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Abstract

The development of multi-core processors has aroused extensive interests in parallel programming model
research. OpenMP, as one of the most widely used shared memory programming model, has been proposed
and improved for more than ten years. In our work, we carry out a set of intensive performance experiments
by using the OpenMP Rodinia benchmark. We cover eleven different types of applications and conduct
the experiments on three multi-core CPUs. In order to investigate the OpenMP scalability and the best
performance that OpenMP can achieve, we vary the scale of datasets in each application and deploy different
numbers of OpenMP threads for each experiment run. We use IQR method to guarantee a more reliable
analysis. According to our results, we find that OpenMP shows diversified performance behaviors among
different applications, platforms, and datasets. For most applications, it performs reasonably and scales
well, reaching the maximum performance around the number of hardware cores/threads of the underlying
hardware platforms. The results will be used for further research on comparing programming models on
multi-cores.
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1 Introduction

Multi-core processors has become mainstream in parallel computing. With their quick development, program-
mers have begun to consider the corresponding parallel programming models from multi-angles. Instead of
focus entirely on performance, ease of programming and cross-platform portability also become increasingly
important. Therefore, several parallel programming models have been either refurbished or created to address
these new challenges [1], such as CnC [2], ArBB [3], or OmpSs [4].

However, despite these new, well-built programming solutions, OpenMP is still one of the dominants.
OpenMP is a simple, traditional shared memory parallel programming model, with a solid background in
the HPC community. In this paper, we study the performance behavior of OpenMP programming model on
three multi-core platforms by using eleven applications from the Rodinia benchmark suite [5]. We run three
datasets of different sizes for each OpenMP application, and we vary the number of OpenMP threads for each
experiment case. Our aim is to (1) understand the OpenMP scalability; (2) find the best OpenMP performance
per application, platform, and dataset.

After a set of experiments and analysis, we find that the OpenMP performance behaviors are diverse.
OpenMP scales well for most applications, and the best performance always happens around the number of
hardware cores/threads of the multi-core platforms. Since OpenCL is another popular programming model
among multi-cores, having the benefit of cross-platform portability, we plan to use the results for further
investigation on the comparison of OpenMP and OpenCL programming models.

The rest of the paper is organized as follows: We introduce OpenMP and Rodinia benchmark suite in
Section 2 and 3. Section 4 illustrates our experiment methodology, followed by Section 5 with a thorough
performance analysis. Finally, in Section 6 we draw conclusions and discuss future work directions.

2 OpenMP

OpenMP [6] comprises a set of compiler directives and a library, originally targeted at structured parallelism in
loops. In OpenMP, programmers annotate sequential C, C++ or Fortran code by a set of compiler directives for
parallel execution. Therefore, sequential algorithms are parallelized incrementally, and without major restruc-
turing. OpenMP operates in the fork-join model. Programmers start an omp parallel section in which they
can for example annotate a for loop. The iterations will run in parallel and join at the end of the for. This
works best for independent iterations, but it is possible to have different forms of synchronization. Reduction
operators are built in and programmers are able to define atomic operations and critical sections. OpenMP
parallelism granularity can be controlled manually by adjusting the number of OpenMP threads in combina-
tion with a scheduling type, such as static or dynamic, which insures a coarse-grained parallelism. OpenMP
supports both task and data parallelism. In OpenMP 3.0, programmers can define tasks. Tasks are similar to
the sections statement that defines that multiple threads should execute different tasks in parallel, but tasks
are more dynamic, high-level and allow nesting. With a task construct, programmers can define a block of
code of which the execution can be deferred. In contrast to sections, tasks are not bound to a specific thread,
which means that a thread can execute multiple tasks. Tasks can also be untied which means that tasks can
be suspended and resumed by a thread. The directive-based approach and coarse-grained parallelism make this
model easy for programming existent and new applications on multi-core hardware platforms.

3 Rodinia Benchmark Suite

Rodinia benchmark suite is designed for research in heterogeneous parallel computing [7]. In order to help
computer science researchers to have an insight in emerging hardware platforms, this benchmark suite are
implemented for both multi-core CPUs and GPUs using three different parallel programming models - OpenMP,
CUDA, and OpenCL. To address the diversity characteristics, the applications in the benchmark suite are

Wp 4 http://www.pds.ewi.tudelft.nl/jieshen/
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selected carefully to cover different types of application behaviors according to the Berkeley’s dwarfs [8], therefore
they exhibit various types of computations, data access patterns, problem partitions, and optimizations. In each
application, different input sizes can be specified for various uses. In our experiments, we target the OpenMP
part of the benchmark suite: We choose eleven OpenMP applications. We run three datasets of different sizes
for each application, and we vary the number of OpenMP threads for each test case, in order to (1) understand
the OpenMP scalability; (2) find the best OpenMP performance per application, platform, and dataset.

4 Methodology

In this sections, we present our experimental setup, including the chosen platforms, datasets and the number
of OpenMP threads. We also discuss the OpenMP performance measurement method.

4.1 Experimental Setup

Platforms We choose three different multi-core hardware platforms provided in DAS-4 [9] to carry out the
performance experiments.

• N8 - 2.40GHz Intel Xeon E5620 dual quad-core platform with 2-way hyper-threading.

• D6 - 2.67GHz Intel Xeon X5650 dual six-core platform with 2-way hyper-threading.

• MC - 2.10GHz AMD Opteron 6172 Magnycours platform consisting of quad twelve-core processors.

Applications and Datasets We choose eleven different applications from the Rodinia benchmark suite
(Table 1). For each application, we choose three different datasets (varying dataset sizes) as inputs, aiming to
find out if the performance trend in each application is preserved or affected by the scale of datasets. Besides,
for the same dataset, whether different platforms behave similarly or not is also observed.

Table 1: The eleven Rodinia OpenMP applications we choose
Application Dwarf

BFS Graph Traversal

HotSpot Structured Grid

K-means Dense Linear Algebra

CFD Unstructured Grid

LUD Dense Linear Algebra

NW Dynamic Programming

SRAD Structured Grid

Streamcluster Dense Linear Algebra

Particle Filter Structured Grid

Back Propagation Unstructured Grid

PathFinder Dynamic Programming

Number of threads We investigate the scalability of our OpenMP benchmarks by varying the number of
OpenMP threads (software threads) from two to a number at least equal (but usually larger) to the number of
hardware threads the target platform has. Another goal is to find the best OpenMP performance per application,
platform and dataset. Table 2 summarizes the number of OpenMP threads we have used for each multi-core
platform.

Wp 5 http://www.pds.ewi.tudelft.nl/jieshen/
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Table 2: The number of hardware threads and OpenMP threads we use on the three hardware platforms
Platform Abbreviation Number of Hardware Threads Number of OpenMP Threads

Dual quad-core N8 16 2 4 8 16 24 32 48 64

Dual six-core D6 24 2 4 6 8 12 16 24 32 36 48

Magnycours MC 48 2 4 6 8 12 16 24 32 36 48 60 64 72 96

4.2 Performance Measurement Method

To test and analyze the parallel computing capability of our three multi-core platforms, we run each application
with several numbers of OpenMP threads and measure the execution time (unit: ms) for each run. We measure
only the compute intensive, OpenMP-enabled sections of each application. We use gettimeofday() to record
the elapsed time from the start point to the end point of the parallel section.

Furthermore, for each number of OpenMP threads, we run ten consecutive tests to determine a more reliable
result. Finally, we analyze the ten timing samples and report the minimum, first quartile, median, third quartile,
maximum execution time. We do this because we have noticed several unstable executions, which show abnormal
timing behavior.

5 Perfomance Analysis and Comparison

In this section, we analyze the performance of eleven applications from the OpenMP Rodinia benchmark, and
make a thorough comparison among different platforms and datasets.

5.1 BFS

BFS is the Breadth-First Search algorithm [10] implemented in parallel which can be used in many graph related
applications. For BFS, we have three graph datasets of 4K nodes, 64K nodes and 1M nodes.

In BFS, we observe that different platforms have a similar performance trend for the same dataset. Fig-
ure 1(a) shows the performance of the three platforms when using the 4K-node dataset. In this figure, all three
curves have a general increasing trend. The execution time levels off (or increases slowly on the MC platform)
when the number of OpenMP threads is smaller than the number of hardware threads, and increases sharply
afterwards. In Figure 1(b), when the dataset has 64K nodes, the execution time of each platform drops down
to the lowest point at 8, 12, 8 threads on N8, D6, MC, respectively, and then rises slightly. In Figure 1(c), when
the number of nodes processed is 1M, the execution time of the N8, D6, MC platform decreases quickly from
2 threads to its lowest point at 8, 12, 16 threads, respectively, and then remains stable (increases or decreases
slightly) as the number of OpenMP threads increases.

From these figures, we find that the optimal numbers of OpenMP threads that should be used for the BFS
parallel section are 8, 12, 8/16 on the MC, D6, N8 platforms, respectively, especially when the scales of dataset
are large. For the N8 and D6 platforms, the optimal numbers are half of their numbers of hardware threads,
and equal to their numbers of cores. For the MC platform, although the optimal number of threads is much
less than the number of hardware threads (also the number of cores), the corresponding execution times are
relatively close. We also notice there are sharp increases from 48 to 60 threads on the MC platform, from 16 to
32 threads on the D6 platform, and from 16 to 24 threads on the N8 platform when using the 4K-node dataset
and the 64K-node dataset. Actually, we test and discover that these sharp increases happen at (#hardware
threads + 1) threads. This happens because using more threads than the number of hardware threads, we
overload the multi-core platforms with thread switch overhead, which will shadow the advantage brought by
multi-threading. An interesting fact on the N8 and D6 platforms with the 1M-node dataset is that after falling
to the lowest points, the execution times first increase and then present a decreasing trend. We think that the

Wp 6 http://www.pds.ewi.tudelft.nl/jieshen/
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(b) 64K-nodes
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(c) 1M-nodes

Figure 1: The execution time of BFS on the three platforms using three datasets: (a) 4K-nodes, (b) 64K-nodes,
(c) 1M-nodes.

performance gain in execution time may be introduced by the cache, since one memory access brings more data
into the cache, to be used by more threads as the number of threads increases.

Apart from that, we observe that there is an abnormal spike on the D6 platform at 24 threads (not shown
in the figures). When using 24 threads, the execution time is one or two orders of magnitude larger1 than using
the other numbers of threads. This situation appears throughout the whole Rodinia benchmark experiments,
independent of the applications and datasets used. We believe something is wrong on the D6 platform itself.

5.2 HotSpot

HotSpot is a 2D transient thermal modeling kernel [11], which computes the final state of a grid of cells when
given the initial conditions (temperature and power dissipation per cell). The application iteratively updates
the temperature values in all cells in parallel, and usually stops after a given number of iterations. For HotSpot,
we have three datasets, for grids of sizes 64× 64 (4K), 512× 512 (256K), and 1024× 1024 (1M) cells.

1Sometimes one out of ten timing samples has a normal execution time. We consider this normal result is correct result and use
it for plotting in those cases.

Wp 7 http://www.pds.ewi.tudelft.nl/jieshen/
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(a) 64× 64
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(b) 512× 512
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Figure 2: The execution time of HotSpot on the three platforms using three grids: (a) 64× 64, (b) 512× 512,
(c) 1024× 1024.

In HotSpot, we find that platforms perform similarly for the same dataset, but the achieved performance is
different. In Figure 2(a) of the smallest dataset, each of the three curves goes down and then increases at a steady
rate (almost constant) when the numbers of OpenMP threads are smaller than the number of hardware threads,
and rises dramatically after that point, especially on the MC platform. For the largest dataset (Figure 2(c)),
the execution time of the MC, D6, N8 platform decreases proportionally as the number of threads increases,
reaching the minimum value at 48, 12, 8 threads, respectively. From these points onwards, it increases on MC,
fluctuates on D6, and first increases then decreases on N8. Figure 2(b) shows the case of 512 × 512 cells. We
see that the performance trends are more or less the same as those in Figure 2(c).

According to the results, we find that the optimal numbers of OpenMP threads for HotSpot are 48, 12, 8
(equal to/half of/half of the number of hardware threads) on MC, D6, N8 respectively, only except that the
optimal is 16 threads for 64× 64 dataset on MC. A point worth mentioning is the first half parts of the curves
in Figure 2(a) when the numbers of OpenMP threads used are smaller than the number of hardware threads.
As the scale of dataset is small, the workload per thread is relatively small, so even using a small number
of OpenMP threads can achieve a good performance. When enlarging the number of threads, the overheads
such as synchronization between multiple threads are introduced. Thus, the execution time difference between

Wp 8 http://www.pds.ewi.tudelft.nl/jieshen/
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different numbers of OpenMP threads is not apparent. Besides, the sharp increases re-emerge in HotSpot from
48 to 60 threads on MC, and from 16 to 24 threads on N8. On D6, the increases happen from 12 to 16 for the
512 × 512 dataset and the 1024 × 1024 dataset, and from 16 to 32 threads for the 64 × 64 dataset. We think
the cause of the sudden growth is the same as that in the BFS application.

5.3 K-means

K-means (KM) is a clustering algorithm using mean based data partitioning method [12]. It contains dense
linear algebra calculations and has a lot of data parallelism to be exploited. We have three datasets of 200K,
482K, 800K objects for K-means.
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(b) 482K
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Figure 3: The execution time of K-means on the three platforms using three datasets of sizes: (a) 200K-objects,
(b) 482K-objects, (c) 800K-objects.

As we can see in Figure 3, K-means has different performance behaviors among different multi-core platforms
when using the same dataset, but has similar performance behaviors per multi-core platform when using different
datasets. The three execution time curves of the MC platform has a nearly ideal decreasing trend compared
to the other two platforms. It drops fast till its lowest point (32 threads for the 482K and 800K dataset, 48
threads for the 200K dataset), then flatten out, showing a sign of performance saturation. This means even we
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use more software threads in this application, it can not achieve a better performance. Because we also bring
in penalties, such as thread switch and cache miss, when adding threads. Turing to the N8 and D6 platform,
the general performance trends are both decreasing, but less steep than MC. The execution time of each curves
falls quickly in the first half part (#OpenMP threads < #hardware threads), while decreases much slowly in
the other half part. We think the reason is the same as in the MC platform case. The minimum execution time
of N8 and D6 are at the points of 48 and 64 threads, respectively, showing that these two multi-core platforms
still have not reached their capability limits in the end.

An interesting point we note is for all three datasets, MC performs worse than N8 and D6 only at 2 and 4
threads, and surpasses the other two when the number of OpenMP threads are equal or greater than 6. Beyond
that, an abnormal situation in K-means is that there are some leaps at 6, 16 threads on the D6 platform, making
the three curves of D6 sawtooth shapes. For the leaps at 16 threads, we consider this is because 16 is not an
integer multiple of the number of cores (12), which makes the workload partition per core unbalanced. As to
the leaps at 6 threads, we are further researching processor profiling information to find out the causes.

5.4 CFD Solver

CFD Solver is an unstructured grid finite volume solver for the 3D Euler equations for inviscid, compressible
flow [13]. For CFD, we use the single precision version with redundant flux computation scheme, which has
reduced memory latency and high arithmetic intensity. We have three datasets of 97K, 193K, and 0.2M2.

According to the results shown in Figure 4, we find that performance behaviors among different multi-core
platforms and different datasets are substantially the same, and it is similar to that of a compute-intensive ap-
plication. On MC, the best performance happens at the number equal to the number of hardware threads/cores
(48). After that, it first undergoes a jump from 48 to 60 threads, then decreases slightly at 64 threads, and keeps
increasing at a slow rate till the end. We think the mutual effects of thread switch overhead and less memory
access benefit result in this performance behavior. On D6, the lowest points of execution time are different with
different datasets. For the 193K dataset and the 0.2M dataset, they are 12 and 24 threads, respectively (half
of and equal to the number of hardware threads). We believe this two situations are more of less the same,
because we have not got a correct result at 24 threads for the 0.2M dataset. However, the lowest point shifts
to 16 threads with a small peak at 12 threads for the 97K dataset, due to the unstable property of small scale
dataset. On N8, the three curves all drop down till the number of threads equals to the number of hardware
threads (16). After an apparent increase at 24 threads, they keep a mild decreasing trend. We think the causes
of the performance behavior on N8 are the same as the causes on MC, but we see the outcomes vary among
different platforms.

In addition, we notice that when the numbers of OpenMP threads are smaller, the execution times of the
three platforms are (approximately) linearly decreased. This is mainly because all the software threads just find
their right positions (in hardware) to execute on, the resource contention between each threads are rare.

5.5 LUD

LUD (LU Decomposition) is an algorithm[14] to decompose a matrix as the product of a lower triangular matrix
and an upper triangular matrix. The decomposition is done in parallel. For LUD, we use three matrices of
512× 512, 1K × 1K, and 2K × 2K elements.

In Figure 5(a), as the scale of dataset is small, the execution times on three multi-core platforms are below
150ms when the numbers of threads used are smaller than their numbers of hardware threads. After that they
all have a sharp jump, especially on the MC platforms. In Figure 5(b), the execution time curves on three
platforms all decrease to their lowest points (at the number equal to the numbers of hardware threads), and

2Due to its large execution time, CFD is run three times for each number of OpenMP threads, and the three results become the
minimum, median, and maximum for analysis.
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Figure 4: The execution time of CFD on the three platforms using three datasets of sizes: (a) 97K, (b) 193K,
(c) 0.2M.

then have a significant leap as the case of 512 × 512 dataset3. For the largest dataset (Figure 5(c)), the total
performance trends are more or less consistent, but the execution time of MC are much higher than the N8
and D6 ones. After reaching their minimum values (at 32, 16, 16 threads on MC, D6, N8, respectively), MC
fluctuates, while N8 and D6 have a slight jump and continue increasing as the number of OpenMP threads
increases.

Besides, the timing behavior is not very stable on MC for the 512× 512 dataset and the 1K × 1K dataset
when the number of threads used are larger.

5.6 NW

NW (Needleman-Wunsch) is a dynamic programming algorithm[15] for sequence alignments, which builds up
the best alignment by using optimal alignments of smaller subsequences. It consists of three steps: initialization
of the score matrix, calculation of scores, and deducing the alignment from the score matrix. The second step
is parallelized. For NW, we run three 2D matrix datasets of 1K × 1K, 2K × 2K, and 4K × 4K.

3As we have discussed the reasons of the jump in execution time curve before, we skip the same discussion here.
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Figure 5: The execution time of LUD on the three platforms using three datasets of sizes: (a) 512 × 512, (b)
1K × 1K, (c) 2K × 2K.

From Figure 6, we notice that the execution times of the three multi-core platforms all undergo a first-
decreasing-then-increasing trend when the numbers of OpenMP threads we use are less than the numbers of
their hardware threads, but those execution times are relatively close and smaller than a certain value. While
when the number of threads exceed the number of hardware threads, the sharp increases in these curves are
obvious, especially on the MC platform. Thus, the performance of MC is comparable to the performance of N8
and D6 only when we use small amount of threads.

Because NW has diagonal stride memory access pattern, it is hard to exploit data locality to improve
performance. Therefore, the performance gained by parallelization is diminished by the overhead of frequent
memory accesses and memory latency. Moreover, with the increase of the number of OpenMP threads, there
are more threads idle within the initial (#OpenMP threads - 1) iterations and the final (#OpenMP threads -

1) iterations, which also leads to poorer performance.
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Figure 6: The execution time of NW on the three platforms using three datasets of sizes: (a) 1K × 1K, (b)
2K × 2K, (c) 4K × 4K.

5.7 SRAD

SRAD (Speckle Reducing Anisotropic Diffusion) is a diffusion method [16] used in ultrasonic and radar imaging
applications. SRAD is iterative; in each iteration, computing and updating of the whole image are performed
in parallel. For SRAD, we have three 2D matrix datasets: 1K × 1K, 2K × 2K, 4K × 4K pixels.

Figure 7(a) and 7(b) show the cases of smaller datasets. The three platforms all have a quick performance
increase till they use all their hardware threads. After that, we observe the execution time leap on each
platform, and then N8 and D6 have a decreasing trend in execution time, while MC execution time stabilizes.
The exception lies on the D6 platform, where the leap disappears in the case of the smallest dataset. An
interesting thing we find is that the curve both have “peak” and “trough” at 16 threads on the N8 platform,
which is equal to the number of its hardware threads. For the largest dataset (Figure 7(c)), the execution time
of the MC platform keeps decreasing with the number of OpenMP threads increasing, while both N8 and D6
have a small increase at 16 threads. Besides, MC becomes quite unstable, showing large performance gaps
between consecutive runs.

In SRAD application, each thread takes charge of a stripe of the input matrix, resulting in high intra-thread
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Figure 7: The execution time of SRAD on the three platforms using three datasets of sizes: (a) 1K × 1K, (b)
2K × 2K, (c) 4K × 4K.

data locality. Thus, even the value of each element is depended by its four neighbors, the thread can get
these elements with fewer memory accesses. Therefore, the three platforms perform well when executing SRAD
application in parallel, without much performance lose.

5.8 Streamcluster

Streamcluster (SC) is a data mining algorithm [17] for solving the online clustering problem: given a stream of
input points, it finds a predetermined number of medians so that each point is assigned to its nearest center.
In Streamcluster, we run experiments with 16K, 32K, and 64K points.

When we run the dataset of 16K-points (Figure 8(a)), we observe that the minimum execution time on N8,
D6, and MC is at 16, 12, 24 threads, which is half of, half of and equal to its number of hardware threads. Apart
from that, A sharp jump occurs from 48 to 60 threads on the MC platform, and from 16 to 24 threads on the
N8 platform, respectively, while the D6 platform has a sudden spike at 6 threads. Figure 8(b) shows the case of
median dataset. On MC, after decreasing to the lowest point of 16 threads, the execution time begins to go up
with the increase of the number of OpenMP threads. While on N8 and D6, the execution times both undergo
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Figure 8: The execution time of Streamcluster on the three platforms using three datasets of sizes: (a) 16K-
points, (b) 32K-points, (c) 64K-points.

a quick decrease, then a mild increasing trend (a slight peak at 16 and 24 threads, respectively). In Figure 8(c)
with 64K dataset, all the three platforms have a abnormal spike but at different numbers of threads. On the
MC platform, the spike happens at 6 threads, followed with its lowest execution time at 8 threads. After that,
the curve keeps increasing till 24 threads and turns to level off. On the D6 platform, the execution time curve
has a spike at 8 threads, followed with its lowest point as well at 12 threads, and then starts to fluctuates. With
regard to the N8 platform, the spike lies at 32 threads, and there is also a small peak at 16 threads.

From the results above, we see that there is no general performance trend for the same dataset or on the same
platform. Each curve has its distinct features. The causes of the abnormal spikes are still under investigation.

5.9 Particle Filter

Particle Filter (PF) is a probabilistic model for tracking objects in a noisy environment using a given set of
particle samples [18]. The application has several parallel stages, and implicit synchronization between stages
is required. For Particle Filter, the three input datasets have 104 (10K), 5× 104 (50K) and 105 (100K) particle
samples.
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(a) 10K
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Figure 9: The execution time of Particle Filter on the three platforms using three datasets of sizes: (a) 10K-
particles, (b) 50K-particles, (c) 100K-particles.

As the result of using small scale dataset, we see that all three execution time curves have a slight jump in
Figure 9(a). They are from 16 to 24 threads on N8, from 12 to 16 threads on D6, and from 48 to 60 threads on
MC. The lowest execution time on each platform just lies before the jump, at 16, 12, and 48 threads, which is
equal to, half of, and equal to its number of hardware threads, respectively. After that, the curve increases on
MC, and decreases on N8 and D6. Figure 9(b) illustrates the the results of using 50K particles. The execution
times of the N8, D6 and MC platform all fall from 2 threads to the maximum OpenMP threads (64, 48, 96
threads), showing a general decreasing trend. The only exception occurs on the D6 platform at 16 threads,
where a slight peak exists. In Figure 9(c), the execution times of the three platforms are similar to the case of
50K particles. The slight peak changes to MC platform at 32 threads, while the minimum execution time still
happens at the point of (approximate) maximum OpenMP threads on each platform.

On the whole, the Particle Filter performance of all three multi-core platforms are similar and scale well,
although there are several synchronization overheads. As to the slight jumps on the curves in these figures, we
believe that they correlates with the issue of integer multiple of hardware threads/cores.
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5.10 Back Propagation

Back Propagation (BP) [19], a neural network learning algorithm, is one of the most effective approaches to
machine learning when processing image data. It trains the weights of connecting nodes on a layered neural
network; the processing of all the nodes can be done in parallel in each training step. For Back Propagation,
we use three datasets of 216 (64K), 218 (256K), and 220 (1M) nodes.
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Figure 10: The execution time of Back Propagation on the three platforms using three datasets: (a) 64K-nodes,
(b) 256K-nodes, (c) 1M-nodes.

According to the results in Figure 10, we find that the performance behaviors are quite different among
different multi-core platforms, but relatively unified within each multi-core platform. On the N8 platform, the
minimum execution time lies at 16 threads, which is equal to the number of hardware threads. From the lowest
point onwards, there is first a sharp increase, and then a stable trend. On the D6 platform, after decreasing from
2 to 8 threads, there is a slight increase at 12 threads, which is equal to the number of cores. Then the decrease
starts again, making the point of 16/24 threads the lowest point. After that, the execution time showing a
general increasing trend. The exception happens when using 1M dataset: there is a sudden decrease from 36
to 48 threads. As to the MC platform, we observe quite special execution time behavior. Without a gradually
decrease, the maximum values happen at 4 threads when using both the 1M and 256K datasets, and then these
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two curves decrease to the point of 16 threads. On the contrary, the curve of 64K dataset has a trough from
2 to 16 threads. From 16 threads onwards, all the three curves of different dataset sizes start to stabilize. In
addition, the execution times on the MC platform are much higher than those on the N8 and D6 platform.

5.11 PathFinder

PathFinder [20] is a dynamic programming algorithm to find the shortest path of a 2D grid, row by row, by
choosing the smallest accumulated weights. In each iteration, the shortest path calculation is parallelized. In
PathFinder experiments, we use three grids with different widths (the number of columns) of 100K, 200K, and
400K elements.
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Figure 11: The execution time of PathFinder on the three platforms using three grids with different widths: (a)
100K, (b) 200K, (c) 400K.

From the results (Figure 11), we find that the timing behavior on each platform shows similarities. The
N8 platform has tick-shape curves. The execution times drop to the minimum at 8 threads, and after a slight
increase at 16 threads, they all begin to increase drastically. On the D6 platform, the curve shapes are coincident
with those on the N8 platform, where the half of the number of the hardware threads (12) is the lowest point.
Besides, we notice that the execution times increase fast after 16 threads. In the curves of the MC platform,
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the execution times all drop quickly to the point of 8 threads, and flatten out till 48 threads, during which the
minimum execution times are at the point of 32 threads. After a dramatical increase from 48 to 60 threads, the
execution times keep rising.

According to these results, we see that the optimal numbers of OpenMP threads for PathFinder are within
a small range around the number of hardware threads/cores. Smaller or larger than this range, the execution
times are relatively high.

6 Conclusion and Future Work

So far we have seen diversified OpenMP performance behaviors: For some applications, like BFS and HotSpot,
the three platforms perform differently for different datasets, but quite similar for the same dataset; For others,
like LUD, NW, and PathFinder, the platforms show similar, steady performance for less OpenMP threads
than hardware threads, and a sharp performance decrease afterwards. There are also some applications, like
Streamcluster and Back Propagation, in which the performance behavior is irregular, but relatively unified
within each platform. For most applications, OpenMP scales well when the OpenMP threads deployed are
not larger than the platform hardware threads, and the best performance always happens near the number of
hardware cores/threads.

Considering the programming model in a broader view, we see that OpenMP has the advantage of produc-
tivity. Parallelization in OpenMP is done in an incremental fashion by inserting the pragma directives at certain
positions. Empirically, the programming effort required by OpenMP is quite low, especially when we start from
a sequential code. In respect of portability, OpenMP are portable among different multi-core CPUs. In our
experiments, we use the Intel or AMD CPUs with different architectures, and the OpenMP implementations
can run on each hardware platform without modification.

OpenCL, on the other hand, as a newcomer from the GPGPU world, has the strength to exploit different
classes of hardware platforms, such as GPUs, CPUs, Cell/B.E. etc. Its cross-platform portability is a developing
trend in parallel computing. In the future, we will focus on the comparison of the two programming models,
OpenMP and OpenCL, on the multi-core CPUs to help programmers to make appropriate choices.
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