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Abstract

A multiprocessor system which can run multiple hard real-time jobs consist-
ing of multiple tasks simultaneously, has to be able to guarantee there will
be no resource conflicts among the running tasks. This can be accomplished
by allocating the required resources when a job is started. These jobs will be
described as sets of functional components with data dependencies. These
components are to be distributed over the processors, such that their timing
constraints are not violated. Which resources to allocate depends on the
state of the system and the job at hand, making this a problem which has
to be solved at run time.

This report addresses this resource allocation problem for homogeneous
systems consisting of 10–30 processors connected through a small network
of 1–4 routers. The problem is tackled by using Bin Packing approximation
algorithms as heuristics, augmented with techniques to keep the bandwidth
usage to a minimum. The packing algorithms will try to map neighbouring
components on the same processor. In addition, a clustering of the tasks
of each job, which is optimised for bandwidth usage, will be calculated at
design time. The packing algorithm will first try to map this pre-calculated
solution, before it tries to map the original components.

This results in a significant reduction in resource usage, without increas-
ing the chance a job cannot be placed. Empirical tests indicate that such
a system is capable of using 95% of the available computational resources,
during a period with a large number of task arrivals and departures on a
heavily loaded system.
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Chapter 1

Introduction

The complexity of consumer electronics is ever increasing. Products such
as mobile phones, DVD players, and portable MP3 players are required to
process multiple media streams at the same time. In addition, the compu-
tational complexity of processing each of these streams is growing as well,
demanding more computational power. For some streaming media applica-
tions, this must be achieved without causing a degradation in quality due
to interference between the processing of the streams.

When the device can run more jobs than it can run simultaneously, the
assignment of a job to the processors has to be determined at run time. A
look-up table could be employed to determine these assignments for each
change in the set of running jobs. However, such a table can grow quite
large if more than a few jobs can run simultaneously, or if the assignment
of a job to the processors depends on the assignment of the other jobs.

The Hijdra project at Philips Research aims to provide a more dynamic
solution to this problem, without sacrificing performance. By designing a
system which is predictable in its timings and resource availability, tight
guarantees can be made for the jobs running on it. The Hijdra project
designs such a system from the ground up, allowing the predictability of the
hardware to guarantee the predictability for the software. Its focus lies on
hosting streaming media jobs, both soft and hard real-time, in an embedded
multiprocessor system. These jobs are started and stopped by a user on a
system of approximately 10–30 possibly heterogeneous processors.

The jobs can consist of up to 100 tasks, each of which needs to be assigned
to a processor when the application is requested to run. This assignment
depends on the current state of the system and thus has to be performed
at run time. Since finding a valid assignment for such jobs in general is an
NP-complete problem, it is a challenge to find good or even valid mappings
within a time span on the order of milliseconds.

This report will focus on the hard real-time tasks within this Hijdra
framework, and will make an attempt to tackle this challenge for homoge-
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2 1. INTRODUCTION

neous systems. First, the hardware and software models used in Hijdra will
be described in Chapter 2. Next, Chapter 3 describes the tasks of the Re-
source Manager, which is responsible for the brokering of resources in the
system amongst the applications. The case of a system with its processors
connected by a single router is analysed in Chapter 4. This is extended to
the general case of allowing any network topology in Chapter 5. The final
conclusions and future considerations are discussed in Chapter 6.

Philips Research, Eindhoven Delft University of Technology



3

Chapter 2

Environment

The timing requirements of a hard real-time application are strict. If the
system cannot guarantee the availability of enough resources, the job can
miss its deadline. Since the job is hard real-time, this is catastrophic for the
quality or even the application as a whole.

In the Hijdra architecture, the applications are divided into functional
components with data dependencies which can be distributed over the pro-
cessors in the system. For each component, the worst-case resource require-
ments are known at design time.

The timing and throughput characteristics of the application can be
derived, by forcing these applications to conform to a strict model called
Synchronous Data Flow (SDF). If these characteristics turn out to be unsat-
isfactory, the resource requirements can be stretched to allow better results.

When these components are mapped to the hardware, enough resources
have to be reserved in the system at run time for each component. The
timing and throughput characteristics derived by the analysis have to be
guaranteed. For this to be possible, the resources allocated in the system
have to be enough to cover any unpredictability. Hence, it is logical to
use hardware which is predictable in all relevant aspects. The usage of
predictable hardware decreases the gap of the amount of resources required
by the application, and the amount that has to be reserved for it.

The next section will describe a template for such hardware. In Section
2.2, a template for the applications will be presented, as well as the tools
necessary to analyse their behaviour. How the applications are executed on
the hardware is described in Section 2.3.

2.1 Hardware Template

The hardware is a multi-processor system, consisting of a set of processing
tiles connected by a network of routers. Every tile contains a single proces-
sor, its own local memory, and an interface to the network. The network

Philips Research, Eindhoven Delft University of Technology



4 2. ENVIRONMENT

itself consists of a set of routers, forming any topology using unidirectional
links. An example of such a system is shown in Figure 2.1.

CPU

mem

tiletile tile

network

tile tile tile

CPU

mem

NI NI

CA CA

Figure 2.1: A network connecting six processing tiles.

The setup of the processing tiles will now be discussed, as well as the
characteristics of the network. This network will for now be assumed to
consist of a single router. The characteristics of a network involving multiple
routers, such as the routing, will be discussed in Chapter 5, which deals with
the analysis of systems employing more than one router.

2.1.1 Processing Tiles

A processing tile in a Hijdra system is an independent computational unit,
consisting of:

• A main CPU, which executes the tasks assigned to the tile.

• A local memory, which holds the local state of the tasks as well as the
packets of data which are to be transmitted or have been received over
the network.

• A network interface (NI), which transmits and receives packets over
the network. It takes care of the construction and decomposition of
each packet into a header and a payload. To do so, it maintains a
table of all the network connections to and from the tile.

• A communication assist (CA), which arbitrates the access to the mem-
ory for the CPU and the NI.

Philips Research, Eindhoven Delft University of Technology



2.1. HARDWARE TEMPLATE 5

These components are connected as in Figure 2.2. For both the CPU
and the NI, the memory should act in a predictable way. This implies that
the bandwidth towards the memory should be divided between them, such
that the stalls on the reads or writes from either side can be tightly bounded.
The CA facilitates this arbitration, and can for example allow the NI and
CPU access to the memory ever other cycle. Such a scheme would delay
any read or write by at most one clock cycle.

Figure 2.2: A processing tile.

2.1.2 Network

The network in the Hijdra architecture can have any topology. The links in
the network can connect routers to each other or to processing tiles, using
unidirectional links. Every link provides the same amount of bandwidth,
but multiple links are allowed to exist between any two nodes. Typically,
connected nodes have links between them in both directions. An example
of this can be seen in Figure 2.1.

A router is capable of transferring data between all inputs and all outputs
simultaneously. The routers are synchronised and act on a time slice basis,
copying data from all used inputs to all used outputs in every time slice.
Because the routers are predictable in their timings, the system can avoid
collisions within these routers by reserving time slices for every connection.
In effect, the routers preserve the order in which they receive their data,
making them capable of serving FIFO channels.

Assuming collisions are avoided, the routers form no bottleneck in the
network since they can handle any load the links provide. The throughput

Philips Research, Eindhoven Delft University of Technology



6 2. ENVIRONMENT

of the system is therefore bounded by the bandwidth provided by the links.
If the processing tiles are all connected to a single router, forming a

star topology, then the bandwidth available between any two tiles is limited
only by the available outgoing bandwidth of the source and the available
incoming bandwidth of the sink.

Such a topology would be ideal, but cannot scale. The routers use a full
interconnection network internally, which grows quadratically in the number
of links. Due to physical constraints, a single router can be connected to at
most 10 input and 10 outputs. A system which contains only a single router
can therefor contain at most 10 processing tiles.

The routers thus described are modelled after those described in the
Æthereal model [8], which is internally being developed at Philips Research.
It describes a network-on-chip, and is capable of providing the necessary
guaranteed throughput connections. They will be further described in Chap-
ter 5, in which topologies of multiple routers are considered. The issues of
route discovery and allocation will be dealt with there as well.

2.2 Software Template

The Hijdra architecture is designed to run real-time, streaming media ap-
plications. It describes these applications by a three layer system. Figure
2.3 is an example of this layering. The top layer is the application, which
represents the collection of all the programs offered by the system.

Such an application consists of several jobs, which form the middle
layer. These jobs represent the individual programs which can be started
or stopped at the user’s request. More than one job can be running on the
system at any given time.

The structure of a job can be represented by a directed graph. The
bottom layer consists of the actors and channels which form these graphs.
These actors are functional components, which communicate to each other
solely through fixed, unidirectional, point-to-point connections.

Since the jobs to run are hard real-time, the resource requirements of
every actor has to be known at design time. The requirements imposed by
a channel are less straightforward, since they depend on the amount of data
it transports, as well as the maximum allowed latency for this data.

To derive these requirements, the Hijdra architecture uses SDF graphs
to model the jobs. These SDF graphs, standing for Synchronous Data Flow,
are a model well known in the literature to model and analyse streaming
media application [1, 12]. From the SDF graph, it is possible to derive the
minimum guaranteeable throughput from input to output, as well as the
required buffer sizes and bandwidth of each channel.
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2.2. SOFTWARE TEMPLATE 7

Application

Job Job

Actor Actor Actor Actor

Actor

Input
Stream

Output
Stream

Actor

Figure 2.3: The three levels of granularity of an application.

2.2.1 SDF Graphs

An SDF graph is a directed graph G(V,E) consisting of a set of actors V
and a set of channels E. The channels transport data in the form of tokens,
which have a fixed size per channel. The channels are guaranteed to preserve
the FIFO ordering of the tokens it transports.

The actors can communicate with each other through these channels
only. If two actors are connected by a channel, the producer will produce a
fixed number of tokens at every execution, and the consumer will consume
a fixed number of tokens at every execution. These numbers are annotated
on the graph, as can be seen in Figure 2.4. In this example, the dot on
the channel from A to B represents an initial token to be present in that
channel. It serves as a delay between A and B, because due to this token,
the sample produced by execution t of A will be processed by execution t+1
of B.

A B1 1 C2 2

Figure 2.4: An SDF graph consisting of three actors.

An actor of a job is allowed to execute as soon as the annotated numbers
of tokens are available on all its incoming connections. Once these condi-
tions are met, the actor is said to fire. After execution, the actor will have
consumed its input and produced its output.

This definition allows different actors to operate on different data samples
at the same time. For instance in Figure 2.4, once actor A has produced
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8 2. ENVIRONMENT

output, actor B can consume it while actor A starts to work on producing a
new sample. In fact, if enough input is available, an actor can fire multiple
times simultaneously. If it does, it is required to maintain the FIFO ordering
of the data stream.

HSDF Graphs

From this information, several essential properties can be derived. This
is done after converting the SDF graph into a simpler, homogeneous SDF
(HSDF) graph. In such a graph, every actor produces or consumes exactly
one token on each of the channels it is connected to. Such a graph is easier
to analyse due to its direct correspondence to normal graph theory. The
transformation of SDF to HSDF can be done relatively easy (by cloning
actors), but this can result in an exponentially larger graph.

2.2.2 Throughput Analysis

In theory, actor A in Figure 2.4 can fire infinitely often at once. In practice,
it is assumed the executions of A are controlled by an external source, such
as a stream from disk or from a recording device, as shown in Figure 2.3.
The firing rate of the actors is also limited by any data that has to be
communicated to the processing of the next data sample. This can occur
for example in a video stream, where frames are incrementally updated, and
thus making the content of one frame depend on the content of the previous
one.

Cycles

This type of behaviour can be modelled by adding cycles to the SDF graph,
for instance as in Figure 2.5. For the first firing of actor B, there exists no
previous data sample. But because an actor can only fire once all its input
channels contain enough tokens, the model requires tokens to be present on
the back edge in the cycle to accommodate for the first firing. After B has
executed, C can work on B’s output and produce information for B to use
on the next sample. The execution of C thus delays the next execution of
B.

1 1

1 1

B CA D

1 1 1 1

Figure 2.5: An SDF graph containing a cycle.
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2.2. SOFTWARE TEMPLATE 9

Preserving Internal State

It often occurs that an actor has to preserve information for itself between
executions. This internal state of an actor is modelled through adding a self
edge to the actor, as in Figure 2.6. Since this self edge is in essence a small
cycle, it has to contain a token, which represents the initial internal state.

A
1

1 1

1

Figure 2.6: An SDF actor with a self edge.

Execution Times

If there are no cycles in the SDF graph, the minimum guaranteeable through-
put is infinite, because all actors can fire on multiple samples at once, with-
out waiting for the computations of previous cycles to be completed.

By introducing cycles, the firing of an actor is potentially delayed due
to waiting for another actor to finish execution on the previous sample. If
the cycle is a self-edge, the actor has to wait for itself to finish processing
the previous sample. The execution times of the actors can thus influence
the throughput of the system.

Because the tasks under consideration are hard real-time, their worst-
case execution times are known. From this, the throughput through each
cycle in the SDF can be calculated.

Cycle Means

The minimal throughput that can be guaranteed to flow through the SDF is
limited by the cycles in the graph. Given an HSDF graph G(V,E), then for
every cycle C = {v1, e1, v2, e2, . . . , vn}, v1 = vn, the cycle mean µC can be
calculated. This cycle mean denotes the average time it takes to execute a
full cycle, given the worst-case execution times of its actors and the number
of initial tokens (delays) on its channels. Let d(e) be the number of delays
on channel e, W (v) the worst-case execution time of actor v and C(G) be
all the cycles in G, then:

µC :=
∑n−1

i=1 W (vi)∑n−1
i=1 d(ei)

.
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10 2. ENVIRONMENT

The minimal guaranteeable throughput is limited by the highest µC

present in the HSDF. So, let C(G) be all cycles in G. Then the Maximum
Cycle Mean (MCM) µG is equal to

µG := max
C∈C(G)

µC .

Which results in a minimal sustainable throughput of

Θ =
1

µG
.

This maximum sustainable throughput is not always what is required by
the application, in which case we can allow a less strict system, by stating
the desired sustainable throughput θ, and deriving the maximum allowed
cycle mean µθ:

1
µθ

:= θ ≤ Θ.

A critical cycle is one which has a mean equal to µθ.

2.2.3 Channel Capacities

The unlimited capacity of the channels in an SDF graph is something which
cannot be implemented in hardware. Through analysis, the maximal re-
quired channel sizes can be derived. The calculated bounds can then be
represented in the HSDF model by adding back edges containing a number
of tokens equal to this bound. For example, Figure 2.7 shows a channel
from producer P to consumer C with a capacity of two tokens. Between the
two edges, there can never be more than two tokens in total, bounding the
original forward edge in capacity.

P C

1 1

1 1

Figure 2.7: A channel from P to C with a back edge added to bound its
capacity.

Because these back edges form extra cycles in the graph, they can influ-
ence the throughput. Take for example the HSDF graph drawn in Figure
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2.8a. For clarity purpose, the token production/consumption numbers are
not drawn, but are all 1. All three actors have the same worst-case execu-
tion time W . As the only cycles in the graph are formed by an actor and
its self edge, the MCM of the graph is µG = W . Suppose µθ = µG. Now,
the channels will be bounded in their capacities. A first attempt results in
Figure 2.8b. For each channel, the back edge creates a cycle C which has
to have µC ≤ µθ = W . Since such a cycle C contains two actors, with 2W
execution time in total, it has to contain at least two tokens to obtain a
µC ≤ 2W

2 = W .
Figure 2.8b shows this is not all there is to it. The addition of channel

back edges have created extra cycles in the graph. In particular, take the
cycle drawn in gray. It contains all three actors, but only two tokens. There-
for, the mean of this cycle is equal to 3W

2 > µθ, making the graph unable
to guarantee the desired throughput. To fix this, another token has to be
added to this cycle. Only channel back edges are candidates for such extra
tokens, since adding tokens to the original edges from Figure 2.8a would
change the semantics of the graph. A token is therefor added to the edge
(B,A), resulting in Figure 2.8c. In this final graph, no cycle has a mean
larger than µθ.

This example shows that the capacity of a channel cannot be derived
purely by the characteristics of its endpoints. Adding back edges to the
system can form additional cycles, making it necessary to reanalyse the
throughput after the back edges are added. The impact on the throughput
of bounding the channel sizes can then be derived using the same methods
as before. This allows verification of the throughput characteristics once all
channels have been bounded in size.

A B

C

A B

C

a) b) c)

A B

C

Figure 2.8: a) An HSDF graph with 3 actors. b) The same graph with
FIFO back edges added. One of the extra cycles that has emerged is drawn
in gray. c) The same graph, with a token added to (B,A).
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2.3 Execution Model

The main CPU on a processing tile keeps a list L of tasks which are assigned
to run on it. Since only periodic tasks are considered, this list does not
change until tasks are added or removed by external events.

The CPU will work through the list by inspecting the tasks in a round-
robin fashion. If the task at hand is ready to execute, the CPU will do so
until the task is finished. Whether or not the task could execute or not, the
next task is considered, without changing the order of the tasks in the list.
The following pseudo code reflects this process:

while true
for i := 1 to |L|
if can_execute( L[i] )

execute( L[i] )
end if

end for
end while

in which the can_execute(t) function returns true iff all input for task t is
available on its incoming edges. Because of how FIFO buffers are modelled,
this also ensures enough space is available to write its output on its outgoing
edges.

This implies that any task which becomes ready for execution, has a
maximum waiting time equal to the sum of the execution times of all the
other tasks in the list. The worst-case execution time of every task is known
at design time. If W (v) is the worst-case execution time of task v, and Di is
its deadline within a single period, then the following simple formula ensures
every task on the processor will meet its deadline:

∀i ∈ L : Di ≥
∑
v∈L

W (v).

The software model allows the determination of deadlines for the actors,
such that a desired temporal behaviour can be guaranteed, independent of
the mapping of tasks on processors, or the ordering of tasks in L.

2.3.1 Network Latency

The presence of a network influences the behaviour of the job’s execution.
When an SDF channel has its endpoints mapped on different processing
tiles, the network acts as an added latency for each data transfer. This
can be modelled by adding an extra actor between the endpoints of the
channel, which copies data from input to output taking the given latency
as its execution time. If such a channel is part of a cycle, this increases the
mean of that cycle.

Philips Research, Eindhoven Delft University of Technology



2.3. EXECUTION MODEL 13

To make the mapping of a job to processing tiles easier, it will be as-
sumed at design time that every channel can potentially be mapped over the
network, at maximum distance from each other. This increases the mean
of all cycles in the graph. If this is unacceptable, some or all actors in the
cycle will be merged into a single actor, such that they will be mapped to
the same processing tile. In the extreme case, the graph will have to be
transformed into a directed graph of strongly connected components, which
is acyclic except for the self edges. In such a graph, the network still adds
latency to the graph, but not to any cycle.
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Chapter 3

Resource Management

The processing tiles and the network links are inherently limited in the
amount of resources they offer to applications. The Resource Manager (RM)
is one of the pieces of middle-ware running in the Hijdra system, and is
responsible for the brokering of these resources amongst the jobs which are
running and arriving on the system.

The RM has to perform its job on-line: it has to map (and unmap)
applications depending on the current state of the system. It has only limited
resources available for this job. It has to be able to run on an ARM 200MHz
processor and finish its computations in the order of tens of milliseconds on
average. This places severe limitations on the possible computations which
can be performed.

3.1 Job life-cycle

It is assumed that a request to start a job originates from an unpredictable
source, such as a user or an external system. The RM has to act when either
a job is started or stopped.

3.1.1 Starting Jobs

Once such a request arrives at the RM, the RM checks if a suitable assign-
ment of actors to processors can be found, as well as routes through the
network to support this mapping. Such an assignment is suitable, if it is
valid. An assignment is valid if all the actors and routes actually fit into the
parts of the system to which they are assigned. If the state of the system
allows many valid mappings which are easy to find, the RM can do more: it
can find a mapping such that jobs arriving in the future will have a higher
chance of being mapped as well.

In the case that no valid mapping can be found, the job cannot be
started, a fact which is then propagated back to the source that requested
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this. All this has to be decided in a short time span, on low speed CPUs.
The user cannot be delayed for too long before the job is actually started or
the start request is denied. The denial of start requests may also be handled
by a Quality of Service manager, which can then try to start the job in a
lower quality mode such that it needs less resources.

3.1.2 Stopping Jobs

A job can either finish or be requested to stop by an external source. From
the viewpoint of the RM, the work to be done once a job is ready to be re-
moved from the system, is fairly trivial: the resources used in the processing
tiles it occupies have to be deallocated, as well as the routes through the
network used by the job.

3.1.3 Resource Fragmentation

When the load in the system becomes high, new jobs requested to be started
have a higher chance of becoming scattered over the processing tiles, to use
up the resource leftovers. This implies that systems which frequently expe-
rience a high load have a high chance of having their resource usage frag-
mented. Since scattered jobs generally use more resources (such as network
bandwidth) than ones which are mapped to a concentrated set of tiles, this
leads to degeneration of the system. This fragmentation occurs at various
resource types, including:

• Actor scattering due to the forced distribution of actors when starting
jobs on heavily loaded systems.

• Memory fragmentation due to actors using memory regions on a tile
which are not adjacent to each other or the memory boundaries.

• Network degeneration due to the increasing length of optimal routes
once the network becomes congested.

3.2 Resource Modelling

The embedded multiprocessor template, as defined in the previous chapter,
distinguishes several resources to be used by the jobs which are running.
The exact requirements of a job in terms of these resources depends on
the distribution of its actors over the available processors, which can be
formalised for both the actors and the communication channels of a job.

The resources required of a processing tile will be represented as a vector,
since a tile hosts several resources:

CPU cycles are offered in an endless supply, but because all applications
running on it are periodic of nature, it cannot host an infinite number
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of actors. The analysis of SDF graphs provides a solution to this
problem: as states in equation 2.1, an actor can only be added to a
tile if the sum of all the execution times does not exceed any of the
actors their deadline. The deadline of all actors in a job, which is
requested to be started, is the same. From this information, an upper-
bound on the available CPU space can be derived for every processor.
Say L is the list of actors currently mapped to a processor p, and µθ is
the deadline of the actors of the job to be started. Then the amount of
available CPU space on that processor is equal to min(µθ,mini∈L Di).
If there are no actors mapped to a tile, it has an infinite amount of
free CPU space.

Memory is offered by the tile to store data and stack.

NI FIFO slots need to be allocated for each slot used in the NI route table
when a route over the network needs to be established.

CA bandwidth needs to be allocated for each network connection to allow
the packets to be read or written to the memory.

Incoming bandwidth has an upper-bound by the number of incoming
physical connections, and thus needs to be allocated.

Outgoing bandwidth has the same type of restriction as the incoming
bandwidth, and thus needs to be allocated as well.

Given a set of processing tiles T , then for every tile t ∈ T , a vector of
free resources F (t) is known. It contains the amount of resources available
in the order as described in the list above:

F (t) :=



C(t)
M(t)
N(t)
S(t)
I(t)
O(t)

 ,

where C(t) to O(t) are the amounts of resources available on tile t. These
vectors are adjusted every time a job is started or stopped.

Since latency is no issue, the network offers a sole resource: bandwidth
between all the tiles. For the time being, the network shall be considered to
consist of a single router. In this case, a scalar B is sufficient to represent
the amount of bandwidth available in this router. In Chapter 5, the full
network model shall be introduced and modelled.
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3.2.1 Actors

An SDF actor represents a computation, and thus requires CPU cycles to
run as well as memory to store the intermediate results. For actors that
have a self-edge to model their state between periods, the memory to store
this state is included in the memory requirements of the actor. This can be
done without loss of generality, since the self-edge is always mapped to the
same tile as its actor.

The requirements can be modelled as a function of vectors s : V → Nd:

s(v) :=



W (v)
M(v)

0
0
0
0

 ,

in which W (v) is the worst-case execution time of actor v, and M(v) the
required amount of memory.

3.2.2 Channels

The requirements of an SDF communication channel are more complex be-
cause the resources required by it depend on the location of the producing
and consuming actor. For instance, if both are mapped onto the same pro-
cessing tile, the communication channel can be implemented by a FIFO
buffer in memory. Such a channel will be called internally mapped. On the
other hand, if both ends are mapped onto different tiles, network resources
are needed to transport the data from one tile to the other. Such a channel
will be called externally mapped.

Internally mapped

If both endpoints of a channel are mapped to the same tile, it only requires
memory on that tile to store the FIFO buffer. Written as a vector function,
these requirements are modelled by a function of vectors i : E → Nd:

i(e) :=



0
M(e)

0
0
0
0

 ,

in which M(e) is the amount of memory required to store the FIFO buffer
for channel e if both its endpoints run on the same processing tile.
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Externally mapped

If the endpoints of a channel are mapped to distinct tiles, a link over the
network has to be established to support it. The following resources are
required from the tiles hosting the producer and the consumer of the channel:

• Memory, on both tiles, to store the send and receive buffers.

• A NI slot, on both tiles, to register a connection in the network inter-
face.

• Outgoing bandwidth on the tile hosting the producing actor.

• Incoming bandwidth on the tile hosting the consuming actor.

p(e) :=



0
Mp(e)

1
CAp(e)

0
b(e)

 , c(e) =



0
Mc(e)

1
CAc(e)

b(e)
0

 .

In the above equations, b(e) is the amount of bandwidth required by
the channel, Mp(e) and Mc(e) the amount of memory required to store the
producing and the consuming end, respectively. The required CA bandwidth
is represented by CAp(e) and CAc(e). A single NI FIFO slot is needed on
both sides as well.

In the network, a route is required providing the bandwidth between
both tiles. The amount of bandwidth required by the channel is represented
by the scalar function b : E → N, which is equal to rate at which tokens are
produced, times the token size.

3.2.3 Reformulation

In the previous sections, four different classes of size vectors have been de-
fined which together describe the resource requirements of a job in a Hij-
dra system. For mapping purposes, this classification contains redundancy
which can be removed to create a simpler, but idempotent description. Let
w(v) be the sum of

• the size of actor v, s(v),

• for all channels e, in which v is the producer, p(e),

• and for all channels e, in which v is the consumer, c(e).
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In other words, w(v) represents the amount of resources needed to host
actor v, if no other actors would be mapped to that tile. This can be
calculated through

w(v) := s(v) +
∑

e=(v,b)∈E

p(e) +
∑

e=(b,v)∈E

c(e).

This is the size of an actor if all channels are externally mapped. On the
other hand, if a channel is internally mapped, it has a different size. This
gain δ(e) can be calculated through

δ(e) := p(e) + c(e)− i(e).

Note that it is reasonable to assume that

∀e ∈ E : p(e) + c(e) ≥ i(e),

since storing both endpoints on the same tile reduces the amount of resources
used. This implies that δ(e) ≥ 0.

The functions w and δ thus describe the resource requirements of the
actors, and the gain of placing adjacent actors on the same processor, re-
spectively. This information is sufficient to calculate the requirements of
any mapping.
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Chapter 4

Single Router Networks

The full on-line resource allocation problem is complex. As will be shown,
it is NP-complete as are many of its subproblems. This fact makes finding
optimal solutions impractical for anything but small applications, especially
in a run time setting.

The approach taken to solve this is by splitting it up into a sequence
of subproblems, for which approximations and heuristics are explored. The
first step in this is to start with analysing small systems, in which all pro-
cessing tiles can be connected to a single router. A router can be connected
to up to 10 processing tiles, making this a realistic case for small systems.

Since a router can copy data from all inputs to all designated outputs
simultaneously, no congestion or collisions can occur. The bottlenecks for
the traffic travelling through the router is therefore always at the processing
tiles. This allows the incoming and outgoing bandwidth to be modelled as
resources to be bound as dimensions next to CPU and memory usage.

4.1 Problem Definition

When the network consists of a single router, there is no need to look for
routes when the source and the sink of a channel are mapped on different
tiles. This reduces the resource allocation problem to looking for a processing
tile to host each actor. The resources available at the processing tile include
the bottleneck between it and the router. The problem is thus defined:

Problem 1 (Single Router Allocation Problem). Given a job digraph
G = (V,E) and a set of tiles T , in which every tile has F : T → Nd resources
still available and every actor has size w : V → Nd. Every channel reduces
its endpoint resource requirements by δ : E → Nd if mapped internally. Does
there exist a mapping map : V → T , such that

∀t ∈ T :
∑
v∈V

map(v)=t

w(v)−
∑

e=(v,w)∈E
map(v)=map(w)=t

δ(e) ≤ F (t)
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holds?

In other words, given a job digraph and a set of tiles, it is required to
find a mapping, taking into account the maximum available space per tile
in each resource dimension.

4.2 Optimality

The problem as described only considers whether a feasible solution ex-
ists. In many situations, for instance for an empty system, there exist an
abundant number of possible solutions. This allows looking for optimality
criteria.

On the one hand, power consumption can be a significant factor in em-
bedded systems. In this single router case, the router does not impose
feasibility constraints, since it can support full bandwidth between any pair
of endpoints. But transferring data from NI, through the router, and to an-
other NI costs power, which can be saved if the channel endpoints would be
mapped to the same tile. From a power consumption perspective, it is thus
preferable to use as little bandwidth as possible. If the system is capable
of shutting down unused processors, it is also beneficiary in terms of power
consumption to use as few processing tiles as possible.

On the other hand, the mapping of a job influences the possibilities for
future jobs to be mapped. The system cannot know which jobs will arrive in
the future, but it can predict which type of configurations it likes to avoid.
If the available resources are scattered throughout the system, it becomes
hard or even impossible to map actors with a high resource demand. A
tighter packing can be obtained by using as few processing tiles as possible,
thus keeping the number of unused tiles at a maximum. More free space
can be obtained by using as little bandwidth as possible, since mapping two
endpoints of a channel on the same tile saves on the available channels to
and from that tile.

Because there are essentially two optimisation criteria, bandwidth and
tile usage, there need not be a single global optimum. Deciding which cri-
terium is more important than the other depends on the situation at hand.
If the available bandwidth is running low, it is important to leave as much as
possible for jobs to come. If there is plenty of bandwidth available, but the
number of free tiles becomes critical, it is better to optimise for tile usage
first.

A trade-off is required between the bandwidth used, and which tiles are
used to host the job. The amount of bandwidth used is kept to a minimum
by mapping as many channels internally as possible. For a job which does
not share any processing tiles with other jobs, the fewer tiles it uses, the
better.
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If there exist partially occupied processing tiles within the system, it
could be preferable for an arriving job to try and fill up such tiles first. In
the trade-off, this can be represented by giving such tiles a lower cost to use.

4.3 Integer Programming Model

There is now enough information to construct an Integer Linear Program for
the single router case. This program will be explained, and then simplified
to allow approximation algorithms to be devised.

The required mapping function map : V → T is constructed through an
enumeration of both the actors and the tiles, along with a matrix X of size
|T | × |V |, for which:

xij =
{

1 iff actor j is mapped to tile i.
0 otherwise.

First, we need to make sure that every actor will be put in exactly one
tile:

j = 1, . . . , |V | :
∑|T |

i=1 xij = 1
i = 1, . . . , |T |, j = 1, . . . , |V | : xij ∈ {0, 1}.

To know where the edges are, a set of auxiliary variables rei is introduced,
for which:

rei =
{

1 iff channel e is mapped internally on tile i.
0 otherwise.

If the variables rei are maximised in the cost function, the following
formulas can be used to program them:

i = 1, . . . , |T |,∀e = (a, b) ∈ E : 1
2xia + 1

2xib ≥ rei

i = 1, . . . , |T |,∀e ∈ E : rei ∈ {0, 1}.

Also, for each tile, the actors mapped to it should not need more re-
sources than available. Each actor a requires w(a) resources, with a bonus
reduction of δ(e) for every edge that has both its endpoints mapped to the
same processing tile:

i = 1, . . . , |T | :
∑|V |

j=1 w(vi)xij −
∑

e∈E δ(e)rei ≤ F (ti).

To be able to calculate the number of tiles used, an auxiliary variable ui

is introduced for each tile ti, for which:
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ui =
{

1 iff tile i is used.
0 otherwise.

If the variables ui are minimised in the cost function, they can be pro-
grammed through:

i = 1, . . . , |T | :
∑|V |

j=1 xij ≤ |V |ui

i = 1, . . . , |T | : ui ∈ {0, 1}.

the bandwidth usage versus tile usage tradeoff will be represented by a
vector ci, i = 1, . . . |T | which represents the costs for using each tile. The
optimal value for this trade-off can then be found through the objective
function

max α
∑

i

∑
e∈E reib(e)−

∑|T |
i=1 ciui . (4.1)

4.4 Approximation

The Integer Program defined in the previous section cannot be solved at run
time. A heuristic is called for, and can be found by drawing analogies to
known problems in the literature. The single-router case shows resemblance
to a well-known problem in the literature called Bin Packing, which is defined
as follows:

Problem 2 (Bin Packing Problem). Given a set of items A with each
a ∈ A having a size s(a) ∈ N, a bin size S ∈ N, and a number k ∈ N. Does
there exist a partitioning of A into at most k subsets, such that for each
subset P ,

∑
x∈P s(x) ≤ S holds?

This problem is NP-complete [11]. In our case, we want to pack actors
into processing tiles. The size of an actor is equal to the amount of resources
it requires. But because these requirements span multiple dimensions (such
as CPU cycles and memory), this size cannot be represented as a scalar. In
the literature, the problem of packing items with a vector instead of scalar
size is known as Vector Packing, which is defined as follows:

Problem 3 (Vector Packing Problem). Given a set of items A, with
each a ∈ A having a size s(a) ∈ Nd, with ∀i = 1, . . . , d : s(i) ≥ 0, a bin size
S ∈ Nd and a number k ∈ N. Does there exist a partitioning of A into at
most k subsets, such that for each subset P ,

∑
x∈P s(x) ≤ S holds?

Furthermore, our ’bins’ are not always empty when a packing is per-
formed: jobs may already be running in the system, partially filling various
bins. The actors of these jobs cannot be moved to other tiles. Rather than
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solving a new Vector Packing problem each time a new job arrives, an ex-
isting packing is incremented. The extreme case of this is commonly called
on-line packing: items are packed as they arrive in the system, without
any knowledge of subsequent items and without the possibility to move al-
ready packed items. The case in which all items to be packed are known
in advance is called off-line packing. In the resource allocation problem,
the actors arrive in batches, thus falling between the on-line and off-line
variants.

Another technical problem arises from the fact that the sizes of the
objects to pack (the actors and their edges) are not constant: if two con-
nected actors a and b are packed into the same tile, their combined size
is s(a) + s(b) − δ((a, b)). To be able to use known Vector Packing algo-
rithms, this can be solved by assuming ∀e ∈ E : δ(e) = 0, which effectively
over-dimensions the problem.

Finally, the Vector Packing problem does not take bandwidth into ac-
count: it is only concerned about the number of bins used. This problem
will be solved through trying to get heavily connected sets of actors on the
same tile, but first, known algorithms for Vector Packing are explored and
their suitability empirically tested. A more elaborate summary of these and
other approximation algorithms for Vector Packing can be found in [14].

4.4.1 Off-line Vector Packing

For the off-line version of Vector Packing, algorithms are known to both
solve the problem exactly and to approximate it. For an exact solution, the
most common approach is to employ a branch-and-bound algorithm. Spread
across literature there are several known lower-bound functions which are
designed for, or can be adapted to Vector Packing [3, 13]. When these are
combined and put into a branch-and-bound framework, an algorithm can
be produced which can solve moderately sized (up to ∼ 40 actors) instances
on fast machines. It is doubtful whether it can be sped up to be able to
solve most 100-actor instances on a 200 MHz ARM processor in a fraction
of a second. This makes the calculation of exact solutions feasible only for
design time solution generation purposes on moderately sized instances.

When turning to approximation algorithms, it should first be noted that
it is impossible to approximate the number of required bins within an arbi-
trary constant (if P 6= NP) [15]. This explains why these algorithms have a
quite poor theoretical worst-case performance. The following algorithms are
the most well-known. In all cases, d stands for the dimension of the vectors
and bins, and OPT is number of bins required by the optimal solution:

First Fit (FF) For every item, put it in the bin in which it fits which has
the lowest index. In the worst case, (d + 7/10)OPT bins are required.
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First Fit Decreasing (FFD) The items are sorted in non-increasing or-
der after which First Fit is applied. There are several ways to order
multidimensional items. If they are sorted with respect to the largest
element, this algorithm requires at most (d + 1/3)OPT bins.

FVL Fernandez de la Vega and Lueker provide an algorithm which requires
at most (d + ε)OPT bins for arbitrarily small ε [7]. It is mostly of
theoretical interest due to the fact that it is exponential in ε. For
instance, it requires a running time of O(n36) for ε = 1/3.

CK Chekuri and Khanna use an approximation through linear program-
ming, and re-pack the fractionally packed items using greedy methods
[4]. They thus obtain an algorithm which requires at most (2.58 +
ln(d))OPT bins.

The CK algorithm does not look suitable to be performed on-line, be-
cause it requires solving a large linear program. The FVL algorithm is
unsuitable directly due to its high-order polynomial complexity. The FF
and FFD algorithms therefore receive the most attention in this text.

First Fit

For the FF and FFD algorithms, several variations are known. A promising
variant is BF and BFD, Best Fit (Decreasing), which for each item, puts it
in the bin in which it leaves the least free space. Since such variants require
measuring the free space or item sizes of a vector, for which there is no
unique way, they have not received any attention in the literature (to our
knowledge).

Another variant of FF and FFD can be found in the way their packings
can be computed. Instead of considering each item at a time and putting
it into the first bin in which it fits, the exact same packing can be obtained
by considering each bin at a time, trying to add every unpacked item to it,
and do so if it fits. Although this does not change the resulting packing, it
does not require all bins to remain ‘open’: once a bin is filled, no more items
will be added to it by the algorithm. This will prove to have advantages for
algorithms which will interface with FF and FFD.

4.4.2 On-line Vector Packing

The on-line version of Vector Packing is not well explored in the literature.
The only algorithm analysed is FF, which works in the same way as in the
off-line case.
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4.4.3 Vector Packing and Resource Allocation

In the case of resource allocation in a Hijdra environment, the approximation
by casting the problem as a Vector Packing problem falls between the off-line
and the on-line version. Although the on-line algorithms could be applied
directly, the off-line algorithms need to be adapted to be able to use partially
filled bins instead of solely the empty ones which they expect.

The FFD algorithm can be adapted trivially, since it leaves the packing to
First Fit, which is an on-line algorithm. Because on-line algorithms pack the
items one at a time, there is another advantage over many off-line algorithms.
Recall that to be able to cast the resource allocation problem as a Vector
Packing problem, it had to be over-dimensioned by using ∀e ∈ E : δ(e) = 0.
For on-line algorithms, this is not necessary, since the size of the actor
under consideration can be adjusted to incorporate the δ(e) for every tile
and every channel to an actor which is already packed. Note that this still
is an over-dimensioning, since for channels to unmapped actors, δ(e) is not
yet subtracted.

4.4.4 Clustering Strategies

When Vector Packing algorithms are applied to solve the resource allocation
problem, there is no control over the amount of bandwidth used by the
final solution. To use less bandwidth, the algorithm should try to place
connected actors on the same tile. There are three basic moments to do
this: before, during, and after the packing phase. These strategies will be
named Clustering Before Packing (CBP), Clustering During Packing (CDP)
and Clustering After Packing (CAP), respectively. Their interactions with
the packing algorithm is shown in Figure 4.1.

In CBP, a set of actors can be replaced by one large actor, which repre-
sents this actor set as to force them all to be mapped to the same processing
tile. This large actor will be treated by the packing algorithm as any other
actor, making CBP transparent to the packing algorithm.

In CDP, the packing algorithm works together with a clustering heuristic
to get the right combination of actors on each processing tile, such that the
bandwidth needed between the tiles is minimised.

In CAP, the actors can be swapped around after they all have been
assigned to a processing tile. This strategy effectively optimises an existing
mapping.

Before Packing

Before the actors are packed on tiles, sets of actors can be located which are
heavily connected. These are then grouped together such they are forced to
be packed on the same tile. This could lead to an increase in the number of
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CBP

Pack + CDP

CAP

actorstiles

mapping

actors+
clusters

mapping

Figure 4.1: The interaction flow between clustering strategies and the pack-
ing algorithms.

required tiles due to too aggressive clustering, but it could also lead to a de-
crease due to the space saved by better use of the δ-function. (heterogeneous
systems and tile size).

For homogeneous systems, this can be defined as follows:

Problem 4 (Clustering Before Packing Problem). Given a graph
G(V,E), a partition size F , weight functions w, δ and b, and a natural
number k. Does a partition of V into P = {P1, . . . , Pn} exist, such that for
each partition

i = 1, . . . , n :
∑
v∈Pi

w(v)−
∑

e=(a,b)∈E
a,b∈Pi

δ(e) ≤ F,

and the total length of the cut

n−1∑
i=1

n∑
j=i+1

∑
x∈Pi,y∈Pj

b((x, y)) ≤ k?

The F , w and δ functions are those as defined before. Since every tile is
the same, it is omitted as a parameter to these functions.

Theorem 1. Clustering Before Packing is NP-complete.

For a proof, see Section B.1. This problem ignores the fact that some
tiles can already be partially occupied. There is a danger that the clusters
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created by algorithms which solve or approximate CBP are rather large
(approaching the size of a tile), and cannot be used to augment already
partially occupied tiles. If the packing algorithm does want to augment such
tiles, it has to split up one or more of the clusters into its individual actors
and use those actors for augmentation. In extreme cases, this could render
the clustering done useless as breaking up any cluster greatly degrades its
quality.

As a special case, CBP is useful if there are individual actors which do not
fit on any tile, unless they are packed along with some of their neighbours.
For instance, take a channel e = (a, b). If the following holds for an empty
tile t:

w(a) 6≤ F (t) ∨ w(b) 6≤ F (t)
w(a) + w(b)− δ(e) ≤ F (t),

then actors a and b have to be packed together. Such situations can be
recognised at design time, and are thus a form of CBP. It is assumed this
situation is avoided, or already taken care of, at design time. The RM can
thus assume any actor can fit on an empty tile, i.e., ∀a ∈ V : w(v) ≤ F (t)
for an empty tile t.

Although CBP does not use information about the situation in the sys-
tem, like the presence of partially occupied tiles, its use is justified. The
packing algorithm is not obliged to use the clusters, since it can still choose
to pack the individual actors instead. Using CBP allows the creation of a
high-quality clustering at design time, which is useful at run time in several
situations. It can be used to map the first job efficiently. Also, it can be
used as a fall-back to map the application to a set of empty tiles efficiently, if
the on-line algorithm fails to find any better solution. Both situations bene-
fit from a pre-calculated clustering, especially if it is substantially better in
terms of bandwidth or tile usage than solutions calculated ad-hoc.

During Packing

When packing the actors onto tiles, the packing algorithm can consider to
pack actors which are connected to the ones already mapped to the tile
which is being filled. This requires the algorithm focuses to fill bins instead
of finding any bin to place each actor.

The First Fit algorithm allows this. When it assigns an actor to a tile,
it can be modified to look at that actor’s neighbours and try to put them
on the same tile. This is in essence changing the order in which actors are
considered, while the algorithm is running.

Because this algorithm performs clustering as well as a form of First Fit
packing, it will be called FFC.
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After Packing

After packing, actors can be swapped between tiles to get connected actors
on the same tile. This can be defined as follows:

Problem 5 (Clustering After Packing Problem). Given a graph G(V,E),
a partition size F , weight functions w, δ, and b, and a natural number k.
Also given a partitioning of V into partitions P = {P1, . . . , Pn}, each of at
most size F , that is

i = 1, . . . , n :
∑
v∈Pi

w(v)−
∑

e=(a,b)∈E
a,b∈Pi

δ(e) ≤ F.

Is it possible to repartition V into n partitions Q = {Q1, . . . , Qn}, each of
at most size F , having a total cut length of

n−1∑
i=1

n∑
j=i+1

∑
x∈Pi,y∈Pj

b((x, y)) ≤ k?

Theorem 2. Clustering After Packing is NP-complete.

For a proof, see Section B.2. The CAP strategy cannot use more tiles
than the packing phase before it specifies. This is essential, because requiring
more tiles would defeat the purpose of packing first. The algorithm cannot
assume there are more tiles available than the packing used.

No algorithm implementing CAP will be tested in this report. If the
packing algorithm creates a good mapping using few bins, there is little
room to swap actors around. To do this, a local search algorithm could be
employed. It was considered more likely that doing CBP and CDP would
lead to situations superior to those CAP would obtain, on average.

4.4.5 Clustering Algorithms

A greedy CBP algorithm can be constructed as follows: order all edges
non-decreasing by their bandwidth requirement. For every edge, contract
it so that the result will still fit on a tile. Contracting an edge e = (a, b)
means replacing both actors by a single actor c which represents these two
endpoints. The resource requirements of this resulting cluster is

w(a) + w(b) −
∑

e=(a,b)∈E δ(e) −
∑

e=(b,a)∈E

δ(e).

Every edge incident to a or b, but not both, will instead be incident in the
same way to c.

This greedy clustering algorithm can be controlled by allowing only a
certain percentage of the edges to be contracted into a single entity. Given
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a certain percentage, the algorithm will try to contract up to that percentage
of the edges. As a result, a tradeoff can be made between the amount of
bandwidth saved directly by this clustering and the average granularity of
the resulting clusters. Due to their granularity, smaller clusters are easier to
combine on to processing tiles, so not contracting the smaller edges might
be preferred.

4.5 Test Setup

The main purpose of the RM is to find a feasible solution for mapping a job,
as often as possible. Whether it can do this depends on both the algorithm
used and the current state of the system. The number of possible states
is enormous. A state is defined not only by the set of jobs running on the
system, but also by the job history. For example, if a job X is added to an
empty system, it will have a different mapping than if it is added to a system
with some jobs already running. If in the latter case all the jobs except X
are terminated, again a system with only X running, is left. Since the
mapping of jobs does not change during their runtime, job X, even though
it is running on an empty system in both cases, can have many different
mappings.

Tests will be performed, focusing on two situations. On the one hand,
the algorithms will be subjected to mapping jobs to an empty system. This
situation is reproducible and easily analysable. But because this does not
test the compositionality and fragmentation issues of the solution, a test
‘game’ is derived to stress the system, forcing it to map jobs under heavy
load. This will generate extreme conditions, and the performance of the
RM will be measured against them. In all tests, the system will consist of a
single router connected to 10 processing tiles.

This game works as follows:

1. Select a set of jobs J which are allowed to run on the system.

2. For each job j ∈ J , calculate the sums ~rj be the vector of the total
amount of CPU and memory requirements of their actors and channels.

3. Let the set of running jobs R be equal to ∅.

4. Let ~t be the vector containing the total amount of CPU and memory
available in the system.

5. Select a job s ∈ J
R.

6. If ~rs +
∑

j∈R ~rj ≤ ~t, the job should fit on the system from a total
resource usage viewpoint. If this is not the case, terminate running
jobs at random until the inequality holds.
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7. Try to map s. If successful, run it, i.e., R := R ∪ {s}.

8. To do another round, go to step 5.

In the first few rounds, the jobs selected will fit and fill up the system.
Then, the algorithm will try to add jobs which should fit, where only the
totals of the CPU and memory resources are considered. The rate of success,
being the number of successful mapping attempts divided by the number of
rounds, will be measured.

As is, the game is not a fair one for the RM. The RM cannot be expected
to fill up all processing tiles to 100%, even if it would use optimal packing
algorithms. Instead, the performance of RM will be plotted against the
percentage of tiles it will manage to fill. This will be done by introducing a
slack parameter σ ≥ 0, and the inequality in step 6 is changed into

(1 + σ)

~rs +
∑
j∈R

~rj

 ≤ ~t,

so the RM is expected to require a factor of δ more resources than the
job strictly needs. If such a σ creates a low failure rate, this implies the
system designer should over-dimension the system to have σ~t resources, if
the designer wants the system to be capable of running a set of jobs with a
total size of ~t concurrently.

The decision of which jobs to allow in the game is subject to a set of
observations. First, if a mix of small and big jobs is used, the game is allowed
to stop a big job to make room for a small one. The RM will find a location
for the small job relatively easy due to the abundance of free resources. Any
subsequent jobs, if small, will also be easily mapped. Secondly, if a set of
solely large jobs is used, a granularity problem arises. For instance, if all
jobs require 4 tiles, and the system contains 10, the system allows a lot of
slack in itself. It will not expect the RM to be able to map three jobs at a
given time, and has plenty of resources to map two of them. Such a situation
will hardly test the quality of the RM. Thirdly, for a set of larger jobs, the
difference between the largest and smallest job in the set increases, which
leads to the first problem. For these reasons, the game will be tested using
a set of jobs consisting of only 10 actors.

4.6 Empirical Results

The Vector Packing problem is a subset of the resource allocation problem.
As such, the approximation algorithms for Vector Packing can still attain
the same worst-case performance (or even worse) when used for resource
allocation. These worst-case bounds are quite high: in the case of 6 di-
mensions, First Fit can require up to 6.7 times more tiles than the optimal
solution. Fortunately, in practice this will not be the case.

Philips Research, Eindhoven Delft University of Technology



32 4. SINGLE ROUTER NETWORKS

The next sections will define the test instances, and evaluate the algo-
rithms that were described in this chapter.

4.6.1 Job Instances

Because of a lack of real application graphs, random ones need to be con-
structed with properties which are likely to be found in real applications.
These general properties were, for a graph G(V,E):

• An edge density of about 1, i.e., |V | = |E|.

• A size of |V | ∈ {10, 20, . . . , 100}.

The single-router networks do not have as many tiles as the multi-router
networks. The tests in the single-router case will therefore be restricted to
graphs of 40 actors. The larger graphs need larger systems, and will be
tested once multiple routers, and thus more tiles, are allowed.

For the resource requirements of both actors and channels, several classes
were defined:

Class I Heavy actors, heavy edges.

Class II Heavy actors, light edges.

Class III Light actors, heavy edges.

Class IV Light actors, light edges.

The resource requirements of both the actors and the edges are chosen
from a uniform random distribution. A heavy actor is an actor which uses
4–14% of the CPU cycles and memory of a tile. A heavy edge uses 2–7%
of the available memory and bandwidth of a tile, as well as 2–7% of the
bandwidth available in the CA. The light actors and edges use half the
amount of resources as the heavy versions. Each processing tile will be able
to keep track of 30 connections over the network.

For every class and instance size, 100 instances were randomly created.
No attempt was made to create DAGs. None of the algorithms is exploiting
this property, and since these applications are artificial, there is no concern
about their theoretical throughput. It is assumed that the results measured
on these graphs can be considered the same as for DAGs.

4.6.2 Packing Algorithms

First, the performance of various packing algorithms was tested without
applying any clustering. The problem is over-dimensioned by assuming ∀e ∈
E : δ(e) = 0. Informally, this means there is no gain in resource usage if a
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Figure 4.2: The percentage of tiles used to host jobs of increasing size. The
optimal solution represents 100%.

channel is mapped internally. This allows an exact solution to be found by
a branch-and-bound (BB) algorithm. This solution is then compared to the
performance of FF, FFD, FFC, BF and BFD for all classes. The result of
this can be seen in Figure 4.2. The Best Fit algorithms were found to have
a performance nearly equal to their First Fit counterparts. Since the First
Fit algorithms are less computationally expensive, the Best Fit algorithms
were omitted from the graph.

In this figure, the horizontal axis represents the size of the instance, and
the vertical axis represents the number of tiles which were needed to host
the instance, in percentages relative to the optimal value.

These graphs appear to imply that the actual average performance of
the approximation algorithms tested is far below the worst case given by
theory. All algorithms tested need, on average, less than 20% more tiles
than optimal while FFD (and BFD) require less than 10% more. This is far
better than the 533% increase which can occur for FFD and BFD, according
to theory. In all cases, if the approximation algorithms could not find the
optimal solution, they only needed at most one tile more.

The reason that such extremely bad behaviour is not encountered in

Philips Research, Eindhoven Delft University of Technology



34 4. SINGLE ROUTER NETWORKS

empirical tests, is twofold. First, it has been shown that (at least in the
single-dimensional case), on average, algorithms like FF and FFD perform
far better than their theoretical worst case [5]. Secondly, a possible increase
of 533% stems from the fact that 6-dimensional vectors are being packed.
Theoretically, each new dimension can add additional problems for the pack-
ing algorithm and thus increase its worst-case performance. In practice, not
every dimension will turn out to be of equal influence. For instance, if all
processes use relatively more CPU cycles than memory, the packing algo-
rithm can ignore the memory dimension as it will always fit if the CPU
cycles do. This results in one less dimension to pack, but the worst-case
analysis ignores such facts.

This result motivates the use of these very simple algorithms, removing
the need to test more complicated algorithms like CK and FVL. These
algorithms are not likely to provide a gain in performance which is worth
their complexity.

Internally mapped channels

The next step is to see how much performance can be gained by allowing
∀e ∈ E : δ(e) ≥ 0. This allows the packing algorithms to save on resources
(network interface slots and bandwidth) if they map a channel internally.
The resulting problem is no longer bin packing, making it impossible to use
BB to solve it. Instead, the results for BB from Figure 4.2 are copied as a
reference point. The approximation algorithms do allow this change to be
incorporated, as explained in Section 4.4.3.

The result of this is shown in Figure 4.3. The gain in tile usage is
especially visible in class 3, in which the algorithms now perform within 5%
of the old optimum, compared to around 18% in Figure 4.2. The actual
optimum in this graph lies somewhere below the BB-line, but is complex
to compute. The algorithm for BB relied on lower bound computations
provided by literature. These lower bounds no longer hold in the case of
δ(e) > 0. Such a test has therefore been omitted in this work.

The approximation algorithms show an improvement in their perfor-
mance. The FFC algorithm can now take advantage of a decrease in re-
sources if it manages to map more channels internally. Its performance is
now nearly equal to that of FFD, which had an advantage over FF due to
sorting the items in non-increasing order before packing them.

4.6.3 Clustering

The effect of clustering is measured by using the set of largest graphs (40
actors) for each class and applying the CBP greedy clustering algorithm in
varying degrees. The CBP algorithm attempts to contract 0% to 60% of
the channels, in 1% increments. If it is not possible to cluster the requested
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Figure 4.3: The percentage of tiles needed, if it can save resources by map-
ping a channel internally. The results are shown against the BB solution
from Figure 4.2.
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Figure 4.4: The bandwidth used, as a function of the clustering percentage.

percentage of channels, as many channels as possible are contracted. Trying
to contract more than 60% of the channels succeeded in none of the cases.

The packing algorithms FF, FFD and FFC were all tested in this con-
text. Of these algorithms, FFC includes a CDP clustering strategy which
augments the CBP greedy clustering.

The bandwidth required after clustering and applying any of the packing
algorithms, is shown in Figure 4.4. The difference of average bandwidth
usage between FF and FFD is next to none. This is no surprise considering
these algorithms totally ignore bandwidth usage. The advantage of using a
clustering algorithm for these cases however is evident. It allows an average
drop of bandwidth usage between 60% and 80%, depending on the job class.

In the same graph, results for the FFC algorithm are plotted. This algo-
rithm perform packing and clustering simultaneously. It comes as no surprise
that when no greedy clustering is employed, this algorithm outperforms both
FF and FFD in terms of bandwidth usage. When greedy clustering is added,
it augments the clustering performed by FFC. The gain in bandwidth usage
for FFC lies between 17% and 44%. At the highest clustering percentage,
the performance of FFC and FF/FFD are nearly indistinguishable.

The reason for this is twofold. First, the average size of the clusters
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increases as the percentage of greedy clustering increases. With larger clus-
ters, it will be more difficult to combine neighbouring clusters on the same
tile. In fact, at the highest percentage this is impossible, since the clustering
algorithm would have merged them into a single, bigger cluster before FFC
would get that chance.

Secondly, the greedy algorithm can outperform FFC in terms of band-
width usage, since it uses global knowledge about the task graph at hand.
On the other hand, FFC only uses local knowledge, as it tries to add the
neighbours of the actors already mapped to a tile. In some cases, it is bene-
ficiary to not add such a neighbour, if that neighbour communicates heavily
with a third actor which would not fit on the tile with the first two actors
combined.

While heavy clustering reduces bandwidth usage, there is a price to
be payed in the number of tiles which the packing algorithm requires. In
Figure 4.5, the number of tiles needed to map the job is plotted against the
clustering percentage. It shows a less than 5% increase in the number of
used tiles if full clustering is used. This allows for an easy tradeoff in the
optimality Formula 4.1, as the tile usage is nearly constant.

4.6.4 The Game

The tests done so far assumed the system is empty when a job is to be
mapped, and tried to reduce the resource usage for that case. To test the
performance of the algorithms on a non-empty system, the stress test game
as described in Section 4.5 is run. The game is run for 10000 rounds.

The tests are run using FFC to pack the actors, since that was the most
promising of algorithms, which does not depend on greedy clustering, in the
previous tests. Different amounts of clustering are tested against different
amounts of slack, resulting in Figure 4.6.

This graph shows several remarkable results. First, if no clustering is
used, the system only needs 6–10% slack to eliminate virtually all of the
failures. The algorithms thus prove to be amazingly efficient, regardless of
any difficult fragmentation issues that could theoretically occur. Apparently,
either fragmentation does not pose a problem, or the hard cases are not
encountered in practice.

Secondly, CBP does not seem to work as well as suggested by previous
tests. It worked in the single job tests, the job was mapped to an empty
system. This implies the clusters created could always be placed. In this
game test, the clusters created by CBP are too big to put on processing
tiles which already clusters actors from other jobs. If the system is at a high
load, this could mean enough resources are available in the system, but they
are fragmented. A newly arriving job may fit if the RM looks at the total
amount of resources available, but the clusters created are too large to fit
anywhere. The RM will have to be able to map jobs even if most of the
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Figure 4.5: The percentage of tiles used, as a function of the clustering per-
centage. For each algorithm, the percentage of tiles it needs at 0% clustering
is given the value of 100%.
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Figure 4.6: The percentage of successful mappings, as a function of the
allowed slack. Each line represents a clustering percentage.
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Figure 4.7: The percentage of successful mappings, as a function of the
allowed slack. Each line represents a clustering percentage.

available tiles are partially occupied.
Thirdly, the graph occasionally spikes downwards, which would not be

expected if more slack is allowed. A case analysis showed this is due to the
game getting stuck into a local minimum, in which the jobs running are
mapped badly. According to the amount of free resources, the RM should
in these cases be able to add another job, but it fails doing so for many jobs
in a row. This accounts for a streak of failures, of which the impact is visible
in the graphs. This effect occurs more often at high clustering percentages,
as they are less suited to deal with fragmented mappings.

This bad behaviour can be largely compromised by using a fall back: if
the RM cannot map the clustered version of the job, it should try to map the
unclustered version. The resulting performance can be seen in Figure 4.7.
With this modification, clustering can now compete with the unclustered
packing, and even improve on it.

The tests in the previous sections implied that the strength of clustering
lies not in optimising tile usage, but in optimising bandwidth. If the system
tested had ample bandwidth available, the mappings can succeed even with-
out optimising for bandwidth. Would the jobs require more bandwidth, this
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Figure 4.8: The percentage of successful mappings, as a function of increased
bandwidth requirements. Each line represents a clustering percentage.

could become critical, and clustering might start to pay off. If the band-
width requirements of all channels are scaled up, and allow for 10% slack,
the performance results in Figure 4.8.

The increase of the bandwidth required per channel changes the picture
entirely. At some point, depending on the class of jobs, greedy clustering
cannot be omitted if the mapping is to succeed. In class IV, eventually the
RM failed to map almost all jobs if not some form of clustering is employed.
With enough clustering, it was capable of mapping almost all of them. In
classes I and III, even clustering is not enough to map the instances, but it
should be noted that no way has been provided to prove the feasibility for
such jobs.

4.6.5 Conclusions

The family of First Fit packing algorithms have shown to form a simple
but effective basis to solve the resource allocation problem in single-router
networks. Unmodified, First Fit sees the bandwidth usage as of the mapping
as a constraint to satisfy per processing tile, but cannot optimise for it. To
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optimise for bandwidth usage, First Fit was modified such that when it
maps an actor to a processing tile, it tries to map its neighbours there as
well. This variant was named FFC.

Also, it is possible to calculate, at design time, a partitioning of each job
graph, such that each partition fits on a processing tile, and the bandwidth
used between the partitions is minimised. Mapping these partitions instead
of the actors proved to decrease the bandwidth usage of the mapping even
more. However, empirical tests show that the RM has to be able to fall back
to packing the original actors, since the partitions do not always fit into a
partially occupied system.

If bandwidth is a scarce resource compared to the requirements of the
job which is requested to be mapped, this combination of employing a pre-
calculated solution and falling back to FFC proved by far to be the best
solution. If bandwidth is available in abundance, this pre-calculated solution
is not necessary but can provide a decrease in power consumption. The test
showed that it does not hurt to try.

Finally, in the configurations tested, this combined solution has shown
to be capable of using at least 95% of the computational resources. This
effectivity decreased in situations in which bandwidth was a scarce resource,
but the existence of a pre-calculated solution still helped the RM to achieve
a high success rate in many cases.
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Chapter 5

Multiple Router Networks

A single-router network as described and analysed in the previous chapter
covers only part of the full resource allocation problem as it exists in Hijdra.
Instead of a single router or a bus, a network of routers will exist between
the processing tiles. Any channel which is mapped externally on such a
system requires a dedicated route through this network between both of its
endpoints.

This means that even in a homogeneous system, the tiles are not indistin-
guishable anymore. Algorithms have to be devised in order to determine in
which tile an actor is going to be placed. While the algorithms presented for
single-router networks could serve this purpose, they do not specify which
tile should be chosen if a new one is used for the first time: there was not
any choice to be made.

This chapter models the network and analysis algorithms for discovering
routes between two tiles. Additionally, the packing algorithms which were
promising in the single-router case will be extended to include topology
knowledge in order to improve their decisions. The effectiveness of all this
shall be empirically tested for several topologies.

5.1 Network Model

The network in Hijdra systems is a directed graph of routers, tiles, and the
links connecting them. The topologies that can be formed are limited by the
fact that every tile can be connected to only one router, and every router
can only have a limited number of links.

Every router contains a full interconnection network making it able to
send data from any input link to any output link simultaneously. This inter-
connection network comes at a physical cost, scaling the router quadratically
on the number of links. A limit of 8 links per router is considered to be a
realistic case.
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5.1.1 Routing

All routers and tiles send and receive data synchronously as if operating
under a global clock. If data arrives on an input at tick t, it will be sent
through the router to the output link and arrive at the other end of that
link at tick t + 1.

In the tiles, the Network Interface (NI) serves as the intermediate be-
tween the network and the memory. A NI contains a set of FIFO buffers,
which contain the data for the different SDF channels allocated to send data
to other NIs. A TDMA wheel is present as well, which divides the available
bandwidth at the ticks of the global clock. For each FIFO buffer, slots in
this wheel can be reserved to reserve bandwidth. Because every NI has a
TDMA time wheel of equal size, the whole network can be considered to be
subject to the rotation of these wheels.

The route through which the packets of a FIFO buffer flow through the
network should be allocated, and is fixed for the lifetime of the SDF channel
it supports. Such a route through the network consists of a simple path
defined by the routers used and the slots in the wheel used at the source NI.
To avoid collisions between routes, they should be allocated not only per
hop but also per slot in each router’s time wheel.

The network graph will therefore be expanded to include these time slots
as well. Each router vertex is replaced by T vertices, where T is the number
of slots in the time wheel. Each edge is replaced by T edges. If the edge
is between two routers, it connects every slot vertex t of the source to slot
vertex (t + 1) mod T of the sink. If the edge is between a router and a tile,
each edge connects slot vertex t of the router to the single vertex representing
the tile. The Figures 5.1 and 5.2 show such a transition for a case with two
routers, two tiles and T = 4.

5.1.2 Packets

The packets travelling through the network consist of a header and a pay-
load. The header can take up a significant portion of the bandwidth: situ-
ations in which the header is one word, and the payload is two words long
are realistic. To save bandwidth, a NI can allocate adjacent slots in its time
wheel, which are configured to follow the same route. This implies adjacent
slots will be used from the source NI to the sink NI. In such adjacent slots,
it is possible to send a header in the first, and let the payload span the rest
of all the bandwidth of all the adjacent slots allocated.

5.2 Route Discovery

When the source and sink of an SDF channel are mapped to different tiles,
the channel requires a route through the network to be allocated between
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Figure 5.1: A network graph of two tiles and two routers, without any slots
modelled.

Figure 5.2: A network graph of two tiles and two routers, with 4 slots
modelled per node. Each router is replaced by 4 nodes, each representing a
time slot and is either connected to the next time slot in the next router, or
to the node representing the tile.

these two tiles. In the network graph model, this corresponds to finding
a set of paths between the two NIs of those tiles, which together provide
enough bandwidth to support the channel.

The problem of finding paths through digraphs is well known in graph
theory. In particular, finding the shortest path between two vertices is a
useful case:

Problem 6 (Shortest Path Problem). Given a weighted digraph G(V,E)
and two vertices s, t ∈ V . Find a path from s to t of minimum weight.

Since all the edges in the network model provide the same bandwidth, the
weights of the edges can be considered 1. This allows Dijkstra’s algorithm
to be used to find the shortest path between any two NIs in O(|V |2).

For the whole job, generally more than one route will be allocated
through the network. These routes are not allowed to collide, so between
the several pairs of source and sink vertices, edge-disjoint paths need to be
discovered:

Problem 7 (Directed Edge-Disjoint Paths Problem). Given a weighted
digraph G(V,E) and a digraph H(V, F ) using the same vertices. Find a set
of edge-disjoint paths in G, containing exactly one path from s to t for every
pair (s, t) ∈ F .
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5.2.1 Complexity

The Directed Edge-Disjoint Paths Problem is NP-complete, even in many
restricted cases [11]. In the resource allocation problem, more freedom is
allowed: the RM is free to choose on which tiles the actors will be mapped,
and thus free to choose the location of the sources and sinks of every channel.
This leads to a different problem, specifically:

Problem 8 (Job-to-Network Mapping). Given a job digraph G(V,E),
and a network topology T = (P ∪R,N) of processing tiles P , routers R and
a network N . Also given a weight b(e) > 0 for each edge in E and a capacity
c(n) > 0 for each link in N . The topology T is restricted by the fact that
each vertex in P is only connected to exactly one router in R (assuming
|P | > 1). Does there exist an injective mapping of actors V to tiles P such
that there exist edge-disjoint routes through the network (through R and N
nodes) to accommodate the edges between the actors in the mapping.

Theorem 3. Job-to-Network Mapping is NP-complete.

For a proof, see Section B.3. This proof also shows the NP-completeness
still holds even if each actor has to be mapped to a different tile, and both
the job and network graph are trees.

The JNM problem will be tackled by using a layered approach. The
individual tiles will be filled by the clustering and packing algorithms as
described in Chapter 4. The RM will decide about the actual placement of
the contents of each of these tiles. Since many tiles are similar, it can move
the content of one tile to another one. Once the location of the contents of
one or more of the tiles is known, routes between them can be discovered.
This last step is equal to the Directed Edge-Disjoint Paths Problem, and
due to its complexity, approximations have to be used.

5.2.2 Approximation Algorithms

Instead of trying to solve the Directed Edge-Disjoint Paths Problem directly
by considering all paths at once, it is approximated by allocating routes one
by one. Each time a Shortest Path algorithm is used to find paths for each
channel, and the shortest of these shortest paths is chosen and allocated.
This algorithm is called Greedy Path. It is capable of finding at least a
fraction of Ω(1/

√
|E0|) of the routes possible, where |E0| is the number of

channels used by an optimal solution [10].

5.3 Virtual Tile Placement

The clustering and packing algorithms create a partitioning of the set of
actors, such that each partition fits on a processing tile. If the network
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consists of a single router, it does not matter which partition is assigned
to which tile, since they can be considered equal. If the network consists
of more routers, this is no longer true, because routes through the network
have to be found as required by the mapping. In that case, the RM has to
decide which partition is to be mapped to which processing tile.

The partitions will be called virtual tiles, as they are considered to be
processing tiles by the packing algorithm, but do not have a fixed location in
the system. Different virtual tile placement approaches allow for a locating
a suitable placement of these virtual tiles at three moments in time:

• On-line: each time a new virtual tile is required, the RM selects a pro-
cessing tile in the system. Combined with the packing and clustering
algorithms, this results in a flow as shown in Figure 5.3

CBP

Pack + CDP

actorstiles

mapping

actors+
clusters

On-line
VTP

1 tilerequest
new tile

Figure 5.3: The interaction flow between clustering strategies, the packing
algorithms and on-line virtual tile placement.

• Semi on-line: the packing algorithm fills one virtual tile at a time.
Each time a virtual tile is filled up, the RM can find the best location
for it. This results in the flow shown in Figure 5.4.

• Off-line: when all required virtual tiles are filled, the RM can assign
a processing tile to each one. This is shown in Figure 5.5.

The semi on-line and off-line variants assume that all available processing
tiles in the system are either totally full or totally empty. This stands in
contrast to the required run time requirement of being able to map a job
to a non-empty system. However, both variants allow an adaptation in
which partially filled tiles are filled up using the on-line variant and fixed
in position. The rest of the actors is treated with the semi on-line or the
off-line approach. These adaptations will be discussed in Section 5.3.4, but
first, algorithms using these approaches will be presented.
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CBP

Pack + CDP

actorstiles

1 mapped
virtual tile

actors+
clusters

Semi
On-line

VTP

1 empty
virtual tile

1� filled
virtual tile

Semi
On-line

VTP

next
virtual
tile

Figure 5.4: The interaction flow between clustering strategies, the packing
algorithms and semi on-line virtual tile placement.

CBP

Pack + CDP

actorsvirtual
tiles

mapping to virtual tiles

actors+
clusters

Off-line
VTP

mapping

Figure 5.5: The interaction flow between clustering strategies, the packing
algorithms and off-line virtual tile placement.
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5.3.1 On-line

The on-line packing algorithms work by choosing a processing tile for each
actor at a time. These algorithms request new processing tiles once an
actor does not fit in the already used tiles. Choosing the location of a new
processing tile when the packing algorithm request one is a both simple and
natural extension.

When the RM has to choose a new processing tile, it has little informa-
tion to decide its location. It knows one of the actors that is going to end up
on it, but nothing more. Of this single actor, the locations of its neighbours
is only known for those that are already mapped.

The heuristic chosen is to choose the processing tile closest to the ones
already used. If the mapping started on an empty system, the order in
which processing tiles are chosen is thus always the same. This order can
be calculated beforehand.

5.3.2 Semi On-line

The FF-based packing algorithms allow a variant in which, repeatedly, a
virtual tile is filled as much as possible, and then considered no further.
Once the packing algorithm completes a set of actors L to be placed on a
single virtual tile, the RM can find a suitable processing tile to host it.

Using this way of packing, the RM knows all the actors that are going to
reside on a virtual tile before it has to choose its final location. This allows
the RM to choose a processing tile which allows efficient routes between the
actors L and all actors N which are already mapped and connected to an
actor in L.

The heuristic designed for this case calculates a score for each empty
processing tile, equal to the sum of distances from it to the tiles which
contain an actor from N . Each of these distances has a weight equal to the
bandwidth that is required between both processing tiles. The processing
tile with the lowest score is the one on which L shall be mapped.

5.3.3 Off-line

The semi on-line approach can be extended into letting the packing algo-
rithm create a set of virtual tiles, without fixing any of their locations. The
RM should then assign a processing tile to each of these virtual tiles, such
that the required routes between them can be found.

This problem is NP-complete in general, but the network topologies
which will be considered admit certain properties which can be exploited.
Typically, each router which is connected to a processing tile is connected
to more than one. For the routes that do have to travel over the network, it
is favourable to map both endpoints to processing tiles which are connected
to the same router.
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So again a partitioning is called for. In this case, each partition will be
mapped to the processing tiles connected to the same router. The parti-
tions can therefore contain a number of virtual tiles equal to the number of
unoccupied processing tiles connected to each router. The bandwidth used
between the routers should be kept to a minimum.

In the literature, this problem falls under a class of problems known as
the Multi-Way Partitioning Problem. This problem asks for a partitioning
of a graph into k pieces, optimising some cost criterion based on the weights
of the edges in the cut and/or the sizes of the partitions. A common way to
solve this class of problems is to use recursively use a Minimum Bisection
algorithm, which can cut the graph into 2 pieces, optimising the weights of
the edges in the cut. A well-known heuristic for Minimum Bisection is an
algorithm designed by Kernighan and Lin [9]. This algorithm improves on
a given bisection by constructs a list S, which contains pairs of vertices, one
from each partition, to be swapped. Once this list is constructed, it will
swap all the vertices in the list. This is done multiple times, until no more
improvements can be found. It works as follows:

1. Create any bisection of V into P1 and P2 with |P1| = |P2|.

2. Set all vertices to ‘unlocked’.

3. Let S be equal to ∅, which is a list. Let G be a list, equal to ∅.

4. For every pair of unlocked vertices a ∈ P1, b ∈ P2, calculate Dab, which
is the reduction of the weights of the edges in the cut, were a and b to
be swapped.

5. Find a ∈ P1, b ∈ P2, for which Dab is maximal. Append (a, b) to S.
Append Dab to G|S|. Swap and lock a and b.

6. Repeat the previous two steps until all vertices are locked.

7. Find n := arg max0≤n<|S|
∑n−1

i=0 Gi. If
∑n−1

i=0 Gi ≤ 0, the algorithm
terminates.

8. Swap back all pairs in S after index n.

9. Goto step 2.

The power of this algorithm lies in the fact that it is capable of going
around certain local minima; it allows the cut to grow, if it knows it will
increase more in the future moves. This happens when, for some 0 ≤ i < n,
Gi < 0, but still

∑n
i=0 Gi > 0.

The original KL algorithm as described here can only split a graph into
two pieces of equal size. It can be adapted to be able to create partitions
of unequal size. To do this, the initial bisection should create partitions of
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the proper size, and the modified KL algorithm should consider all possible
swaps in each step. In every step, a pair of nodes is locked, so a swap list of
size |S| = min(|P1|, |P2|) will be considered.

This modified KL algorithm inspires an heuristic for grouping the result
of the packing algorithm into groups which have sizes equal to the number
of empty processing tiles connected to a router. The heuristic considers a
router and the set of virtual tiles still to map. It uses the modified KL
algorithm to cut off a number of virtual tiles equal to the number of tiles
connected to the router. These virtual tiles are placed, and the heuristic
considers the next router and the remaining virtual tiles.

According to literature, several techniques exist to make the KL algo-
rithm run faster [6], or perform better [2]. These techniques have not been
incorporated in this work.

Note that this approach only shifts the problem to the next level. Up
to here, algorithms have been devised to decide which actors are placed in
which tiles, and which tiles are placed along the same router. This leaves
still the choice of which routers should be picked, and which group of tiles
should be placed along each. To provide an answer to this question, more
characteristics of the topology are required. It will not come as a surprise
that in general, this left-over problem is still NP-complete.

5.3.4 Run-time Allocation

The semi on-line and off-line tile ordering approaches both assume that the
packing algorithm will need fresh tiles. If there are already jobs running on
the system, the packing algorithm can try to fill up partially occupied tiles.
The semi on-line and off-line approaches have to be capable of dealing with
such situations.

Adapting the semi on-line approach

The semi on-line approach has to choose the final location of a virtual tile
once it is filled by the packing algorithm. If the packing algorithm wants
to put actors on a processing tile which already contains actors from other
jobs, it can do so. In that case, the contents of the tile cannot be moved to
another location. The semi-online algorithm will simply appoint the current
location as the only one possible.

Adapting the off-line approach

The off-line approach takes the total collection of all virtual tiles created by
the packing algorithm, and distributes them over the available processing
tiles, by partitioning them into groups to be placed around each router. If
some of the virtual tiles already have their location fixed due to containing
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actors of previous jobs, this has to be incorporated into the KL partitioning
algorithm.

To do this, it first ensures these fixed virtual tiles are in the right initial
partitions P1 and P2. It then locks these fixed tiles, such that the KL
algorithm is not allowed to use them in exchanges. This way, these fixed
tiles are not moved by KL, yet their externally mapped channels are taken
into account in the optimisation.

5.4 Recovery

If the algorithm cannot find a feasible solution straight away, it should try to
explore different decisions. All algorithms presented so far are deterministic.
Those algorithms which do not sort their input, like FF and FFC, can obtain
different results for different permutations of the input. If the RM fails to
find a feasible solution, it can therefore shuffle the ordering of actors in the
job and retry.

5.5 Topologies

The Hijdra Architectural Template does not prescribe any network topol-
ogy, but cannot support every type. The network listens to a global clock in
which each router copies a fixed amount of data per time slice. This forces
every link in the network to have the same width. Due to physical limita-
tions, as described in Section 2.1.2, a router can be connected to at most 10
inputs and 10 outputs. The size of such a router grows quadratically. For
this reason, the topologies tested will be connected to at most 8 inputs and
8 outputs. This allows the placement of more routers, which avoids the tight
bottlenecks between the routers if only 2 or 3 routers were to be used. After
all, the system has to support more than 10 processing tiles, so it cannot
permit to spend a large number of links between the routers if only 2 or 3
routers are present in the system.

The resource allocation algorithms will be tested on a ring of 4 routers.
Each router can have as many as 8 connections in both directions, two of
which are used to connect to other routers in the ring. This allows for a
system of 24 processing tiles. The exact cost of producing such a topology is
heavily implementation dependent, so no cost function for the network will
be assumed.

5.6 Empirical Results

The performance of the algorithms presented will be tested in the same way
as in the single-router case. The first set of tests will map large jobs to an
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empty system. Since the multi-router systems are larger than the single-
router ones, it is possible to map larger jobs. For that reason, the empty
system will be subjected to jobs consisting of 100 actors each. For 100 of
such jobs, the RM will map and unmap each one in turn, such that each job
will be mapped to an empty system. The averages over these cases will be
presented.

The second set of tests will run the stress test game, as described in
Section 4.5. Again, a set of small jobs (of 10 actors each) will be used in
this game.

5.6.1 Topologies

The difference between the use of different topologies was tested first. Table
5.1 shows the different configurations that were considered. A 2-by-2 mesh
topology with 8 links per router and 24 tiles is equal to a ring topology of
length 4, and is therefore omitted.

Name Topology X Y Links/router Tiles Routers Links
ring-3 ring 1 3 10 24 3 54
ring-4 ring 1 4 8 24 4 56
ring-6 ring 1 6 6 24 6 60
ring-12 ring 1 12 4 24 12 72
mesh-6 mesh 2 3 6 22 6 58

Table 5.1: The topologies considered.

For each of these topologies, the FFC packing algorithm was chosen to
try to map an instance of 100 actors onto an empty system. This was done
under degrees of greedy clustering varying from 0% to 60%, in 1% increases.
Figure 5.6 shows the percentage of jobs for which a mapping could be found,
averaging over 100 instances.

The general trend displayed in this figure is a higher failure rate for
topologies which contain a lot of routers. This can be explained through
noticing that the network serves as a bottleneck. One of the reasons for
this is the choice of topology, combined with the fact that each set of links
between two routers has the same capacity as each set of links between a
processing tile and a router. The smaller topologies have more processing
tiles connected to each router. As with the single-router case, a set of
processing tiles connected to the same router have bottlenecks only at the
endpoints. This explains the increase of failures once the processing tiles
are smeared over more routers.

On the other hand, the individual routers have a cost quadratic in the
number of links they connect. For this reason, employing a small number of
routers might not be cost-effective. Using Figure 5.6 as a guide, the ring-4

Philips Research, Eindhoven Delft University of Technology



54 5. MULTIPLE ROUTER NETWORKS

0 20 40 60
0

20

40

60

80

100

clustering (%)

su
cc

es
s 

(%
)

class 1

mesh−6
ring−12
ring−3
ring−4
ring−6

0 20 40 60
0

20

40

60

80

100

clustering (%)

su
cc

es
s 

(%
)

class 2

mesh−6
ring−12
ring−3
ring−4
ring−6

0 20 40 60
0

20

40

60

80

100

clustering (%)

su
cc

es
s 

(%
)

class 3

mesh−6
ring−12
ring−3
ring−4
ring−6

0 20 40 60
0

20

40

60

80

100

clustering (%)

su
cc

es
s 

(%
)

class 4

mesh−6
ring−12
ring−3
ring−4
ring−6

Figure 5.6: The percentage of successful mappings, as a function of the
clustering percentage.

topology was chosen as the guideline for further testing. Figure 5.6 pictures
this topology as competing with the smallest (ring-3) in terms of failure rate,
yet it is probably cheaper to make, due to employing only 8 links per router
instead of 10.

5.6.2 Applying FF

First, a simple approach is tested. The packing algorithms FF and FFD
are deployed without using any clustering. If these algorithms request more
tiles from the system, they will be chosen in a fixed order of increasing
distance from the first tile used. The required routes through the network
are allocated as soon as both endpoints of a channel are mapped.

This results in a lot of failures, as can be seen in Table 5.2. The single-
router case is added as a comparison. This means that it does not suffice to
ignore the bandwidth usage of the mapping. In single-router networks, the
bandwidth usage only affected the power consumption for the cases tested.
Now, it becomes part of the feasibility of the mapping, as the network forms
enough of a bottleneck not to allow any bandwidth-unaware mapping to
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succeed. This means these FF and FFD algorithms are certainly not enough,
even though this setup performed well in the single-router case.

This table shows a lot of room for improvement. Subsequent tests will
show decent improvement can be made, making this setup a good test case.
If there were no failures now, the network is likely to be over-dimensioned,
indicating that improved approaches can probably do with less hardware.

Topology Algorithm I II III IV
single-router FF 100 100 100 100
single-router FFD 100 100 100 100
ring-4 FF 0 0 0 0
ring-4 FFD 0 0 0 0

Table 5.2: The percentage of successful mappings with the FF and FFD
algorithms.

5.6.3 Applying Clustering

The FF algorithm can solve the resource allocation problem if the link be-
tween a tile and its router is the sole type of bottleneck in the system. This
was the case when only a single router exists, but if routers are added, there
appear bottlenecks between them of which FF is not aware.

In general, one would expect that if less bandwidth is required in the
system in total, these bottlenecks would become less of a problem. The
single-router case used clustering to optimise this criterium. By repeating
the test in the previous section with the FFC algorithm, the results in Table
5.3 are obtained. This table shows a drop in failures for classes II and IV
(which have light edges), but still perform rather badly in classes I and III
(which have heavy edges).

Topology Algorithm I II III IV
single-router FFC 100 100 100 100
ring-4 FFC 16 76 3 83

Table 5.3: The percentage of successful mappings with the FFC algorithms.

The indication that clustering helps to protect the packing algorithms
from failing, is extended by adding a greedy pre-clustering phase. In Figure
5.7, the result of this is shown for the ring-4 topology1. It clearly shows the
success rate increasing when more clustering is applied. The FFC algorithm
clearly outperforms FF and FFD in terms of this success rate.

1Like the tables, the other topologies admit almost identical fail behaviour
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Figure 5.7: The percentage of successful mappings, as a function of the
clustering percentage.

This suggests that both forms of clustering can be a key to increase the
success rate for packing algorithms, but is not a final solution. For instance,
no algorithm could get above a 85% success rate for the instances in classes
I and III.

5.6.4 Applying Retries

To further decrease the probability of failure, the RM can try to map the
application several times. Since all algorithms are deterministic, different
mapping are obtained by shuffling the actors into a random order between
mapping attempts. Figure 5.8 shows the gain that can be obtained by doing
this. Each line indicates the percentage of successful mapping after a certain
number of attempts.

The use of trying to map several permutations of the same job graph is
clearly visible, throughout all clustering percentages.
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Figure 5.8: The percentage of successful mappings, as a function of the
clustering percentage. Each line represents the number of permutations
tried.
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Figure 5.9: The percentage of successful mappings, as a function of the clus-
tering percentage. Each line represents a virtual tile placement algorithm.

5.6.5 Virtual Tile Placement

A weakness of the FFC algorithm, even when combined with clustering, lies
in the way it chooses which processing tiles to use. In the previous tests,
each time FFC required a new tile, the RM would supply the next one in a
predefined order. Section 5.3 called this the on-line approach, and acknowl-
edged more sophisticated approaches were possible. The performance, in
terms of mapping success rates, of three approaches presented (on-line, semi
on-line and off-line), is shown in Figure 5.9. The off-line approach shows a
clear improvement over the other two, making it a valid alternative to trying
multiple permutations to reduce the failure rate.

The different virtual tile placement algorithms work by trying to reduce
the length of the routes required through the network. This effect is mea-
sured and displayed in Figure 5.10. It shows the number of links used by
each placement algorithm, relative to the original on-line approach. The av-
erages are taken over all successful mappings. Since the number of successful
mappings differs per approach, these figures should be read with caution.
In classes II and IV, almost all mappings were successful for all approaches,
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Figure 5.10: The percentage of links used, as a function of the clustering
percentage.

making these two the easiest to read.
A decrease of link usage when the off-line approach is chosen, is clearly

visible. In classes II and IV, applying the off-line approach yields a 15%
profit in terms of link usage. This directly implies profit in terms of power
consumption and amount of free resources left for other jobs.

5.6.6 The Game

The stress test game is run using the same parameters as in the tests for
single-router networks. It is run for 10000 rounds, using FFC to pack the
actors. For each instance, the FFC was allowed to try to map three different
permutations. The on-line tile ordering approach was used. The greedy
clustering method was employed at 0%, 20%, 40% and 60%, resulting in the
success rates shown in Figure 5.11.

The success rate starts out much lower than in the single-router case, as
the empty system tests already indicated. The effect of clustering remains
the same: it hurts performance. Without clustering, the RM is again capable
of delivering a near 100% success rate when a slack of 3–7%, is allowed,
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Figure 5.11: The percentage of successful mappings, as a function of the
allowed slack. Each line represents a clustering percentage.
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Figure 5.12: The percentage of successful mappings, as a function of the
allowed slack. Each line represents a clustering percentage.

depending on the class of jobs.
The tests in the single-router case showed that to increase the perfor-

mance of the application of the greedy clustering algorithm, a fall back to
allow the mapping of an unclustered version of a job works well. For mul-
tiple router networks, the result of this is shown in Figure 5.12. Again the
performance of 0%-clustering is matched, and even exceeded in some cases.

Finally, the bandwidth usage per channel is scaled up by a factor be-
tween 1 and 3. The power of employing CBP is again evident under these
circumstances, as can be seen in Figure 5.13. Without CBP, the perfor-
mance of the RM drops, while the solutions employing CBP manage to keep
up the success rate to a far better extend. These results are similar as what
was observed in the single-router case, except that the optimal amount of
clustering is no longer at or near 60%.

5.7 Conclusions

The mapping of large jobs (of 100 actors) and the addition of a network
introduced problems for the RM. The use of the FF and FFD algorithms
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Figure 5.13: The percentage of successful mappings, against a multiplication
of the bandwidth requirements. Each line represents a clustering percentage.
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failed in all cases, unless a form of clustering was added. Even then, failure
rates of 20% were observed. To further increase the chance of success, it
was found beneficial to let the RM try to map several permutations of the
actor set of a job. Further reductions in resource usage were obtained by
employing a smarter distribution of the used tiles. This was accomplished
by selecting groups of actors to be mapped on a set of tiles sharing the same
router, thus sharing the same bottleneck to the system.

For small jobs, the stress test game returned similar results as for single-
router networks. The best approach is again to calculate a clustered solution
at design time, and try to map that solution first. When this fails, the RM
tries to map the original, unclustered job graph. In many cases, allowing a
10% slack is more than adequate for letting the RM acquire a near 100% suc-
cess rate in the game. However, when bandwidth becomes a scarce resource,
the balance between the aggressiveness of clustering in this pre-calculated
solution, and the success rate of the RM is more subtle than in single-router
networks.
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Chapter 6

Conclusions

This report has analysed a resource allocation problem for homogeneous
multiprocessor systems consisting of 10–30 processors. The systems con-
sidered are running hard real-time streaming media jobs, which consist of
functional components (actors) with data dependencies (channels). The ar-
rivals and departures of these jobs are controlled by an external source. For
each arriving job, adequate resources have to be found and allocated at run
time.

In this report we consider two system topologies for our performance
tests. A small system of up to ten processors can be constructed by con-
necting them through a single router. For larger systems, a small network
with multiple routers is needed. Because problem of resource allocation is
NP-complete for both topologies, we devised heuristics to look for a solu-
tion. These heuristics were tested by using them to map a single job to an
empty system, and we measured the fraction of failed attempts as well as the
resource usage. We also stress tested the system by measuring the ability of
starting jobs in a system under heavy load. Unfortunately, no realistic job
graphs were available for our tests, and so we generated a set of synthetic
jobs, with each job having characteristics that were deemed realistic.

In the single-router case, our heuristic is based on trying to map the
actors on as few processors as possible. This is augmented by trying to
map communicating actors on the same processor, to reduce the bandwidth
usage of the packing created. In addition, a packing for an empty system
was computed at design time, with good bandwidth and processor usage.
Although using this solution uses less resources, it is less flexible to pack at
run time because it was created with no other running jobs in mind.

The results in the single-router case show that the use of this pre-
computed packing result in a 60–80% reduction of bandwidth usage in the
single-job tests. In the stress test, using only this pre-computed solution re-
sulted in a high failure rate. This was solved by allowing the algorithm to try
to map the original set of components if it failed to map the pre-computed
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solution. This two-step approach combines the low bandwidth usage of the
pre-computed packing with the success rate of mapping the original set. In
the cases tested, the heuristic is capable of using 95% of the computational
resources available in the system with a near zero chance of failing to map
a job.

In the multiple-router case, our heuristic was extended to choose which
processors should be occupied by the job, taking into account some basic
characteristics of the network. The actors were packed to virtual processors
without looking for routes through the network. These virtual processors
were then mapped to real ones, placing channel endpoints as close to each
other as possible.

The results in the multiple-router case show that for large jobs the use
of a pre-computed packing is important to get to a successful mapping.
However, for jobs with heavy communications this was not enough to obtain
an acceptable success rate. A solution was found in retrying the heuristics
on multiple permutations of the input. In addition, the use and placement of
virtual processors increased the success rate and showed a reduction of 10–
20% of bandwidth usage. In the stress test the heuristics allow a behaviour
similar to that of the single router case.

Although the results seem promising, they are obtained using synthetic
jobs, and have still to be validated with real jobs. Once this has been done,
the model and the performance tests can be extended to heterogeneous
systems. Then the problem can be tackled for a wide range of systems
covered by the Hijdra architectural template.
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Appendix A

Notational Index

B total available bandwidth (in number of links)
b(e) bandwidth requirement of channel e (in number of links)
BB Branch-and-Bound
BF Best Fit
BFD Best Fit Decreasing
CA communication assist
CAP Clustering After Packing
CBP Clustering Before Packing
CDP Clustering During Packing
c(e) resource requirements of channel e on the tile t hosting the consuming actor
δ(e) reduction of resource requirements if channel e is internally mapped onto tile t
d(e) number of delays on channel e
E channels
F (t) vector of available resources on tile t
FF First Fit
FFD First Fit Decreasing
G(V,E) an SDF graph G consisting of actors V and channels E
θ desired sustainable throughput
Θ maximum sustainable throughput
i(e) resource requirements of channel e on the tile t hosting both endpoints
JNM Job-to-Network Mapping
KL Kernighan-Lin bisection algorithm
L links
MCM Maximum Cycle Mean
µC the mean of cycle C
µG Maximum Cycle Mean of graph G
µθ a desired upper-bound on the MCM
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N non-negative integers
NI network interface
p(e) resource requirements of channel e on the tile t hosting the producing actor
R routers
RD Route Discovery
R real numbers
s(a) resource requirements of actor a, excluding its channels, when mapped onto tile t
σ slack
T tiles
V actors
w(a) resource requirements of actor a, including its channels, if it is the only actor on tile t
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Appendix B

Proofs

B.1 Clustering Before Packing

The proof of Theorem 1.

Proof. Membership of CBP in NP can be easily shown: given a partitioning,
checking if each partition has a total size less than F as well as the bandwidth
used by the cut can be calculated in polynomial time.

To prove CBP is also NP-hard, we will reduce the Partition Problem to
CBP. It is defined as:

Problem 9 (Partition Problem). Given a set of items A with each a ∈ A
having a size s(a) > 0, is it possible to partition this set into two subsets X
and Y such that

∑
x∈X s(x) =

∑
y∈Y s(y)?

This problem is NP-complete [11]. From a Partition instance (A, s),
create the following CBP problem:

V = A

∀a ∈ V : w(v) = s(v)
E = {(a, b)|a ∈ V ∧ b ∈ V ∧ a 6= b}

∀e ∈ E : δ(e) = 0
∀e = (a, b) ∈ E : b(e) = s(a) + s(b)

F =
1
2

∑
v∈V

w(v).

In other words, every item of the Partition instance is represented by
a vertex in CBP. All vertex-pairs are connected by an edge with a length
equal to the sum of the weights of its endpoints.

Now, using the fact that for any set A and function w : A → N,
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∑
x,y∈A
x 6=y

(w(x) + w(y)) =
∑
x∈A

∑
y∈A
x6=y

(w(x) + w(y))

=
∑
x∈A

∑
y∈A

(w(x) + w(y))

− 2w(x)


= (2|A| − 2)

∑
x∈A

w(x),

and assuming ∀a ∈ A : b((a, a)) = 0, the total length of the cut will be called
L, which can be simplified to:

L =
n∑

i=1

n∑
j=i+1

∑
x∈Pi
y∈Pj

b((x, y))

=
1
2

n∑
i=1

 n∑
j=1

∑
x∈Pi
y∈Pj

b((x, y))−
∑

x,y∈Pi

b((x, y))


=

1
2

∑
x,y∈V

b((x, y))− 1
2

n∑
i=1

∑
x,y∈Pi

b((x, y))

= (|V | − 1)
∑
x∈V

w(x)−
n∑

i=1

(|Pi| − 1)
∑
x∈Pi

w(x)


= |V |

∑
x∈V

w(x)−
n∑

i=1

|Pi|
∑
x∈Pi

w(x).

Since the first term of the last equation is constant for the instance, it
suffices to focus on minimising the second term. The sum of weights in each
bin is at most F . If all bins used are completely filled, the following holds:

n∑
i=1

|Pi|
∑
x∈Pi

w(x) =
n∑

i=1

|Pi| · F

= |V | · F.

If not all bins are completely filled, for at least one bin the sum of weights
is less than S. Suppose bin Ph is not completely filled. Then the following
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holds:
n∑

i=1

|Pi|
∑
x∈Pi

w(x) = |Ph|
∑
x∈Ph

w(x) +
n∑

i=1,i6=h

|Pi|
∑
x∈Pi

w(x)

≤ |Ph|
∑
x∈Ph

w(x) +
n∑

i=1,i6=h

|Pi| · F

= |Ph|
∑
x∈Ph

w(x) + (|V | − |Ph|) · F

< |Ph| · S + (|V | − |Ph|) · F
= |V | · F.

Thus, the total intra-partition edge length is highest if all bins are totally
filled. If such a configuration is possible, CBP will choose it. Now, two cases
can be extinguished:

• The Partition instance is a ”yes” instance. This means there exists a
configuration in which CBP can partition into a set P with containing
two fully filled partitions. CBP will choose this configuration and yield
a cut equal to:

L∗ = |V |
∑
x∈V

w(x)− |V | · F.

• The Partition instance is a ”no” instance. This means a partitioning
of |P | = 2 is not possible, so at least one bin will not be fully filled.
CBP will have to settle for a cut with size:

L∗ > |V |
∑
x∈V

w(x)− |V | · F.

So, if CBP can provide a solution having a |V |
∑

x∈V w(x)− |V | · F cut
size, a valid solution for the Partition Problem exists.

The packing problem which remains if CBP is applied (i.e., packing the
created clusters onto processors) is still NP-complete. To see this, take a task
graph without edges. A CBP algorithm does not have to cluster anything
because no bandwidth is used. This implies the input for the packing prob-
lem can remain unmodified. This allows the Bin Packing Problem (Problem
2) to be reduced to it.

B.2 Clustering After Packing

The proof of Theorem 2.
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Proof. The membership of CAP in NP can be easily seen: given a partition
assignment, the number of partitions, the total size of each partition as well
as the cut size can be verified in polynomial time.

The fact that CAP is also NP-hard will be shown by reducing the Min-
imum Bisection Problem to CAP. It is defined as follows:

Problem 10 (Minimum Bisection Problem). Given a graph G = (V,E)
with an even number of vertices, and a natural number k, is it possible to
partition the nodes into two subsets of equal cardinality, such that the cut
that separates these partitions contains at most k edges?

This problem is NP-complete. From a Minimum Bisection instance
(G(V,E), k), create a CAP instance by retaining G(V,E), and:

∀v ∈ V : w(v) = 1
∀e ∈ E : l(e) = 1

F =
1
2
|V |

m = 2
k = k.

This reduction can be performed in polynomial time. Since a minimal
bin packing of such an instance is trivial (requiring always exactly two bins),
no information is gained from the Bin Packing solution that could not be
recomputed in polynomial time.

The CAP algorithm will check whether there exists a partitioning of V
into two sets, such that the cut size between these partitions is at most k.
This corresponds to the same answer as the Minimum Bisection Problem is
looking for.

The packing problem preceding CAP is NP-complete, since applying a
graph without edges corresponds to the Bin Packing Problem (Problem 2).

B.3 Job-to-Network Mapping

The proof of theorem 3.

Proof. The NP-complete Partition Problem (Problem 9) can be reduced to
JNM as follows. Given a Partition instance (A, s), create the following JNM
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a1

v0

an

Figure B.1: The Partition instance translated into a JNM graph to be
mapped.

instance:

V = A ∪ {v0}
E = {(a, b)|a ∈ V ∧ b = v0}

∀e = (a, b) ∈ E : b(e) = s(a)

n = |V |
P1 = {p1, . . . , pn}
P2 = {pn+1, . . . , p2n}

P = P1 ∪ P2 ∪ {p0}
R = {q0, q1, q2}

b0 = (p0, q0)
b1 = (q0, q1)
b2 = (q0, q2)

∀i = 1, . . . , n : ei = (q1, pi)
∀i = n + 1, . . . , 2n : ei = (q2, pi)

N = {b0, b1, b2} ∪ {e1, . . . , e2n}

c(e) =
{

1
2

∑
a∈A s(a) iff e ∈ {b1, b2}.∑

a∈A s(a) otherwise.

This reduction can be performed in polynomial time. The visual repre-
sentation of this is shown in the Figures B.1 and B.2. For JNM to find a
valid mapping, the actor v0 has to be mapped to p0, since that tile is the
only one capable of outputting

∑
a∈A s(a) bandwidth without running into

a bottleneck. For the rest of the actors, they have to be split into two sets
with an exactly equal bandwidth usage to be able to map all actors onto
P/p0. Whether this is possible is exactly the same question the Partition
Problem addresses.

The problem of finding the required routes through the network is in
NP. Let a route discovery algorithm be given. A solution candidate for
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p0

pn+1

p1

pn

p2n

b1
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q2

q1

q0
b0

Figure B.2: The JNM network to map the Partition instance on.

the JNM problem can be checked for feasibility in polynomial time once
the route discovery algorithm reveals that routing is not a problem. A
certificate for the JNM problem can therefore be constructed by encoding a
solution candidate, and extending it with the proper certificate for the route
discovery problem. This construction yields a polynomial-sized certificate,
which can be checked in polynomial time. This implies JNM is in NP, hence
it is NP-complete.
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