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Abstract

Traffic localization is currently considered a promising approach to decrease the load of
P2P systems on the Internet backbone. A number of solutions that promote P2P-locality
have therefore been proposed. However, their evaluation has been largely focused on simu-
lations with limited validation against real-world systems.

In this paper we empirically measure the influence of locality on end-user download speed
in BitTorrent. For that, we design Proximity Toolbox, a set of tools that uses cached round-
trip-time measurements to estimate latency and feed close peers to a regular BitTorrent
client. We run experiments from five vantage points in North America, Europe and Asia
downloading real content using real-world connectivity.

We find that locality influences end-user speed in different ways in different locations: it
has no effect in one location, generates significant increase (up to 57.65% for the average) in
three out of five, but also leads to speed decrease (up to 37%) in one location. Furthermore,
we show that this diversity of effects is masked if one overlooks the diversity of vantage
points: analyzing all locations together, one can observe a significant positive influence of
locality on download speed.

Our measurements reveal a more complex picture of P2P-locality than the one con-
sidered in the design and evaluation of previous locality-based solutions. Even with few
measurement points, we are able to contradict the claim that P2P-locality does not lower
end-user performance. This, in turn, points to the need for further research on the factors
determining the effectiveness of locality.
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1 Introduction

P2P applications, especially BitTorrent [1], generate a large fraction of the Internet backbone
load [2]. Long distance Internet traffic often has to traverse many Autonomous Systems, gener-
ating cost. What is more, it is widely believed that BitTorrent creates congestion on backbone
links and therefore deteriorates performance of the whole network.

Current implementations of the BitTorrent protocol do not take physical network information
into account when choosing peers to exchange data with. This means that data may be often
transfered between continents while it may be available in the user’s close proximity, e.g., the
same Internet Service Provider (ISP) or city. This is suboptimal from the cost perspective. Many
ISPs and researchers have argued that if P2P traffic could be kept more local, backbone load
would decrease. It is widely believed it would lead to lower cost of operating the network and
also enhance performance for end-users.

P2P-locality refers to traffic localization in peer-to-peer networks. The basic concept is to
change peer selection so that more data is exchanged with peers that are local. Local has different
meanings: it can be geographical closeness, number of IP hops, number of traversed ASes, cost
of transporting the bytes to the other end or latency of the connection.

There are some developed and/or deployed P2P-locality solutions. They range from po-
sitioning on the Internet overlay [3], through changing the tracker behavior [4] to ISP-aided
solutions [5] [6] [7]. One issue with all these solutions is that they do require either large de-
ployment or cooperation of a third-party in order to be tested. Because of that, designers often
assess the performance of their systems using simulations.

In this paper we measure the influence of locality on download speed from end-user perspec-
tive. We run real-world experiments with real content, real peers and real connectivity. Our goal
is to study how P2P-locality can affect particular users in the current Internet. We find that
the way traffic localization influences download speed is more complex than previously reported.
Our findings show the need to revisit the existing simulations in order to better capture the
diversity of the Internet network and BitTorrent protocol.

We study locality in five different vantage points: Canada (CA), Hong Kong (HK), the
Netherlands (NL), Poland (PL) and Romania (RO). Depending on the location, locality has
a different effect on the end-user performance. There is significant performance increase in
Canada, Poland and Romania (up to 57.65% for the mean). However, there is only a minimal
speed change in Hong Kong and a significant performance decrease in the Netherlands (up to
37%). In most cases, locality, or lack thereof, is more important than the particular level of
locality. The exception in our vantage points is Canada where only higher locality levels lead to
performance change.

In addition to studying locality in five locations separately, we contrast this analysis with
one that averages all vantage points without discriminating them. Surprisingly, the diversity of
how locality influences the download speed is not reflected in the global perspective—all levels
of locality lead to statistically significant performance increase. This demonstrates how one can
oversee important details by looking only at the global picture.

In order to do the measurements, we design Proximity Toolbox: a set of tools for finding local
peers and feeding them to a regular BitTorrent client. Proximity Toolbox uses cached round-trip-
time (RTT) measurements to estimate locality and later, during the download, orders the peers
according to their latency, giving preference to peers considered to be closer. We use traceroute
to measure the latency and a regular BitTorrent client to download the content.

Our first contribution in this paper is a measurement study showing a more diverse nature of
P2P-locality than presented in previous studies. The second contribution, Proximity Toolbox, is
a means to achieve and measure locality in real-world conditions.

Wp 4
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The remainder of the paper is structured as follows. In Section 2 we study the existing
research in P2P-locality and show how our findings extend current knowledge in the field. We
describe peer discovery and peer selection in BitTorrent in Section 3. In Section 4 we show
how we use latency for locality and in Section 5 we show how we estimate locality in Proximity
Toolbox. Then, in Section 6 we describe the setup we used to do P2P-locality measurements:
infrastructure, client settings, swarm selection algorithm, etc. We analyze the results of the
measurements, using statistical model, in Section 7. Finally, we conclude in Section 8.

2 Related work

Two main approaches for achieving P2P-locality have been considered in the literature. The first
is to bias peer-selection towards peers with low latency. This concept was used by Choffnes et
al. to implement Ono [3]. Ono uses RTT measurements to DNS servers of a Content Delivery
Network to establish the virtual coordinates of a node. Using the coordinates, Ono estimates
the distance between peers and gives priority to peers that are considered to be close. Choffnes
et al. implemented the system as a plugin to the Azureus BitTorrent client and had this plugin
installed by more than 120 000 clients, making it the largest P2P-locality trial conducted so
far. Peers selected by Ono had significantly lower latency than random peers (median latency
over two orders of magnitude lower). However, clients using Ono did not observe better average
download time. In fact, the download performance slightly dropped. One notable exception
was a Romanian ISP that had significantly higher bandwidth inside the ISP than to the outside
world—an obvious case for P2P-locality deployment.

A variation of the same approach is constraining BitTorrent peers to select mostly peers from
the same ISP. Bindal et al. [8] used this approach to limit the number of connections a peer can
have to peers from outside the same ISP. In order to assess the performance of their system,
they ran simulations on a fully connected graph of 14 ISPs, with 700 hundred peers distributed
between them. They concentrate mostly on decreasing data redundancy inside the ISP, but in
some cases they notice around 30% average speedup. The simplifying assumptions of this work
leave as an open question what is the effect of ISPs heterogeneity and topology. In this paper
we argue that because P2P users tend to be concentrated in some parts of the world, there is
very limited potential for P2P-locality in some locations.

The second approach to achieve P2P-locality is to use ISP-provided topology information.
P4P [6] proposes such a cooperation between P2P users and their ISPs: ISPs would provide
servers that their users would be able to query. The ISP would tell the P2P users which peers
are close. A similar approach was proposed by Aggarwal et al. [5]. Unsurprisingly, the P4P-like
approach has got a lot of support from Internet Service Providers: they have a chance to decrease
the cost of operating their networks with very little change to the infrastructure. IETF ALTO
working group [7] is currently trying to develop a topology-related information exchange protocol
for communication between P2P users and the ISPs. In the ”Mythbustering Peer-to-peer Traffic
Localization” Internet Draft [9], it is considered “very likely” that P2P-locality will increase the
application performance, especially for large swarms and networks with large capacity. In this
paper we argue that while this claim is mostly true, the situation is not that simple.

P4P approach has been used in the Comcast-Pando trial [10], a second (next to Ono) locality
deployment in the real-world. Pando is a commercial P2P software for file distribution [11].
In the trial, clients downloaded a 20MB file. A modified tracker was used to provide locality—
instead of returning random peers, the tracker used topology information (provided by Comcast)
to return local peers. The trial has shown significant speed improvement: up to 15% globally and
up to 85% for Comcast users. Even though the file was very small and many details of the trial
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remain unknown, it is a strong evidence that locality can boost the download speed, especially
for ISPs with many P2P users.

We observe that in the aforementioned studies, irrespective of how locality is achieved, eval-
uation predominantly or solely focus on the effects of locality on ISP costs. It is often a premise
that an improvement on the end-user’s service will follow IPS’s cost reduction. In contrast with
this picture, we understand that the assumption that P2P-locality is always a win-win situation
for ISPs and end-users needs further evidence. In particular, none of the discussed research has
considered the possibility that locality influence on download speed varies depending on network
conditions.

This study addresses this gap, concentrating on how P2P-locality affects end-user performance
in distinct vantage points on the Internet. By individually analyzing results from different
experiment locations, we show that the influence of locality varies.

3 Bittorrent

In this section we explain BitTorrent and the peer exchange (PEX) extension. We concentrate on
peer discovery and peer selection as those are the only aspects of the protocol we are concerned
with.

BitTorrent is currently the most popular P2P file sharing protocol. The protocol is highly
decentralized: there is no global bootstrap servers or repositories. Instead, users downloading
the same content constitute a swarm—a separated group of peers exchanging pieces of the same
file. Two different peers, not being part of the same swarm, do not communicate with each other
and two peers in the same swarm exchange only bytes belonging to the given swarm.

In order to join a swarm the user needs to obtain a .torrent file—a metadata catalog con-
taining i) information about the content being shared, ii) address of one or more trackers, and
iii) checksums necessary to verify the downloaded file pieces. The BitTorrent protocol does
not define a method for distributing the metadata files; normally .torrent files are distributed
through websites. In order to join a swarm, the user needs to connect to the tracker found in
the metadata file. The tracker is a server, whose only responsibility is to keep track of users in
the swarms. It does not host the content, it does not download it and it does not need to know
what content is being tracked. When contacted by a user, the tracker responds with a list of IP
addresses of other peers in the swarm. The user then connects to the peers received from the
tracker, establishes BitTorrent sessions with them and can start downloading the file. Normally,
both the tracker and the client choose IP addresses randomly—the tracker returns random peers
from the swarm and the client connects to them in random order. The list of IP addresses sent
by the tracker is usually between 50 and 200 peers.

In this paper, we only modify the peer discovery and the peer selection parts of BitTorrent.
No changes are made to any other parts of the protocol. Hence, we do not describe the rest of
the BitTorrent protocol.

The tracker is the standard way of discovering peers in BitTorrent. In addition, all major
clients also support the peer exchange (PEX) extension: a gossip-based protocol for intra-swarm
communication, allowing clients to discover other peers in the same BitTorrent swarm. PEX is
a simple extension that allows fast peer discovery without the support of the tracker. Two peers
supporting PEX exchange their sets of connected peers; once immediately after connecting and
incrementally later on. Note that only connected peers are exchanged—this prevents spreading
addresses of peers that are no longer active in the swarm.

Using PEX one can implement a PEX-crawler—a client that tries to find all the peers in
the swarm. It can be done by connecting to more and more peers and using PEX messages to
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extend the known peers set. Indeed, our experiments show that after five minutes our PEX-
crawler discovers more than 90% of the number of peers reported by the tracker. In practice,
PEX-crawler is a useful tool for creating a snapshot of peers in the swarm at a given moment.

The tracker list of 50-200 peers is insufficient for a client-side locality solution. A bigger list
of peers is necessary in order to find peers that are local. One possible way to obtain addresses
of more peers in the swarm is to query the tracker many times. We believe that using the PEX-
crawler is both a more robust and a more reliable method. It also does not generate unnecessary
load for the tracker.

PEX allows us to get a list of most of the peers in the swarm. Instead of having between 50
and 200 peers, we can have thousands of them.

4 Using latency for locality

In this section we describe the algorithm Proximity Toolbox uses to establish a locality-based
order of peers in the swarm. The algorithm is based on traceroute measurements and Border
Gateway Protocol (BGP) prefixes, both of which are explained. A näıve approach to ordering,
based on pings, is not satisfactory, as we will show.

We use round trip time measurements as it is the easiest way of achieving locality. It does
not require cooperation of other peers or use of a third party service. Choffnes et al. [3] have
shown that using a latency-based approach does in fact decrease the number of IP hops, proving
the validity of the approach.

4.1 Straw man solution

Let us first consider a näıve approach. When a client gets a list of peers in the swarm, it starts
to send ICMP echo packets (pings) to all of them. Ping is a very simple tool for measuring the
RTT between two hosts. Peers can be then ordered according to the measured RTT.

Such a näıve approach seems to do the job: it orders the peers according to the latency,
achieving some level of locality. Unfortunately, there are several reasons why it would have only
limited success:

� Pings are not accurate: they are highly affected by congestion, especially by the congestion
of the end-user access link.

� Many hosts do not respond to pings: our measurements show that only around 40% of
peers actually responds to ICMP echo packets. This means that only around 40% of peers
can be ordered and the RTT value for the rest of them would be unknown.

� BitTorrent tends to have very high churn: by the time the pinging is done, many peers in
the swarm have already changed. This makes the RTT list outdated and the whole process
needs to be repeated.

The high churn problem could be overcome with caching: instead of measuring peers every
time they are encountered, one could store the RTT for future use. Unfortunately, our tests show
that the rendez-vous probability in BitTorrent is very low: two swarms with sizes above 20 000
peers usually do not have more than a few common peers. Taking into account that BitTorrent
is used by millions of users, such a cache would very fast grow to unmanageable sizes.

Wp 7
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4.2 Addressing the issues of the straw man solution

In this subsection we address the three problems with näıve solution: inaccuracy, low response
rate and high churn in BitTorrent.

Traceroute

The main reason why the näıve approach is inaccurate is last-mile congestion. Last-mile is a
common name for the link between the end-user and its provider. Very often the last-mile is a
an ADSL or Cable link, both of which have larger router queue sizes and different packet drop
policies than backbone links. A larger queue size means that packets are delayed more before
being sent out, increasing the latency of the end-to-end link. Last-mile links also have very
limited capacity. This, together with high utilization, typical for BitTorrent users, results in
high congestion of the last-mile links.

Simple end-to-end pings are not the only way of measuring latency. One example of a more
sophisticated use of ICMP echo packets is traceroute—a net diagnostic tool capable of inferring
the full router path between two end-hosts. Traceroute modifies the time-to-live (TTL) value of
packets, causing the routers on the way to drop them and send an ICMP time exceeded packet
back to the sender. Using different TTL values, traceroute can infer all the routers on the path
between two end-hosts.

Using traceroute it is possible to get the address of the last-router before the end-point. This
is the ISP-controlled side of last-mile link, not suffering from last-mile congestion problem.

end−host latency [ms]
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Figure 1: Comparison between last-router and end-host measurements for 10 000 end-hosts. 2.5% of
end-host measurements were higher than 1500 ms and are omitted from the graph.

In order to illustrate the last-mile congestion problem, we conducted a small experiment on
10 000 P2P users. Figure 1 compares RTT measured to the last-router and to the end-user, for the
same IP address. In 48% of cases the difference between end-host and last-router measurement
is more than 25 ms—in congestion-free conditions, 25 ms corresponds to roughly 1000km in
geographical distance. We believe this discrepancy is caused by the last-mile congestion, which
contributes disproportionally to the end-to-end RTT measurements.
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It has to be noted, however, that traceroute cannot successfully identify the last-router if the
end-host is not responding to ICMP echo packets. In that case traceroute can infer only some
hops on the path; often all hops but the last one: the end-host. Unfortunately, it is hard to
distinguish such a situation from one where one router on the way is blocking the traceroute.
Because we cannot be sure that we in fact find the last-router, we discard all the measurements
where the end-point is not responding.

BGP prefixes

The second component of our latency-estimation algorithm is based on Border Gateway Protocol
(BGP) prefixes.

BGP is the de facto standard routing protocol of the Internet. It is used to route packets from
one destination to another. Different organizations, called Autonomous Systems (ASes), have
control over different networks. They exchange information about the networks they control and
how to reach them. In the BGP terminology networks are usually called BGP prefixes. A prefix
denotes one network and for every IP address it is clear whether it is a part of a given prefix.
When a packet is sent, first it is delivered to the AS in control of its destination prefix and then
the AS delivers the packet to the right end-host.

The list of prefixes can be easily obtained. Proximity Toolbox uses the prefix list published
by CAIDA[12].

In this paper we assume that two hosts in the same network (prefix) are close to each other
and therefore latency to them should be almost identical. For example, if two hosts 10.0.1.1 and
10.0.1.2 are in the same prefix 10.0.0.0/16 and measured RTT to 10.0.1.1 is 53 ms, we assume
that 53 ms is a good estimate of latency to 10.0.1.2 as well. BGP does not prohibit a prefix to
be spread over large geographical area, but according to our experience this is not often the case
for end-user prefixes. Later in the paper we show that our BGP prefix based solution does, in
fact, select peers that are geographically close. Note that in the above example 10.0.0.0/16 is
the most specific BGP-prefix and 53 ms is last-router RTT, free from last-mile congestion.

Thanks to BGP prefixes there is no need to know the exact RTT to every peer in the swarm.
It solves the problem of low response rate to ICMP echo packets. We find that even though we
cannot directly measure the RTT to 60% of peers, the reachable peers ensure coverage for the
overwhelming majority of BitTorrent-active BGP prefixes.

Caching

The third problem of the straw man approach—high churn—can be overcome with caching in
combination with BGP prefixes. We build a database of RTT measurements to many BGP pre-
fixes. To do that we extract IP addresses from BitTorrent swarms, using PEX-crawl. For every of
those IP addresses we measure RTT to the end-host and last-router by sending traceroutes. The
number of traceroutes needs to be sufficient to avoid short-time congestion while not generating
too much overhead. We choose 40 as a reasonable trade-off between the two and we store the
best result in the database. Sometimes, because of how routers are handling ICMP packets, the
end-host measurement is better than the last-router measurement. Hence, we always choose to
store the better of the two in the database.

Data in the database is stored per prefix, not per IP address. That means that two mea-
surements, for two different IP addresses from the same prefix, refer to the same record in the
database. There are theoretically roughly 232 IP addresses, but only around 300 000 BGP pre-
fixes. Because the RTT is stored on prefix level only, the database size is kept considerably
small.
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Location IPs prefixes ASes hit ratio

CA 430 862 35 428 4844 0.93
HK 251 732 29 327 4400 0.89
NL 403 047 36 245 5307 0.91
PL 362 173 33 786 4856 0.90
RO 222 769 24 195 3950 0.82

Table 1: Number of unique IP addresses measured per location, together with number of unique prefixes,
ASes and hit ratio.

Whenever an RTT value for an IP address is needed during the download phase, Proxim-
ity Toolbox looks for cached RTT value for appropriate prefix and uses that value as latency
prediction for the given IP address.

5 Estimating locality with the Proximity Toolbox

In this section we describe the latency measurements we have done using Proximity Toolbox. We
show the coverage of IP addresses and BGP prefixes we achieve. We also study how our latency
database can estimate locality and how the observed RTT values differ between locations.

5.1 Coverage

In order to build a latency database, we run our latency estimation algorithm for a few days
at each location. Table 1 shows the number of unique (responding) IP addresses measured,
together with the number of prefixes and ASes covered by those IP addresses. For every location
we also calculate the level of swarm coverage: the hit ratio. The hit ratio is a quality measure of
the database. It tells us for what fraction of IP addresses, from a random sample of peers, the
database has a latency prediction.

There is a significant discrepancy between the hit ratio in Romania and other locations:
because of a technical problem less IP addresses have been measured there. However, as we
show later in the paper, the difference in hit ratio is not correlated with the effect locality has
in particular locations. Indeed, Romania, having lowest hit ratio (0.82), has the highest speed
increase, while the Netherlands, having second highest hit ratio (0.91), suffers from significant
performance decrease.

5.2 Validation

Our latency-estimation solution is based on a premise that two end-hosts, with IP addresses in
the same prefix, are close to each other in physical and topological distance. Unfortunately, it is
impossible to test this premise for the peers we measure.

In order to gain more confidence in our algorithm, we cross-check the locality predictions
with an independent database. We use MaxMind GeoIP [13] to match IP addresses of peers to
geographic coordinates and observe geo-dispersion of peers. We use geographical proximity as a
proxy for topological proximity.

We run our locality prediction algorithm, for a 5000 peers swarm, in three different locations:
Canada, the Netherlands and Romania. Figure 2 shows that, indeed, peers selected by Proximity
Toolbox are very close to the measurement point.
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(a) Random peer selection (b) Localized peer selection

Figure 2: Comparison of random and local peers selected from the same 5000 peers swarm by machines
in Canada (C), the Netherlands (N) and Romania (R) (a) shows random peer selection with most of the
peers in North America and Europe and some in south east Asia (2 peers in the far east and 4 peers on
the US West Coast could not be fitted on the map). (b) shows local peers, all close to the appropriate
vantage point. In fact, all peers selected by the Romanian vantage point are located in Romania.

The fact that the algorithm chooses close peers gives us confidence that our approach, based
on traceroutes and BGP prefixes, is correct.

5.3 Latency distribution in various locations

Measured latency values differ significantly between locations. Figure 3 shows the cumulative
distribution function (CDF) of latencies for all identified BGP prefixes in five vantage points. In
Hong Kong we observe much higher RTT values (mean observed RTT is 311 ms) than in other
locations (between 101 and 135 ms).

We attribute this difference to the fact that most peers we see (and therefore BGP prefixes we
measure) are located in Europe and North America. Hong Kong is far from both and therefore
the RTT values to many prefixes are higher.

We expect to observe similarly high RTT values in other regions that are far away from
Europe and North America. The fact that P2P users are not uniformly distributed around the
world, but rather concentrated on two continents, can seriously reduce the effectiveness of locality
solutions: there is not much space for locality if there are almost no local peers. We believe this
is an issue that must be considered in the design and evaluation of P2P-locality solutions.

6 Experimental setup

In this section we explain how we download the content (with several locality parameters), how
we choose the swarms and what settings we use for the BitTorrent client. The clients use latency
databases (created using the process described in the previous section) to select close peers in
the swarm.
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Figure 3: Cumulative distribution of latencies in all five vantage points. Measured latency to one
prefix is a single sample. There is a significant difference between latencies observed in Hong
Kong and in other locations.

6.1 Single experiment description

We want to measure the performance from an end-user perspective. We do that by running a
series of downloads of various pieces of content. For a single machine and a given swarm, a single
experiment consists of two steps:

1. harvesting IP addresses of peers in the swarm using the PEX-crawler

2. downloading the content using the libtorrent/rtorrent BitTorrent client[14]

Before joining the swarm, Proximity Toolbox gathers a list of peers using a PEX-crawler. The
crawler runs for 5 minutes, getting on average more than 90% of peers in the swarm. Next, the
list of addresses created by the crawler is randomly divided into 4 groups and a BitTorrent client
is started for every one of the four groups. Each of the 4 clients starts with a different locality
level: 0, 33, 67 or 100%. 0% is the typical BitTorrent behavior: peers are selected at random.
33%-locality means that every third peer will be chosen to be as close (latency-wise) as possible,
while two thirds will be random. There will be two thirds of local peers for 67%-locality and
only the most local peers for 100%-locality. All four instances are running on the same machine,
at the same time, without any communication between them.

We do not want four different instances to compete for the same peers and therefore every
client uses different parts of the swarm for downloading. Note that even though we split the
swarm into 4 parts, every client still has a large list of peers available: between few hundreds
and few thousands, depending on the swarm (we discuss the swarm sizes later in this section).

We stop the downloads after 30 minutes. In Section 7.2 we show that 30 minutes is a
reasonable time to find out how locality settings influence the download speed.
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6.2 Client settings and infrastructure

In the download phase of our experiment, we use a modified version of the libtorrent/rtorrent [14]
BitTorrent client. We extended the software adding verbose logging capabilities and a latency-
aware peer-selection algorithm. We did not make any other changes to the client. Peer selection
is implemented in Python and runs as a part of the libtorrent library.

The client does not contact the tracker during the downloads. Instead, it receives the IP
addresses from the PEX-crawler.

We use 50 kB/s upload and 400 kB/s download speed limits. We believe it is similar to
an ordinary end-user connection in Europe and North America. Note that upload speed has
indirect influence on achieved download speeds, due to the tit-for-tat strategy implemented in
the BitTorrent protocol.

A normal BitTorrent client can have both incoming and outgoing connections. Our client does
not accept incoming connections: they would introduce noise in the measurements, decreasing
the effect different locality levels have on the results. Moreover, 50% of peers are not able to
accept incoming connections, as a results of widespread NAT and firewall deployment in the
current Internet [15]. Hence, we think that our decision to have only outgoing connections is
justified.

We use five vantage points for our measurement: Canada, Hong Kong, the Netherlands,
Poland and Romania. In all locations we have at least 100 Mbit/s connectivity, which is sufficient
to concurrently run 4 clients with 400 kB/s download speed. Hardware resources usage during
the experiments is minimal.

6.3 Swarm selection procedure
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Figure 4: Distribution of swarm sizes in the experiment. Swarms between 3000 and 13 000 peers
constitute 77% of all swarms.

Each machine in each vantage point must choose the swarms to join. Client-side locality is
not possible for small swarms: if the list of peers is short, the client connects to most of them
and prioritization is irrelevant. Moreover, in smaller swarms there is lower probability of finding
peers that are really close or even in the same ISP of the vantage point. Hence, Proximity
Toolbox uses only big swarms for the measurements. Figure 4 shows the distribution of sizes of
the swarms in our experiment, with the mean size being 8757 and median size 7470 peers. The
fact that Proximity Toolbox splits the swarm in four random parts makes the usage of biggest
available swarms even more important. Cuevas et al. [16], found that almost 90% of all measured
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swarms in the Mininova [17] community have less than 50 peers—there is no room for locality
in swarms that small. They also observed that the 1000 largest swarms hold collectively around
40% of all peers, while constituting only 1% of all swarms. Using the biggest swarms allows us
to contact more peers and better explore locality.

During the experiment, on every server, Proximity Toolbox chooses from the list of largest
swarms available at a given time. In order to avoid constantly meeting the same peers, the same
torrent is never downloaded more often than once every 15 hours. Our tests show that in two
consecutive downloads around 90% of the peers are different.

All vantage points where we run Proximity Toolbox choose from the same set of available
torrents. We do not explicitly prohibit two instances from downloading the same piece of content
at the same time, but we add a nondeterministic factor to the swarm selection algorithm, to
prevent all the instances from joining the same swarm simultaneously.

In total, the measurements resulted in 172 unique pieces of content. The most popular file
was downloaded 53 times while 59 pieces of content were downloaded only once. We downloaded
content in 6260 swarms (1252 per location). In total, for all locations, we downloaded 1675
gigabytes and uploaded 316 gigabytes of data.

7 Results analysis

In this section we use statistical analysis to evaluate how locality influences the download speed
in our experiment.

7.1 Achieved locality level

Before we analyze the download speed, we first perform a sanity check to test to what extend
Proximity Toolbox localizes the traffic. We use a kilometers per packet metric to compare the
number of kilometers packets in a particular download had to “travel” over the network. We use
physical distance between two end-hosts (calculated using GeoIP database) as a lower-bound on
network-distance between them. Figure 5 presents the average number of kilometers per packet
for all levels of locality in the five locations.

In all locations, besides Hong Kong, we observe an almost linear drop in average kilometers
per packet. Values for 100%-locality are around one fourth of those for 0%-locality (which
corresponds to random selection, currently employed in BitTorrent). This decrease is evidence
that our latency-based approach does achieve a very good locality degree.

In Hong Kong we did not manage to achieve better kilometer per packet values. Indeed,
for random peer selection (0%-locality) the average number of kilometers per packet is 3 times
higher in Hong Kong (13281km) than in the Netherlands (4664km). The number of kilometers
goes even higher for 100%-locality level (14737km). A simple explanation is that there are not
enough hosts that are local to our vantage point in Hong Kong and it is not possible to exploit
locality. It is also possible that this particular machine has poor connectivity to local peers while
having good connection to North America or Europe. The fact the we were unable to achieve
locality in this location is very significant: it is further evidence that a solution that works very
well in four locations does not necessarily yield satisfying results in the fifth.

7.2 Warm-up and steady state

At the beginning of each download, the BitTorrent client looks for peers to exchange bytes with.
Many peers need to be contacted: some do not respond at all and others have a very limited
upload capacity. It takes time before the client converges to a more or less steady state.
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Figure 5: Average number of kilometers per packet according to GeoIP. We observe linear correlation
with the level of locality for all locations apart from Hong Kong. In Hong Kong we observe both much
higher number of kilometers for random selection and no decrease when using locality.

Note that in our measurements we stop every download after 30 minutes. Startup time can
have different contributions in different swarms and we do not want the startup time to affect
the measured speed. Our tests have shown that average speed in the first 5 to 10 minutes of
the download is much lower than in any interval after the 10th minute. To be on the safe side,
we discard the first 15 minutes of the download and use the second 15 minutes to calculate the
average speed.

There are a few downloads which finish quicker than 30 minutes. We cannot discard them,
because they represent an important group of very fast downloads (close to maximum speed)
with short startup times. Instead of using the last 15 minutes, we use the second half of the
download for them.

Throughout the rest of the paper whenever we refer to download speed, we mean the average
speed in the second part of the download.
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7.3 Performance metric

A typical way to study speed in BitTorrent is to compare average download speeds. However,
according to our findings, the speed distribution across torrents is a bimodal—the slowest (be-
tween 0 and 50 kB/s) and the fastest (between 350 and 400 kB/s) downloads together make
42% of all. Studying absolute differences for data with bimodal distribution can lead to wrong
conclusions. For example, 10 kB/s speedup is crucial if it changes the speed from 10 kB/s to
20 kB/s and almost negligible if it changes the speed from 370 kB/s to 380 kB/s.

To better analyze the speed change, we define a new metric speed diff : it describes how much
the speed of a download has changed. For a measured speed speedm and reference speed speedref
we calculate the speed diff as:

(speedm − speedref )/min(speedm, sref )
For example, if the reference download speed (0%-locality) is 100 kB/s and the measured

speed for 33%-locality is 157 kB/s then the speed diff value is 0.57. And if the download speed
for 67%-locality is 45 kB/s the speed diff is -1.22. In the example from the previous paragraph:
speed diff between 10 kB/s and 20 kB/s is 1.00 but speed diff between 370 kB/s and 380 kB/s
is only around 0.03.

In contrast to absolute speed, speed diff has a distribution very close to normal and in our
opinion speed diff is a more appropriate metric for studying the change in download speed. For
the sake of comparison with other locality studies, we do the statistical analysis for both speed
diff and absolute speed in our results.

7.4 Statistical Model

We use a General Linear Model (GLM) to measure locality influence on download speed. We
build a multiple linear regression model with main effects of nominal independent variables. It
allows us to estimate the influence of a nominal variable X on a scale variable Y for every value
of the nominal variable X in relation to a chosen value of reference—how every level of locality
affects download speed in relation to the lack of locality (0%-locality).

We use two different dependent variables: download speed and speed diff. The first refers to
absolute speed change, while the other to the relative speed difference. While speed has bimodal
distribution, speed diff distribution is much closer to normal distribution which makes the mean
of this variable a more convenient and reliable statistical parameter.

The only independent variable is locality entered as a 4-value nominal variable (0, 33, 67
and 100 with 0 as the level of reference). We analyze data split by location (the relationship
between locality and dependent variable tested in every location separately) and the whole data
(all locations together).

Remember that every swarm was joined four times, at the same time and with the same
conditions. Hence, we exclude the effect of variables like number of seeders, numbers of leechers
and file size.

We assume a confidence level of 0.95 in the analysis.

7.5 Average speed analysis

Our model revealed a statistically significant relationship between locality and download speed
in four out of the five vantage points. However, the relationship is different, depending on
the vantage point. Figure 6 presents average changes for both speed diff and absolute speed
difference, together with 95% confidence intervals. While the results differ between metrics, we
consider the difference to be not essential. We concentrate our analysis on speed diff, as it is the
metric closer to the end-user experience.
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Figure 6: Mean speed diff and absolute speed change, together with 95% confidence interval. Statically
insignificant results drawn using dashed line. Poland, Canada and Romania notice significant perfor-
mance increase, while performance for Hong Kong does not yield statistically significant results. A clear
performance decrease is seen in the Netherlands.

In Romania, we observe highest average download speed increase (up to 95% CI of 57.61%
± 23). This matches results obtained by Choffnes et al. [3] and can be explained by the nature
of the connectivity in Romania. Namely, many ISPs in Romania provide higher bandwidth for
peers inside the ISP or country, than to the outside world. Locality-based peer-selection results
in higher utilization of faster local links, improving the overall download performance.

In Poland we also observe significant speed increase for all levels of locality.
Measurements for Canada are the most heterogeneous. For 67%- and 100%-locality we notice

clear performance increase (up to 95% CI of 38% ± 20). However, there is no performance
increase for 33%-locality. We cannot explain this phenomenon using our data and consider it to
be a good example of how locality can lead to non-trivial results in real-world settings.

We do not notice any significant performance change in Hong Kong. This can be explained
by the observation that this location has much higher median latency values and very high
kilometers per packet metric, as shown in Section 7.1. Hong Kong is a location with too few

Wp 17



Wojciechowski et al. Wp

The influence of locality on BitTorrentWp

PDS

Wp

Wp7.5 Average speed analysis

local peers to benefit from our locality solution.
Finally, we find that locality implies significant performance decrease in the Netherlands.

However, the explanation that applies to Hong Kong does not seem to be reasonable for the
Netherlands. In contrast to Hong Kong, this location has very good median latency to BGP
prefixes and enjoys the best average kilometers per packet value (855km for 100%-locality level).
In fact, it seems that, out of all five locations, the one in Netherlands has the best connectivity.

We observe a large diversity of results depending on location: using only five vantage points,
we manage to observe positive, neutral and negative influence of locality on download speed.
While positive influence is dominating, the two other cases are clear examples that locality is
not always beneficial for the end-user.
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Figure 7: Mean speed diff and absolute speed change for all locations together. Looking at our results
from this perspective can give a false impression that locality always has statistically significant influence
on download speed.

Besides studying each location separately, we also look at all locations together. While our
vantage point selection is not representative of the whole Internet, not differentiating between
network locations is a common practice in P2P-locality publications [3] [10]. Studying all loca-
tions together is similar to answering the question: Does locality increase the download speed in
general? The average changes, for both speed metrics, are presented in Figure 7. Surprisingly,
the global picture masks the diversity of results for particular locations: we notice statistically
significant performance increase for all levels of locality (up to 95% CI of 20.8% ± 9). This
means that if we did not study all locations separately, we could remain unaware of the fact that
in some conditions locality decreases end-user performance.

We are unable to say whether locality deployment should be deployed in the current Internet.
We believe locality has the potential to increase the average download speed, but it does not
mean that locality will increase the speed for every user. The neutral and negative influence of
traffic localization needs to be better understood before deploying an actual solution.

In our opinion the discrepancy between the results for all locations together and results
for specific locations has some serious implications. Firstly, it shows that current P2P-locality
simulations do not capture the heterogeneity of the Internet topology. Secondly, the diversity
of the results shows that it is not enough to analyze the locality in general. It is a case where
better on average does not imply better for everyone. Lastly, it shows that there are real-world
cases where locality leads to significant performance decrease. Those cases need to be studied
more carefully before any locality-based solutions are deployed.

One example how heterogeneity of the Internet affects locality is the difference between the
Netherlands and Romania. According to our best knowledge, the Netherlands is a country with
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very good backbone connectivity, but with many end-users having ADSL or Cable connection.
Lack of backbone bottlenecks could be a good explanation why locality does not have positive
influence on download speed there. In contrast to the Netherlands, Romania has a rather poor
outside connectivity, but many end-users have Ethernet connection at home, with fiber to the
premise. According to the “State of the Internet Q4 2009” [18] report by Akamai, Romania has
the third fastest broadband connectivity, with 45% of users having connections above 5 Mbit/s.
In the Netherlands it is only 28%. In such a scenario, locality thrives because it can omit the
bottlenecks of the outside connectivity and utilize a very good local connectivity. Again, it might
be very hard to develop a good P2P-locality solution until we better understand these kinds of
peculiarities.

8 Conclussions and thoughts for future work

In this paper we presented the design and results of a real-world P2P-locality measurement.
We have used a latency-based approach for achieving locality and fed local peers to a regular
BitTorrent client. Using our setup, we downloaded 6260 torrents in five locations (Canada, Hong
Kong, the Netherlands, Poland and Romania) on 3 continents and applied statistical analysis on
the results.

Our measurements revealed three major problems with P2P-locality:

� There are real-world conditions where it leads to significant performance decrease (as ex-
emplified by the Netherlands).

� There is only limited potential for locality in some locations. In our case this is Hong
Kong, but we suspect this is typical for many locations that are far from Europe and
North America.

� Looking only at the global picture masks the diversity of the results in particular locations.

Our measurements have some limitations: we use only five locations, with particular content
and client settings. In our opinion, the diversity of results we have obtained shows the need
for more large-scale tests, similar to those performed by Choffnes et al. [3]. P2P-locality needs
to be evaluated in more locations, with more diversity in both content and connectivity, and
with various speed settings. Also, more solutions need to be tested in real-world conditions. In
addition to that, more metrics should be studied, like for example: download time, maximum
achieved slowdown, upload speed, median download time or global swarm speed.

We also need to better understand the influence the level of locality has on the download
speed. We do not observe a difference between locality levels in four locations but in Canada the
lowest (33%) locality level does not result in performance change. There is a tradeoff between
too little bias towards local peers, resulting in no speed change, and too large bias, possibly
resulting in peer clustering. Le Blond et al. [19] have argued that even high locality levels do not
decrease the swarm performance, but this has yet to be measured in real-world conditions. Note
that measurement like ours cannot reveal problems like peer clustering—global experiments are
necessary.

The above-mentioned factors are often studied using simulations. However, using only five
locations we achieve higher results diversity than most of the simulation-based studies. In our
opinion, many P2P-locality simulations need to revisited, taking more parameters into account.
Insights from simulations, and their underlying simplifying assumptions, need to be validated
against real-world data.
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The IETF ALTO working group [7] is currently designing a protocol for topology information
exchange between ISPs and P2P users. This type of approach has yet to be tested in the real-
world and we think that simulations should not be used as the final evaluation tool. We hope
to see real-world measurements concerning ISP-based approaches in the near future. Also, our
measurements strongly suggest it is crucial for those measurements to take many border cases
into account.

Finally, we believe, we are still at the beginning of understanding how locality affects the
end-user performance in the real-world. We hope our work will increase the awareness that
locality is not always a clear win-win situation for ISPs and P2P users.

9 Data availability

Data from the measurements is available on our website (http://www.pds.ewi.tudelft.nl/

~maciek/locality/). This is the data concerning swarm sizes, physical locations of peers, and
download progress, used to generate figures 4, 5, 6 and 7.
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David Hales and Elisa Jasińska for their valuable help on various stages of the draft.

This work is part of the P2P-NEXT project, supported by the European Commission through
FP7 grant no 216217, http://p2p-next.eu.

References

[1] B. Cohen, Incentives build robustness of BitTorrent., In Proceedings of First Workshop of
Economics of Peer-to-Peer Systems, USA 2003. 4

[2] A. Parker, The True Picture of Peer-To-Peer File-Sharing, Panel Presentation, IEEE
10th International Workshop on Web Content Caching and Distribution, Sophia Antipo-
lis, France, 2005 4

[3] D. R. Choffnes and F. E. Bustamante, Taming the torrent: a practical approach to reducing
cross-isp traffic in peer-to-peer systems, In Proceedings of SIGCOMM 2008 4, 5, 7, 17, 18,
19

[4] M. Slot and P. Costa and G. Pierre and V. Rai, Zero-Day Reconciliation of BitTorrent Users
with Their ISPs, Euro-Par 2009 4

[5] V. Aggarwal and A. Feldmann and C. Scheideler, Can ISPS and P2P users cooperate for
improved performance?, In Proceedings of SIGCOMM, 2007 4, 5

[6] H. Xie and Y. R. Yang and A. Krishnamurthy and Y. G. Liu and A. Silberschatz, P4p:
provider portal for applications, In Proceedings of SIGCOMM, 2008 4, 5

[7] E. Marocco and V. Gurbani, Application-Layer Traffic Optimization (ALTO) Problem State-
ment. ID, draft-marocco-alto-problem-statement-03 (Work in Progress), May 2009. 4, 5, 20

Wp 20

http://www.pds.ewi.tudelft.nl/~maciek/locality/
http://www.pds.ewi.tudelft.nl/~maciek/locality/
http://p2p-next.eu


Wojciechowski et al. Wp

The influence of locality on BitTorrentWp

PDS

Wp

WpReferences

[8] R. Bindal and P. Cao and W. Chan and J. Medved and G. Suvala and T. Bates and A. Zhang
Improving Traffic Locality in BitTorrent via Biased Neighbor Selection Proceedings of the
26th IEEE ICDCS, 2006 5

[9] E. Marocco and A. Fusca and I. Rimac and V. Gurbani, Mythbustering Peer-to-peer Traffic
Localization ID, draft-marocco-p2prg-mythbustering-01, July 2009 5

[10] C. Griffiths and J. Livingwood and L. Popkin and R. Woundy and Y. Yang, Comcast’s ISP
Experiences In a P4P Technical Trial ID, draft-livingood-woundy-p4p-experiences-10 5, 18

[11] Pando, http://www.pando.com/ 5

[12] CAIDA, http://www.caida.org/home/ 9

[13] MaxMind, http://www.maxmind.com/ 10

[14] The libTorrent and rTorrent Project, http://libtorrent.rakshasa.no/ 12, 13

[15] B. Li and Y. Qu and Y. Keung and S. Xie and C. Lin and J. Liu and X. Zhang, Inside the New
Coolstreaming: Principles, Measurements and Performance Implications, In Proceedings of
INFOCOM 2008 13

[16] R. Cuevas and N. Laoutaris and X. Yang and G. Siganos and P. Rodriguez, Deep Diving
into BitTorrent Locality, arXiv:0907.3874v2 13

[17] Mininova, http://www.mininova.org/ 14

[18] State of the Internet Q4 2008, Akamai,
http://www.akamai.com/stateoftheinternet/ 19

[19] S. Le Blond and A. Legout and W. Dabbous. Pushing bittorrent locality to the limit. Tech-
nical Report inria-00343822, version 1 - December 2008, INRIA 19

Wp 21

http://www.pando.com/
http://www.caida.org/home/
http://www.maxmind.com/
http://libtorrent.rakshasa.no/
http://www.mininova.org/
http://www.akamai.com/stateoftheinternet/

	Introduction
	Related work
	Bittorrent
	Using latency for locality
	Straw man solution
	Addressing the issues of the straw man solution

	Estimating locality with the Proximity Toolbox
	Coverage
	Validation
	Latency distribution in various locations

	Experimental setup
	Single experiment description
	Client settings and infrastructure
	Swarm selection procedure

	Results analysis
	Achieved locality level
	Warm-up and steady state
	Performance metric
	Statistical Model
	Average speed analysis

	Conclussions and thoughts for future work
	Data availability
	Acknowledgments

