALSE, indicating whether the pool may run jobs in our pool, and whether

the pool will accept our jobs respectively. The members net addr and net addr type contain

the address of the World Machine of the pool.

6.4 The W-Startd

The W-Startd manages one big data structure that is used to store information about

idle machines in the other pools of the 
ock. When the W-Startd starts up it creates a

FREE MACH LIST record for every pool where this pool has the right to run jobs.

typedef struct free_mach_list {

struct free_mach_list *next;

struct free_mach_list *prev;

char *pool_name;

int time_stamp;

FREE_MACH *free_machines;

} FREE_MACH_LIST;

The member time stamp is used to save the most recent time at which the W-Startd received

a list of idle machines from this pool. The member free machines is a pointer to a linked list

of free-machine records. The records of this list are de�ned as follows.

typedef struct free_mach {

struct free_mach *next;

struct free_mach *prev;

char *name;

CONTEXT *machine_context;

} FREE_MACH;

The members name and machine context contain the name and context of the idle machine.

The W-Startd stores information about the requests that it is serving in SERVING records.

These records are de�ned as follows.

typedef struct serving {

struct serving *next;

struct serving *prev;

char *machine_name;

PROC_ID id;

char *pool_name;

} SERVING;

39



The Implementation of the World Machine 6.4 The W-Startd

The member machine name contains the name of the machine that requested a server and the

member id contains the cluster id/job id pair of the job for which the server was requested.

The member pool name contains the name of the pool to which the W-Startd has sent the

REQUEST MACHINE message for this request.
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Figure 6.1 W-Startd activation.

Figure 6.1 shows that the W-Startd is activated when a certain period of time has passed, or

one of the following messages is received.

� A FREE MACHINES message from another W-Startd.

� A GIVE MACHINE message from a Schedd.

� A FOUND MACHINE or NOT FOUND message from a W-Schedd.

The following paragraphs describe the actions of the W-Startd when it is activated for one of

these reasons.

time-out Periodically the W-Startd does the following things:

1. The W-Startd connects to the Collector and sends the GIVE STATUS command,

after which the Collector sends all the machine records to the W-Startd. The

W-Startd makes a list of FREE MACH records of the machines that are idle. A

machine is considered to be idle if:

� the START expression in the machine context is TRUE;

� the State expression in the machine context is equal to "NoJob";
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� the Machine expression in the machine context is unequal to "world".

This last test is necessary to prevent the World Machine from presenting itself as

a real server to the other pools.

2. For every pool that has the right to run jobs in this pool, the W-Startd connects

to the W-Startd of that pool and sends the command FREE MACHINES and the

list of FREE MACH records.

3. The W-Startd chooses how it will present itself to the Central Manager. The W-

Startd searches for a idle machine list (FREE MACH LIST record) with a large

enough time stamp (de�ned in the Condor con�guration �les). If there is such

a list, the W-Startd copies the machine context of the �rst FREE MACH record

of this list. Otherwise it uses a standard context which indicates that the World

Machine is unavailable. The W-Startd sends the command STARTD INFO and

the chosen context to the Collector.

FREE MACHINES The W-Startd checks if the message comes from a World Machine

of a pool where this pool has the right to run jobs. The message is ignored if this is

not true. The W-Startd releases the records of the idle machine list of this pool, and

then receives and stores the new FREE MACH records. The time stamp member of

the FREE MACH LIST record of the pool is set to the current time.

GIVE MACHINE The W-Startd receives the cluster id/job id pair and the job context

from the Schedd. The W-Startd walks through the list of idle machines in search of a

machine that both meets the job requirements and the job preferences. If no machine

was found, the W-Startd walks a second time through the list of idle machines, this

time for a machine that only meets the job requirements.

If the W-Startd has found a idle machine for the job, it sends the REQUEST MACHINE

command, the name of the requesting machine, the cluster id/job id pair, and the job

context to the W-Schedd of the pool where the idle machine is located. The W-Startd

creates and stores a SERVING record with information about this request.

If the W-Startd hasn't found a idle machine, it sends the command NO MACHINE and

the cluster id/job id pair to the requesting Schedd.

FOUND MACHINE The W-Startd receives the name of the server, the name of the re-

questing machine, and the cluster id/job id pair from the W-Schedd. The W-Startd

looks up the SERVING record for this request, and checks if the message comes from

the expected World Machine. If so, the W-Startd sends the command MACHINE, the

name of the server, and the cluster id/job id pair to the requesting Schedd. Otherwise

the message is ignored.

NOT FOUND The W-Startd receives the name of the requesting machine, and the clus-

ter id/job id pair from the W-Schedd. The W-Startd checks if there is a SERVING

record that corresponds with this message, and if the message comes from the W-Schedd

of the pool from which it requested a machine. If this is true it sends the command
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NO MACHINE and the cluster id/job id pair to the requesting Schedd. Otherwise, the

message is ignored.

6.5 The W-Schedd

The W-Schedd manages a data structure called the queue of requests. The records of this

doubly-linked list are de�ned as:

typedef struct request {

struct request *next;

struct request *prev;

char *pool_name;

char *machine_name;

PROC_ID id;

CONTEXT *job_context;

int result;

char *server;

} REQUEST;

The member pool name, machine name, and id contain the name of the pool that posed the

request, the name of the initiating machine, and the cluster id/job id pair of the job. The

member job context contains the job context consisting of expressions that describe the job

requirements, job preferences and the job owner. The members result and server are used by

the W-Schedd to temporarily store the results of the negotiations.
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Figure 6.2 W-Schedd activation.
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Figure 6.2 shows that the W-Schedd is activated when it receives the REQUEST MACHINE

command from aW-Startd, the NEGOTIATE command from the Collector, or when a certain

interval (de�ned in the Condor con�guration �le) has elapsed. We now describe the actions

the W-Schedd performs when it is activated.

time-out The W-Schedd creates a context with the following expressions:

Running = 0

Idle = [number of requests in the queue]

Users = 0

and sends the command SCHEDD INFO and this context to the Collector. Running

and Users are expressions used by the Negotiator to calculate the priority of a machine.

They are set to zero so that the priority of the W-Schedd will always be at zero. The

expression Idle is used by the Negotiator to determine whether a machine wants to run

jobs. The W-Schedd sets this expression to the number of requests in the queue.

REQUEST MACHINE The W-Schedd receives the name of the initiating machine, the

cluster id/job id pair, and the job context, from the W-Startd and checks if the request

came from a World Machine (Condor pool) that has the right to run jobs in this pool.

If this is true, the W-Schedd makes a request record and places the request in the

queue. The result member is initialized with the value REJECTED. If this is the �rst

request in the queue, the W-Schedd sends a SCHEDD INFO message to the Collector

(see time-out), to tell that it wants to run a job.

NEGOTIATE The W-Schedd will negotiate with the Negotiator to get servers for the

request in the queue. The W-Schedd puts the results of the negotiations in the queue,

and sends the results to the W-Startd daemons of the pools that did the requests after

the negotiations have ended. This is done to prevent that the Negotiator has to wait

while the W-Schedd is communicating with the W-Startd.

The negotiations end when there are no more requests in the queue (the W-Schedd

sends the Negotiator the NO MORE JOBS command), or when the World Machine

has lost the priority (the Negotiator sends the END NEGOTIATE command). The

following list gives the steps of the negotiation for one job. This list is repeated until

the negotiations end.

1. The Negotiator starts by sending the SEND JOB INFO command, or the

END NEGOTIATE command when the World Machine has lost the priority.

2. The W-Schedd replies by sending the JOB INFO command and the job con-

text of the next request, or when there are no more requests, the command

NO MORE JOBS.

3. The Negotiator will try to �nd a server for the job. If the Negotiator has found

a server, it sends the command PERMISSION and the name of the server to the

W-Schedd, otherwise it sends the command REJECTED.
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4. The W-Schedd puts the result (PERMISSION or REJECTED) in the result mem-

ber, and the name of the server in the server member of the request record.

When the negotiations have ended, the W-Schedd goes through the queue and sends

for every request the results to the W-Startd who did the request. If the result was

PERMISSION, the W-Schedd sends the FOUND MACHINE command, the name of the

server, the name of the initiating machine, and the cluster id/job id pair, otherwise the

command NOT FOUND, the name of the initiating machine, and the cluster id/job id

pair. After the W-Schedd has sent the result to the W-Startd, the request is deleted

from the queue.

If the Negotiator ended the negotiations, the W-Schedd will send the NOT FOUND

message to the W-Startd daemons of the requests that where not handled, because the

result member of the request records were initialized with the value REJECTED.

SEND ALL JOBS( PRIO) The program condor globalq asks all the machines that want

to run jobs, to send information about these jobs. If the World Machine has told the Col-

lector that it wants to run jobs, the program condor globalq will send a

SEND ALL JOBS or SEND ALL JOBS PRIO message to the W-Schedd when it is

run. The Schedd will respond by sending a empty PROC record, to indicate that the

W-Schedd doesn't have a real job queue.
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Chapter 7

Performance of Remote System

Calls

We have tested the performance of the remote system call mechanism of Condor. We measured

the costs of gettimeofday system calls, the costs of writing 1024 bytes to a �le with a write

system call, and the costs of reading 1024 bytes from a �le with a read system call. We used

a small job that measured the time needed to do 1000 write system calls for writing in total

1024000 bytes to an already existing �le, the time needed to do 1000 gettimeofday system

calls, and the time needed to read in the �le of 1024000 bytes via 1000 read system calls.

We compared the following �ve situations:

� Without Condor. We measured the costs of normal system calls on several machines

that are part of the NIKHEF pool.

� With Condor in the NIKHEF pool. We measured the costs of remote system calls for

Condor jobs that were submitted in the NIKHEF pool (from paramount, the central

�le-server).

� With Condor in the 
ock situation with FWI. We measured the cost of remote system

calls for Condor jobs that were submitted to a test 
ock consisting of a pool of three

machines of NIKHEF and a pool of three machines of FWI.

� With Condor, execution machine is na47sun06. For measuring the costs of remote

system calls between NIKHEF and CERN, we added a machine of the CERN pool

to the NIKHEF pool. The jobs were submitted from paramount and executed on the

machine na47sun06.

� With Condor, execution machine is morbier. As with the machine of CERN, we added

the machine morbier of the WISCONSIN pool to the NIKHEF pool.

Although we performed the tests several times and at various points of time, the results only

give an indication of the kind of delay that may be encountered. The machines of NIKHEF

and the machines of FWI are connected by 10 Mbit ethernet. NIKHEF and FWI are both
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connected to WCW-Lan, also a 10 Mbit ethernet. Between Amsterdam and CERN a 0.5 Mbit

hired line is used, that is part of the EBONE network. The communication from Amsterdam

to Wisconsin goes �rst to CERN, from where it goes over a 1.5 Mbit transatlantic line to

Cornell. We have no information about the connection between Cornell and Wisconsin.

situation best worst mean

without Condor 0.038 0.110 0.061

with Condor, NIKHEF pool 4.0 12.3 6.6

with Condor, NIKHEF!FWI 5.7 12.2 8.8

with Condor, NIKHEF!CERN 62 229 121

with Condor, NIKHEF!Wisconsin 164 1294 485

Table 7.1 Costs of gettimeofday system call in milliseconds.

Table 7.1 shows the costs in milliseconds of doing a gettimeofday system call. For exam-

ple, it takes a Condor job in the NIKHEF pool on the average 6.6 milliseconds to do one

gettimeofday remote system call. An important point shown by Table 7.1 is that there is

only a small di�erence in performance between the situation where both the initiating and

execution machine are situated in the NIKHEF pool, and the situation where the initiating

machine is situated in the NIKHEF pool and the execution machine is situated in the FWI

pool. This means that it is acceptable to use the remote system call mechanism in the Condor


ock situation between NIKHEF and FWI.

situation best worst mean

writing reading writing reading writing reading

without Condor,

without NFS|local disk

0.3 0.2 1.9 0.4 0.7 0.3

without Condor,

with NFS

1.6 0.3 4.4 0.5 3.0 0.4

with Condor, NIKHEF pool,

without NFS|remote system

calls

7.6 7.2 15.5 17.2 10.7 11.1

with Condor, NIKHEF pool,

with NFS

1.5 0.3 8.0 0.3 5.4 0.3

with Condor,

NIKHEF!FWI

16.7 10.7 43.5 29.7 24.7 18.1

with Condor,

NIKHEF!CERN

103 78 326 387 195 183

with Condor,

NIKHEF!Wisconsin

212 213 1898 1552 643 582

Table 7.2 Costs of write and read system calls in milliseconds.

Table 7.2 shows the cost in milliseconds of write and read system calls respectively, each

transferring 1024 bytes. We measured the performance of normal system calls and remote
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system calls for jobs in the NIKHEF Condor pool, in both the situation that NFS was, or

was not used. An important point shown by the information in Table 7.2 is that the NFS

optimization is important. It also shows a di�erence in costs between writing and reading a

�le via NFS.
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Conclusions

The restriction that nothing might be changed to the Central Manager and as little as possible

to the other Condor software has caused a few problems. It is possible to use the World

Machine in a test situation, but the following changes to the Condor control software are

required, in order to use the World Machine in a real situation.

� The World Machine has a priority that is calculated by the Central Manager in the

same way as the priority of a normal machine. This means that the jobs of the World

Machine may be run before the jobs of a normal machine that has a lower priority than

the World Machine. The Negotiator should be changed so that the World Machine is

always the last machine for whose jobs the Negotiator searches servers.

� The Negotiator should be changed, so that when it is searching for a server for a job,

the World Machine is the last machine for which the Negotiator checks if the job can

run on it. This to prevent that jobs are run on the World Machine while there are idle

machines in the initiating pool.

� In the Condor 
ock situation it will be necessary to run the jobs under the UID and GID

of \nobody" or under a special Condor 
ock UID and GID. The Schedd knows whether

a job is going to be executed on a machine of the initiating pool, or on a machine of

another pool. A possible implementation would be to transfer this information from the

Schedd via the Shadow to the Startd and the Starter on the execution machine. The

Starter can than run the user job under the appropriate UID and GID.

Another possibility is that the Starter checks if the combination of login name, UID and

GID of the owner of the job is in the password �le. If the user is not known, the Starter

runs the Condor job under the UID and GID of \nobody" or the special Condor 
ock

UID and GID. If the user is known, the Starter runs the Condor job under the UID and

GID of the owner. A problem with this approach is that the same combination of login

name, UID and GID may exist in more than one pool.

Some changes to the Condor system call stubs will be necessary, in order to prevent

that �les are accessed via NFS in the Condor 
ock situation. Otherwise an error can
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occur when the Condor job tries to open a �le via NFS, because the job doesn't run

under the UID and GID of the owner, so it may not have the right to read or write the

�le.

There are some other points on which the design of the group 
ock can be improved. The

following improvements are not essential for using the World Machine in a real situation.

� If a job from one pool is executed on a machines of another pool, the report returned

by the program condor status

1

gives an inconsistent view of the states of the Condor

pools. In the initiating pool, the initiating machine says the job is running, but there is

no corresponding machine that is serving the job. In the execution pool, the execution

machine is serving a job (the machine is in the Job Running state) while there is no

corresponding machine with a remotely executing job.

The problem can be solved by letting the World Machine present itself to the Central

Manager as a machine which is serving several jobs (the jobs of the pool that are

executed on machines of other pools), and which has several jobs in the queue that are

running (the number of jobs that other pools are executing on machines of the pool).

The World Machine should then keep track of which jobs are running, and should be

noti�ed when a Condor job stops. A change to the Central Manager is needed to allow

the World Machine to say that it is serving several Condor jobs.

� The W-Startd and W-Schedd can't be run on a machine that is part of the pool,

because the W-Startd and W-Schedd use the same port numbers as the normal Startd

and Schedd. It is possible to give the W-Startd and W-Schedd di�erent port numbers

than the normal Startd and Schedd, but this means that all the other Condor daemons

have to know that the World Machine is a virtual machine.

In order to come to the ideal Condor 
ock situation as described in Section 4.3, it will be

necessary to redesign the Central Manager. The World Machine will no longer present itself

to the Central Manager as a machine with the same characteristics as one of the idle machines

of the other pools, but it will provide the Central Manager with information about all the

idle machines in the 
ock. The Negotiator can schedule the waiting jobs in the following way:

1. When the Negotiator starts scheduling it asks the status of the pool from the Collector,

and information about the status of the 
ock from the World Machine. The information

about the 
ock consists of a list of the idle machines in the other pools that may be

used, and a list of received requests.

2. The Negotiator prioritizes the set of waiting Condor jobs (Condor jobs of the own

pool and the requests from other pools), and determines the server-values of the idle

machines.

1

Even without 
ocking the information returned by condor status may not be completely consistent (See

Section 2.9).
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3. The Negotiator can then allocate the idle machine with the highest server-value to the

Condor job with the highest priority that can run on this machine.

Jobs that were scheduled to the World Machine can be started in the same way as described

in Section 5.5 (the World Machine of the initiating pool requests an idle machine for the

job from the World Machine of the execution pool). The following problems are solved by

integrating the concept of the World Machine with the Central Manager.

� The assumption that all the machines in the 
ock have the same architecture and op-

erating system is no longer necessary. The World Machine will provide the Central

Manager with information about which idle machines may be used, and which charac-

teristics they have.

� The Central Manager can schedule more than one job per schedule interval to the World

Machine. The World Machine such as it has been implemented during my graduating

term, can deal with the assignment of more than one job during one schedule interval.
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Source Code W-Startd
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Source Code W-Schedd
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Appendix C

Changes to the Condor Schedd
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Appendix D

Used Procedures from the Condor

Libraries

dprintf con�g(char *subsys, int logfd) Sets up the following dprintf variables based on

the con�guration �le.

int DebugFlags Bits to look for in dprintf

int MaxLog Maximum size of the log �le

char *DebugFile Name of the log �le

char *DebugLock Name of the lock �le

int (*DebugId)() Function to call to print special info

FILE *DebufFP The FILE to perform output to

dprintf(va dcl va alist) Generic logging function. Prints the message on DebugFP with

a date if any bits in "
ags" are set in DebugFlags. If locking is desired, DebugLock

should contain the name of the lock �le. If log length management is desired, MaxLog

should contain the maximum length of the log in bytes. (The log will be copied to

"DebugFile.old", so MaxLog should be half of the space you are willing to devote. If

both log length management and locking are desired, the lock �le should not be the

same as the log �le. Along with the date, other identifying information can be logged

with the message by supplying the function (*DebugId)() which takes DebugFP as an

argument.

EXCEPT(va dcl va alist) This is a macro that prints the line number, the name of the

source �le, and the error message (the argument of EXCEPT()) in the log �le, and then

exits.

con�g(char *a out name, CONTEXT *context) This routine reads in the Condor con-

�guration �les. The macros are stored in a hash table, and a context is created from

the control functions.

char *param(char *name) Returns the value associated in the has table with the named

parameter. Returns NULL if the given parameter is not de�ned.
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do connect(char *host, char *service, u short port) Creates a stream socket and con-

nects to the host-service or host-port combination.

udp connect(char *host, u short port) Creates a datagram socket and connects to the

host-port combination.

XDR *xdr Init(int *sock, XDR *xdrs) Creates a XDR record stream on top of a stream

connection.

XDR *xdr Udp Init(int *sock, XDR *xdrs) Creates a XDR record stream on top of a

datagram connection.

xdr mywrapstring(XDR *xdrs, char **str) Decodes or encodes a string with use of

primitive XDR routines. A null pointer is send as a null string, and a received null

string is returned as a null pointer.

xdr context(XDR *xdrs, CONTEXT *context) Decodes or encodes a context with use

of primitive XDR routines.

xdr mach rec(XDR *xdrs, MACH REC *ptr) Decodes or encodes a machine record

with use of primitive XDR routines.

rcv int(XDR *xdrs, CONTEXT *context, int end of record) This routine decodes

an integer, and moves the input stream's position to the beginning of the next record

in the stream if end of record is true.

rcv string(XDR *xdrs, CONTEXT *context, int end of record) This routine decodes

a string, and moves the input stream's position to the beginning of the next record in

the stream if end of record is true.

snd int(XDR *xdrs, CONTEXT *context, int end of record) This routine encodes

an integer, and causes the outgoing data to be marked as a record if end of record is

true.

snd context(XDR *xdrs, CONTEXT *context, int end of record) This routine en-

codes a context, and causes the outgoing data to be marked as a record if end of record

is true.

CONTEXT *create context() Allocates memory for, and initializes a context data struc-

ture.

free context(CONTEXT *context) Frees a context data structure.

store stmt(EXPR *expr, CONTEXT *context) Adds an expression to a context data

structure. If the expression already exists, it is replaced by the new one.

EXPR *scan(char *line) Parses a string and creates an expression.
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EXPR *build expr(char *name, ELEM *val) Makes an expression of the form "vari-

able = value".

evaluate bool(char *name, int *answer, CONTEXT *context)

evaluate int(char *name, int *answer, CONTEXT *context)

evaluate 
oat(char *name, 
oat *answer, CONTEXT *context)

evaluate string(char *name, char **answer, CONTEXT *context) These four rou-

tines evaluate the value of the variable name, with use of expressions from context. The

result is put in the variable answer.
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