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Abstract

The design and tuning of networked virtual environments (NVEs), such as World of Warcraft (WoW),
require understanding the in-NVE mobility characteristics of their citizens. Although many mobility-aware
NVE systems already exist, their validation and further development have been hampered by the lack of
public datasets and of comparison studies based on multiple datasets. To address these two issues, in
this work we collect from WoW mobility traces for over 30,000 virtual citizens, and compare these traces
with traces collected from Second Life (SL) where the environment is designed and changed significantly
by the citizens themselves. Furthermore, motivated by the existence of numerous studies and models of
networked real-world environments (NRE), we systematically compare the characteristics of two NVE and
two NRE mobility traces. Our comparative study reveals that long-tail distributions characterize well various
mobility characteristics, that the invisible boundary of human movement also appears for NVEs, and that
area-visitation shows personal preferences. We also find several differences between NVE and NRE mobility
characteristics.
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1 Introduction

Networked virtual environments (NVEs), including Massively Multiplayer Online Games (MMOGs) such as
World of Warcraft (WoW), already serve tens of millions of users world-wide. Making the current and future
NVEs more appealing to their citizens, more scalable to unexpected surges in temporal and spatial popularity,
and more efficient in their resource use, depends on understanding user behavioral patterns (the input workload
of any NVE system). Complementing much previous research in the design and tuning of NVE systems, and in
particular in characterizing and modeling NVE workloads [1, 2], we focus in this work on the mobility of NVE
citizens. To facilitate the design, validation, and comparison of mobility models and mobility-aware systems,
and further motivated by the scarcity of public mobility datasets, we collect for this work a large-scale dataset
from WoW and share it through the Game Trace Archive [3]1. We also conduct a comprehensive, comparative
characterization of the mobility of citizens in WoW and other, conceptually different NVE. Besides its findings,
our characterization stresses the need for more mobility datasets to be shared among NVE researchers. Further-
more, we also do a high-risk, high-return investigation: motivated by the existence of datasets from networked
real-world environments (NREs) and by the similarity between some NVEs (e.g., WoW) and NREs, we conduct
a comparative analysis of mobility in NVEs and NREs.

Understanding in-NVE mobility can be useful to tune existing designs of NVEs and to innovate in the design
of future NVEs. For example, recent advances in server cluster architectures [4] and peer-to-peer overlays [5]
need to be validated against mobility workloads and, perhaps, tuned further to specific characteristics, e.g.,
their structure may need to be tuned to the area visitation characteristics, etc. For cloud-based architectures
supporting NVEs such as [6], the load of various servers is strongly correlated with player mobility, due to player
interaction [7, 8], cell visitation [4], etc. As has been shown in preliminary work on this topic [9], cloud-based
workloads can be much more efficiently supported if the leasing of resources is in-tune with the workload.

NVE mobility is difficult to understand not only because public datasets are scarce, but also because NVEs
cover a broad spectrum of applications. Among the most popular NVEs are MMOGs such as World of Warcraft
and user-created NVEs such as Second Life (SL). For WoW, the game developer designs the virtual world to
resemble a medieval, albeit fantasy-based, real-world environment. The citizens of WoW need to be highly
mobile, to be able to finish quests of the storyline, trade goods, and socialize with the other players. Different
from WoW, the virtual world of SL is created by the users themselves; this user-generated content should
primarily foster socialization, collaboration, and even supervised learning. We pose and investigate the following
research question: How similar are WoW and SL avatar mobility patterns? To answer it, we collect a new dataset
of WoW mobility traces, and conduct a comprehensive and comparative study across multiple NVE datasets.

The scarcity of NVE mobility datasets is not paralleled by the existence of NRE mobility data. Although
few NRE datasets are public, large-scale studies of millions of real-world citizens have appeared in the last
decade [10, 11]. A high-risk, high-return idea would be to use these traces in NVE scenarios or even create NVE
mobility models based on real world models, for example, when the NVE is by design similar to an NRE for
which mobility is well understood, either spatially or w.r.t. the activities that users mostly engage in. WoW
and many other NVEs have been designed starting from real-world cities (e.g., medieval cities), and equipped
with traditional city-center functions such as meeting and trading. To immerse users, the movement of users
in virtual worlds is designed to be as similar as possible to movement in the real world, albeit faster. The
high-risk with using NRE traces in NVE scenarios is that the characteristics of NVE and NRE mobility may
never match, in spite of the intents of the NVE designers. For example, real-world users do feel the physical
effects of movement, including tiredness, legal restrictions, sometimes even cost, etc. The high-return is that
the known NRE mobility traces are orders-of-magnitude larger than any of the NVE mobility traces previously
reported, and there are many NRE mobility models already developed [12]. Thus, in this work we also set to
answer the research question How similar are the characteristics of mobility in NVEs and NREs? In this work,
we compare two NVE and two NRE mobility traces, and show evidence that their characteristics share many

1We will release the data before the conference.
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common patterns. We also point out their main differences, which need future research before NRE mobility
related research can be used in NVE studies.

In summary, our main contribution is twofold:

1. We collect a detailed and large-scale mobility dataset from the NVE World of Warcraft (Section 3). We
plan to share the dataset via the Game Trace Archive [3].

2. We conduct a comprehensive study of human mobility characteristics in both virtual- and real-world
environments (Section 4). The analysis in this work can help NVEs designers better planning resources
and provide a base for building a mobility model for simulation.

2 Background and Related work

In this section, we introduce the terminology and compare previous mobility studies focusing on virtual envi-
ronments with our work.

2.1 Terminology and mobility characteristics

We consider in this work the mobility of a population of individuals. In the rest part of this work, we use
mobility pattern and mobility characteristic interchangeably. Following traditional mobility terminology [11],
we define:Citizens (avatars, persons) are the moving entities. Flight is a straight-line trip without pause or
significant directional change. The “angle model” of Rhee et al. [13] allows several consecutive straight line
trips to be connected into a single flight if the angle between consecutive trips does not change the general
direction of the flight. Waypoints (or locations) are the endpoints of a flight. Pause duration is the time spent
by an individual in a waypoint.

In this work, we focus on five mobility characteristics which have been investigated in the past and shown to
significantly affect the performance and reliability of NREs. Some of the characteristics have been also shown
to have an impact of the performance of NVEs too. These characteristics are:

• (C1) Long-tail distribution of flight lengths [10]: Gonzalez et al. [10] find that the distribution of
flight lengths for mobile phone users is long-tail. This means that human usually travel short distances
and occasionally travel long distance.

• (C2) Long-tail distribution of pause durations [13], similarly to (C1).

• (C3) Skewed popularity of areas [14, 11]; for example, certain areas of cities are very popular, while
others are rarely visited.

• (C4) Invisible boundary of human movement: By analyzing the trajectories of mobile phone users,
Gonzalez et al. [10] found that human trajectories are bounded by a characteristic distance. Most of the
time, people only travel between and around a few preferred locations.

• (C5) Different personal preferences for areas [15].

2.2 Related work

Much of the prior work [1, 16, 17, 2, 18] has focused on network measurement, online population, and session
behavior. Kinicki and Claypool [2] find that walking in SL induces more network traffic than standing still.
Chambers et al. [1] find that the online population of players has regular daily cycles. Since the late-2000s,
several studies [19, 20, 21] collect and analyze mobility traces of NVEs. We compare our work with these, in
the following.

Wp 5 http://www.pds.ewi.tudelft.nl/∼siqi/
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Dataset World Type Citizens Locations Duration Sampling

WoW Virtual 31,290 4 cities weeks 1/s
SL [19] Virtual 26,714 5 regions 3 days 1/10s

GPS [23] Real 1,366 3 cities 1 week 1/6s
GPS-2 [13] Real 52 2 campuses days 1/10s

Table 1: Dataset overview.

Closest to our work, Liang et al. [19] collect trace from SL, analyze the session behavior, contact patterns,
and mobility patterns, in SL. For mobility patterns, they find that the number of visits to different cells of
a region is skewed (C3), accumulated pause duration of avatars stay inside a cell is skewed (C2), and total
travel distance of avatars is skewed (similar to C1). Our studies complement each other. We study the five
characteristics (C1)–(C5) of two virtual world and two real world mobility traces, to find the similarity and
difference of mobility between virtual- and real- world.

Pittman and GauthierDickey [14] analyze traces of two NVEs: WoW and Warhammer; they find that the
popularity of different areas is skewed (C3), which they model using the Weibull distribution, and the durations
each player stays in different zones vary. Varvello et al. [21] find that in SL, the popularity of zones is skewed
(C3), and about half of the players form groups of good friends who meet frequently at the same locations
(similar to C5). In contrast to [21], Miller and Crowcroft [22] find that, in their observation scenario of WoW
battleground, most movement is individual rather than group-based. La and Michiardi [20] investigate (C3)
and mobile communication related metrics such as inter-contact time, using traces collected from SL, and use
the traces to evaluate the performance of wireless network protocols.

3 Datasets

In this section we introduce the four datasets used in this work. We describe the datasets, and the data collection
and sanitation processes. The limited infrastructure and development effort we have used for collecting our
dataset give evidence that collecting mobility traces from virtual worlds can lead to datasets of large size and
fine detail, while making the collection process feasible for many researchers.

3.1 Dataset Description

To understand human mobility, we have collected a very large and detailed dataset from a popular virtual
world, World of Warcraft, and used four other public datasets that were collected by others from virtual and
real worlds. The characteristics of these six datasets are summarized in Table 1.

WoW dataset, technical details: Similarly to most large MMOGs, WoW is not built as a single, seamless virtual
environment. Instead, it operates concurrently a few hundreds of independent realms of identical design. Each
world is serviced by a server. We have collected mobility traces from 3 capital cities (Ironforge, Stormwind,
and Orgrimmar) of the popular Silvermoon realm (server located in Europe), accounting for about 60% of the
users, and from 1 capital city (Stormwind, we call it Stormwind-2 from now on) of the popular Argent-Dawn
realm (server located in Europe).

The SL dataset was collected by Liang et al. [19] from Second Life, a popular user-created virtual world, by
using a custom SL client. We use in this work the publicly available dataset of about 27,000 virtual citizens
distributed across 5 non-connected regions.

The GPS observe the mobility of volunteers. For the GPS dataset, Bohte and Maat [23] have distributed GPS
devices to over 1,000 volunteers in 3 Dutch cities, and record per-citizen locations every 6 seconds for 1 week.

The GPS-2 dataset, Rhee et al. [13] have recorded 125 GPS tracks from 52 citizens; this public dataset does
not allow us to map trajectories to individuals. Rhee et al also collected GPS trajectories from Disney world
and State Fair, we do not analysis them in these paper.

Wp 6 http://www.pds.ewi.tudelft.nl/∼siqi/
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Overall, the two datasets collected from virtual worlds follow each several tens of thousands of citizens, that
is, one or two orders of magnitude more than the datasets collected from real worlds. Our dataset is large-scale
(over 30,000 citizens) and multi-location (4 cities); it was also collected using fine-grained sampling (1 sample
every second) over a significant period (several weeks). Thus, ours is one of the largest and most detailed
datasets available to researchers, to date2.

3.2 Data Collection and Sanitation

We have collected the WoW dataset from the virtual environment provided by World of Warcraft (WoW), a
popular massively multiplayer online game (MMOG) with over 2,000,000 daily active players. WoW is designed
to emulate a medieval-like environment with fantastic elements, and contains cities and wildland. WoW citizens
travel in this world in real time, with the movement speed limited to 8–10 in-game distance units per second.
In WoW, each virtual citizen can observe the presence and activity of any other virtual citizen within a radius
of about 100 in-game distance units (10–15 seconds of movement away); unlike the real world, the observation
range in WoW is not affected by interposing objects such as buildings or other citizens. Similarly to most
large MMOGs, WoW is not built as a single, seamless virtual environment. Instead, it operates concurrently
a few hundreds of independent worlds of identical design. Each world is serviced by a server cluster; we will
investigate this architecture in Section ??. We have collected mobility traces from 3 capital cities (Stormwind
City, Ironforge, and Orgrimmar) of the popular Silvermoon world, accounting for about 60% of the users, and
from 1 capital city (Stormwind City) of the popular Argent-Dawn world.

To collect the WoW dataset, we have developed a customized WoW client and used it to observe a selected
number of cities. To observe mobility in a city, we deploy virtual citizens such that the areas they observe
cumulatively overlap the surface of the city. Our client logs-in several WoW clients and coordinates them to
observe a complete city. The client uses 6 machines per measurement, each running several WoW clients and
collecting their observed data. Due to the availability of machines, which are regular PCs used for coursework at
our university, during week days we can only collect data during the night. In total, we have obtained data for
3 complete week-ends and about 20 week-day evenings during April and September, 2011, resulting in mobility
information for over 30,000 virtual citizens (see Table 1).

3.3 Data Sanitation

The datasets used in this work may include incorrect data. We describe in the following the steps we followed
to remove incorrect data. SL, GPS-2, iMote are sanitated by their owners.

For GPS-based datasets, the locations recorded by GPS devices may be incorrect: we have observed in these
datasets human speeds faster than the speed of sound. We have removed all locations that could only result
from non-human speed.

For our WoW dataset, data are collected simultaneously from multiple clients (sensors) operating from multiple
machines. Although the machines are synchronized, the locations recorded by the sensors whose circular areas
of observation overlap may be different, due to network delays between the local sensor and the remote WoW
server. We aggregate the recorded locations in overlapped areas and use the average value of locations recorded
within the same second. Less than 1% of these aggregates involve ranges of values exceeding 10 in-game units
(1 second of movement).

For GPS-based datasets, the locations recorded by GPS devices may be incorrect: we have observed in these
datasets human speeds faster than the speed of sound. We have removed all locations that could only result
from non-human speed.

2We will make our dataset publicly available prior to the conference.
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4 Characterization of Human Mobility

In this section, we answer the question How similar are WoW and SL avatar mobility traces? and How similar
are virtual and real-world human mobility traces? To answer this question, we investigate the characteristics
(C1)–(C5) (see Section 2.2) for WoW, SL and GPS (Section 3). We only investigate (C1)–(C2) for GPS-2 due to
the relative small sample sizes and the mobility of citizens are limited to campus scenarios.

Where the datasets comprise multiple locations, we analyze both the entire dataset and each location, in turn.
Unless otherwise noted, we have obtained similar results for each investigated dataset. To study characteristics
among different traces, we look at the basic descriptive statistics, and then use the distribution fitting method
(described in Section 4.1) to look at the trend and distribution of data. We present here only a selection of
representative results.

Our main finding is that the mobility characteristics for the two virtual world (WoW, SL) traces have many
similarities. The flight length (C1), pause duration (C2), and area popularity (C3) follow long-tail distributions;
avatars only visit a small portion of virtual cities (C4); and preference to visit only a few, preferred areas does
exists (C5). In comparison, for GPS, the flight length is longer; and the personal preference to some areas is
higher.

4.1 Method for Distribution Fitting

We now describe the method used to create piecemeal statistical models for each characteristic, per trace.
For each trace considered in this work, we attempt to fit the empirical data corresponding to each char-

acteristic (C1)–(C5) with a set of well-known probability distributions that are available in most simulation
and experimental toolboxes, namely the power-law, the exponential, the Weibull, the log-normal, the gamma,
the normal, the general Pareto, and the truncated power-law (or truncated Pareto) distributions(the upper
cutoff of data is set to be 99.9% quartile value). The fitting is performed using maximum likelihood estima-
tion (MLE) [24], which determines for a distribution the parameters that lead to the best fit with given empirical
data. For number of visitors(C3), we first obtained the best fitted continuous distribution, and then fit the data
with discrete version of best fitted distribution to improve accuracy. (see following paragraphs for the definition
of ”best fitted”).

Then, we use a method for assessing the goodness-of-fit (GoF) that has been shown to have good results
for large datasets in distributed systems studies [25, 26]. In this method, the results of MLE fitting are tested
using a goodness-of-fit (GoF) procedure that combines the the Kolmogorov-Smirnov (KS) and the Anderson-
Darling (AD) GoF tests. Using both of these tests provides a more robust GoF test than using any of the KS
and AD tests individually, since the KS test is more sensitive to the center of distributions and the AD test
is more sensitive to the tail. The method uses 0.05 as the significance level for the p-value, below which the
null hypothesis that the fitted distribution represents the empirical data is rejected. The p-value used by this
method is the average of 1,000 p-values, each of which is calculated by randomly selecting 30 samples from the
empirical data and applying the GOF tests to the selected data.

Last, in our distribution fitting method we we consider a probability distribution as a good fit for the studied
properties only if that distribution passes both the KS and AD tests for all of our three datasets. The best fit
of a property is, from a set of distributions that are good fits, the distribution that has the smallest Akaike
information criterion with correction (AICc) [27], which takes into account the number of parameters and the
likelihood of fit.

4.2 Flight Length (C1)

Figure 1 shows the cumulative distribution function (CDF) of the flight lengths of WoW (left) and SL (right).
The flight lengths of WoW traces are long-tail distributed and the flight lengths for all four cities are similar. The
mean values of flight lengths in the four virtual cities are around 20 to 25 meters. Most (about 85% to 90%) of

Wp 8 http://www.pds.ewi.tudelft.nl/∼siqi/
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Figure 1: Flight length distribution of (left) the WoW dataset, and (right) the SL dataset. (Logarithmic scale on
horizontal axis.)
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Figure 2: Flight length distribution of (left) the GPS dataset, and (right) the GPS-2 dataset. (Logarithmic scale
on horizontal axis.)

the flights are shorter than the area of interest (AoI) range (100 meters) of WoW. For the SL traces, the mean
values of flight lengths in the four zones are around 19 to 29 meters. Most (80% to 90%) of the flight lengths
are shorter than the AoI range (64 meters). This may suggest that when avatars travel in virtual worlds, most
of them travel within the boundary of AoI, and occasionally avatars travel long distances.

As Figure 2 shows, for the two real world datasets: the mean value of flight lengths of GPS is 215m, while
the mean values of flight lengths for KAIST and NCSU are 61m and 71m, respectively. The flight lengths of the
two real world datasets have longer tail than the two virtual world datasets: the 99% percentiles for the two
virtual world datasets are about 150m to 230m, while the 99% percentiles for the two real world datasets are
about 600m to 4, 000m.
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Figure 3: Distribution fitting of (left) WoW dataset, and (right) the GPS dataset. (All axes use logarithmic scales.)
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Figure 4: Distribution fitting of (left) SL dataset, and (right) the GPS-2 dataset. (All axes use logarithmic
scales.)

Figure 3 depicts the results of fitting for Stormwind, WoW and GPS, while Figure 4 shows the fitting results
for Freebies, SL and NCSU, GPS-2. The vertical axis shows the complementary cumulative distribution function
(CCDF) of the flight lengths, in logarithmic scale (Note that the scales of the two figures are different). We
find that the best fit for Stormwind is LogNormal distribution (mean µ = 2.4 deviation σ = 1). For the GPS

data, the best fit is a LogNormal distribution (µ = 3.4 σ = 1.65) (the distribution fitting diverge a bit when the
flight lengths are higher than 1, 000m). The flight lengths distributions for the two virtual world datasets (WoW
and SL) and the two real world datasets (GPS and GPS-2) follow long-tail distributions, and all of them can be
best fitted using the LogNormal distribution.
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Figure 5: Pause duration distribution of (left) the WoW dataset, and (right) the SL dataset. (Logarithmic scale
on horizontal axis.)
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Figure 6: Pause duration distribution of (left) the GPS dataset, and (right) the GPS-2 dataset. (Logarithmic
scale on horizontal axis.)

4.3 Pause Duration (C2)

Figure 5 shows the pause durations distribution of the WoW and the SL datasets. Overall, the pause durations
of both datasets are long-tail, about 80% of the pause durations of WoW is shorter than 30 seconds. The pause
duration of Stormwind is slightly lower than the other three cities, while the other three have very similar
distributions. For the SL dataset, about 70% to 80% of the pause durations is shorter than 100 seconds.
The pause durations for the Pharm zone is higher than the other because the main activities of that zone is
camping (staying in the same location). The pause durations of the WoW datasets are significantly shorter than
the SL datasets. The difference of the pause durations for the two datasets may be caused by the design of the
two NVEs: SL focuses more on social aspects, while WoW is more task-oriented and the interactivity between
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Figure 7: Distribution fitting of (left) WoW dataset, and (right) the GPS dataset. (All axes use logarithmic scales.)

players is more frequent.
As Figure 6 shows, for the real-world datasets, the pause durations for those datasets are long-tail too. The

average pause duration of the GPS dataset is about 2.5 minutes, and the 99% percentile of pause durations is
about 40 minutes. For the GPS-2 dataset, the mean values range from 5.5 to 6 minutes, and the 99% percentiles
are around 1.5 hours.

Figure 7 depicts the results of distribution fitting for the Stormwind, WoW and GPS. The pause durations
observed in Stormwind can be best modeled using the LogNormal distribution (µ = 1.63 σ = 1.45). The fitting
result for the GPS dataset is the LogNormal distribution (µ = 3.41 σ = 1.44). In summary, the pause durations
distributions for the two virtual world datasets: WoW and SL and the two real world datasets: GPS and GPS-2

follow long-tail distributions, and all of them can be best fitted using the LogNormal distribution.

4.4 Area Popularity (C3)

To investigate area popularity, we first split the environments into rectangular grids, where each cell is an area.
Rectangular grids are convenient for setting up simulation scenarios and may enable fair comparison between
different city scenarios. We explore different values for the size of each area, which is the parameter of the
splitting procedure; we split maps into areas of 10m× 10m up to 50m× 50m. For each area size, we quantify
the popularity of the resulting areas using two main indicators: the number of area visits, defined for each
area as the number of pauses observed in that area; and the number of area visitors, defined for each area as
the number of unique visitors paused in that area. Intuitively, the former indicator quantifies the total traffic
through an area well, whereas the latter does not account for returning visitors. Although these two indicators
may also depend on the period over which they are observed, for our datasets we have found that a period of 1
day, which is a typical period for human activity, is sufficient for contouring the distributional shape.

Number of area visits: Figure 8 (left) shows the number of area visits for Ironforge, by splitting the map
into areas of 10m× 10m, 20m× 20m, and 50m× 50m. The visitation count increases with the increasing size
of the areas. Large portions of the map are not visited at all, about 75% of the 10m×10m areas are not visited
once, and about 40% of the 50m× 50m areas are not visited. The visitation count is long-tail; for 10m× 10m
areas, the 85% percentile is 10 while the maximal value is about 1,921. Figure 8 (right) shows the results for SL,
when splitting the map into areas of 10m× 10m size. Similarly to WoW, large parts of the map are not visited,
3 out of 4 zones have 80% unvisited areas; and the distribution of the number of area visits of SL is long-tail.
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Figure 8: Number of area visits of (left) the WoW dataset, and (right) the SL dataset. (Logarithmic scale on
horizontal axis.)
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Figure 9: Number of area visitors of (left) the WoW dataset, and (right) the SL dataset.

The number of area visits for GPS is long-tail too, when it is partitioned into areas of 10m× 10m, over 99% of
the areas is not visited at all, while the most popular area is visited about 900 times.

Number of area visitors: Figure 9 shows the number of area visitors for Ironforge and SL. The number of
area visitors is smaller than the number of area visits, but it is long-tail too. Figure 9 (left) shows the number
of visitors for Ironforge, by splitting the map into areas of 10m × 10m, 20m × 20m, and 50m × 50m. For
10m × 10m areas, the 85% percentile is 6 while the maximal value is about 453. Figure 9 (right) shows the
results for SL, when splitting the map into areas of 10m × 10m size. Similar to WoW, large parts of the maps
are not visited, and the distributions of the number of area visitors for SL are long-tail. For the GPS dataset,
when it is partitioned into areas of 10m × 10m, the most popular areas is visited by 80 persons, and when it
is partitioned into areas of 50m × 50m, the most popular area is visited by 173 persons. The distributions of
the number of area visitors for the WoW, SL, and GPS datasets are long-tail.
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Figure 10: Maximal number of visited person per minute per area of (left) the WoW dataset, and (right) the SL

dataset.

Maximal number of visitors per minute:

4.5 Invisible Movement Boundary (C4)

We now look at the invisible movement boundary, that is, the phenomenon that humans tend to travel mostly
within a fixed and reduced set of locations around home and office (see Section 2.2). We find that the invisible
movement boundary is present in both real and virtual worlds. To quantify the boundary, we use the proxy metric
normalized number of distinct visited areas, measured per person. Figure 13 shows the number of distinct areas,
normalized by the total number of visited areas per map. The higher this value is, the higher the probability
of avatars meeting each other. This metric can be useful for modeling mobility: when generating waypoints on
maps, the model can limit the avatar to visit only a small subset of waypoints. As Figure 13 shows, for WoW
and SL, the normalized number of distinctive areas is low. Most (about 95%) of the avatars visit less than 5%
of the visited areas; only a few persons visit more than 10% of the visited areas. In average, each avatar visits
about 0.4 to 1% of the areas in the WoW dataset; and in SL, each avatar visits about 1.2 to 2% of the areas.
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Figure 11: Maximal number of located person per minute per area of (left) the WoW dataset, and (right) the SL
dataset.

For the GPS dataset, most (about 95%) of the avatars visit less than 0.5% percent of the visited areas. We
attribute the significantly lower values for the GPS data to the fact that the real world cities are much bigger
than the virtual world cities: the GPS dataset cover a map about 30 km×30 km, while the largest virtual cities in
the WoW and SL is smaller than 2 km× 2 km. For the empirical distributions: the normalized number of distinct
visited areas for Ironforge can be fitted best by the Weibull distribution (scale a = 2.34, shape b = 1.99), and
the best fit for the GPS dataset is the Weibull distribution (a = 0.12, b = 2). However, the SL traces can be
better modeled using the LogNormal distribution.

4.6 Personal Preference in Area Visitation (C5)

In SL, some avatars like to visit the same group of persons [21]; and real-world citizens have strong preferences
for different areas [23]. We study the personal preferences of virtual and real- world in this section. For each
of the area the avatars visited, we count the number of time the avatar visited that area as personal preference
weight. Then for each person, we calculate the Gini coefficient (also called Gini index) of the personal preference
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Figure 13: Normalized number of distinct visited areas of (left) the WoW dataset, and (right) the SL dataset.

weight. The Gini coefficient is used to quantify the inequality of personal preference (a value of 1 means very
unequal, whereas 0 means perfectly equal).

Figure 15 shows the Gini coefficient distribution of each person for WoW, SL, and GPS. For this figure, we
remove the persons that visit less than 5 areas (the result is similar without removal). In general, the two virtual
world datasets have similar Gini coefficient distributions: most (80% to 95%) of the Gini coefficients are lower
than 0.4. For the GPS dataset, about 40% are higher than 0.4. The probability distribution functions of the Gini
coefficients for all datasets are bell-shape curves, can be modeled using the Weibull distribution. For reference,
we also generate personal preference weights using the power-law distribution with exponent α range from 2.5 to
4; the Gini coefficients of these weights are depicted as three vertical lines labelled as α = 2.5, 3, 4 in Figure 15.
For mobility modeling purpose, we find that if each individual assigns the personal preference weights based on
a power-law distribution, then most of the exponents of the power-law distribution are between 2.5 to 4.

The Gini coefficients of the personal weights in GPS dataset is higher than in the two virtual world datasets.
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Figure 14: Fitting results for (left) the WoW dataset, and (right) the GPS dataset.
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Figure 15: Gini coefficient of personal preference weight (left) the WoW dataset, and (right) the SL dataset and
GPS dataset.

This may suggest that the personal preference for areas is stronger in real-world environments than in virtual
worlds, and has higher predictability in real-world human mobility than in virtual-world avatar mobility. As
possible explanations, we point to the higher rate of movement, to the less restrictive of movement, and to other
lower penalties for movement (legal restrictions, cost, etc.) in virtual vs real-world mobility.

5 Conclusion and Ongoing Work

Understanding the characteristics of and modeling human mobility is important for the design and tuning of
modern networked multimedia systems. Our main contribution is the collection, characterization, and modeling
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of mobility traces. We have collected detailed position information of virtual world mobility traces from a
popular networked virtual environment (NVE), World of Warcraft. We have shown that the human mobility
traces collected from virtual- and real-world environments have many similar characteristics and analyze the
main differences. We have developed a new human mobility model, SAMOVAR, which can generate synthetic
yet realistic traces for virtual and real world environments. We have validated our model and compared it
through simulations with several other mobility models. Our simulation study includes an in-depth study of
the impact of human mobility characteristics on the performance of NVE. Last, we have shown evidence that
SAMOVAR leads to useful insights into the performance of NVEs and wireless network protocols. We are
currently using and extending SAMOVAR for the design and tuning of NVE algorithms.
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6 Appendix

Flight lengths Mean Q1 Median Q3 99%
Ironforge 24.6 6.6 13.8 29.6 157.6

Orgrimmar 22.3 6.4 13.2 26.5 153.9
Stormwind 19.6 5.5 10.5 21.9 161.7

Stormwind-2 25.9 6.8 14.2 28.6 202.2
Isis 22.2 5.7 11.0 19.9 217.0

Ross 23.4 5.5 10.9 23.8 186.7
Pharm 19.0 5.2 9.9 18.1 170.6

Freebies 29.1 7.4 14.1 29.0 230.2
GPS 214.6 9.0 23.8 84.8 3833.8

KAIST 61.3 12.8 24.1 49.7 573.1
NCSU 71.4 8.5 15.1 35.6 973.3

Table 2: Flight Lengths.

Pause durations Mean Q1 Median Q3 99%
Ironforge 29.2 2.0 5.0 18.0 434.0

Orgrimmar 27.9 2.0 5.0 17.0 398.0
Stormwind 27.0 2.0 4.0 13.0 350.0

Stormwind-2 29.2 2.0 5.0 19.0 434.2
Isis 169.1 10.0 30.0 82.0 1571.2

Ross 230.4 10.0 30.0 92.0 3857.2
Pharm 441.0 11.0 40.0 133.0 8448.6

Freebies 123.3 10.0 30.0 70.0 1471.2
GPS 149.8 10.0 20.0 64.0 2449.0

KAIST 269.5 30.0 30.0 90.0 5520.0
NCSU 313.7 30.0 60.0 180.0 5349.0

Table 3: Pause Durations.

Popularity (visitor) Mean Q1 Median Q3 99% Max
Ironforge 5.0 0.0 0.0 2.0 78.1 505

Orgrimmar 2.4 0.0 0.0 0.0 50.0 486
Stormwind 1.2 0.0 0.0 0.0 28.0 322

Stormwind-2 2.4 0.0 0.0 0.0 45.0 668
Isis 12.2 0.0 0.0 0.0 428.5 1955

Ross 0.5 0.0 0.0 0.0 7.0 159
Pharm 4.1 0.0 0.0 0.0 93.3 1180

Freebies 35.9 4.0 13.5 42.5 250.5 1477
GPS 1.4 1.0 1.0 1.0 7.0 80

Table 4: Number of vistors per area.

Popularity (visitor) Mean Q1 Median Q3 99% Max
Ironforge-visits 13.4 0.0 0.0 3.0 252.2 2129

Orgrimmar-visits 7.4 0.0 0.0 0.0 115.7 4146
Stormwind-visits 3.3 0.0 0.0 0.0 67.0 960

Stormwind-2-visits 5.1 0.0 0.0 0.0 97.0 2430
Isis-visits 45.2 0.0 0.0 0.0 1537.4 8357

Ross-visits 1.1 0.0 0.0 0.0 15.0 284
Pharm-visits 10.9 0.0 0.0 0.0 239.8 2275

Freebies-visits 81.5 8.0 26.0 89.0 743.5 3235
GPS-visits 3.8 1.0 2.0 3.0 34.0 884

Table 5: Number of visits per area.
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GPS visits Mean Q1 Median Q3 99% Max
Ironforge 1.0 0.3 0.7 1.4 9.4 0.4900

Orgrimmar 1.1 0.2 0.6 1.5 10.7 0.5684
Stormwind 0.4 0.1 0.2 0.5 5.7 0.5722

Stormwind-2 0.4 0.1 0.2 0.5 5.0 0.5088
Isis 2.5 0.8 1.7 3.4 19.0 0.4651

Ross 1.2 0.7 0.7 1.4 6.9 0.3856
Pharm 1.8 1.1 1.4 2.2 11.9 0.3561

Freebies 1.3 0.5 0.9 1.7 11.3 0.4773
GPS 0.1 0.1 0.1 0.1 0.4 0.2782

Table 6: Percentage of visited areas.

Personal preference Gini Mean Q1 Median Q3 Max Gini
Ironforge 0.2880 0.2023 0.2781 0.3582 0.7262 0.2278

Orgrimmar 0.3074 0.2083 0.2978 0.3986 0.7614 0.2625
Stormwind 0.2749 0.1714 0.2697 0.3619 0.6780 0.2687

Stormwind-2 0.2542 0.1667 0.2448 0.3176 0.7084 0.2346
Isis 0.3022 0.2245 0.3000 0.3839 0.6935 0.2125

Ross 0.2427 0.1523 0.2333 0.3007 0.6335 0.2373
Pharm 0.2730 0.2000 0.2727 0.3407 0.6131 0.2125

Freebies 0.2140 0.1500 0.2015 0.2648 0.6825 0.2345
GPS 0.3976 0.3122 0.3780 0.4671 0.8815 0.1632

Table 7: Personal preference weight Gini.

GPS visits times Mean Q1 Median Q3 99% Max
gps10-times 3.8 1.0 2.0 3.0 34.0 884
gps20-times 6.1 1.0 2.0 4.0 72.0 2354
gps50-times 11.8 1.0 2.0 6.0 180.0 4789

Table 8: GPS visit times.
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