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Abstract

While many-core processors offer multiple layers of hardware parallelism to boost performance, applications
are lagging behind in exploiting them effectively. A typical example is vector parallelism(SIMD), offered by
many processors, but used by too few applications.

In this paper we discuss two different strategies to enable the vectorization of naive OpenCL kernels. Further,
we show how these solutions are successfully applied on four different applications on three different many-core
platforms. Our results demonstrate significant improvements in both achieved bandwidth and execution time
for most (application, platform) pairs. We conclude therefore that vectorization is not a computation-only
optimization for OpenCL kernels, but one that enables the applications to better utilize the hardware.

Using our experience with the vectorization, we present a refinement of the process into a two-module frame-
work to assist programmers to optimize OpenCL code by considering the specifics of the target architectures.
We argue that such a framework can further speedup applications based on the current work, and we also show
what are the requirements for making such an extension.

Keywords: SIMD, Vectorization, OpenCL.
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1 Introduction

Many-core processors are massively parallel architectures, designed and built to achieve performance by ex-
ploiting multiple layers of parallelism. Using languages like OpenCL and CUDA, many applications are being
relatively easily ported onto many-cores, with spectacular results when compared with their original (typi-
cally sequential) versions. However, these applications are forming a large code base of naive implementations:
functionally correct, but still far from the potential performance they could achieve if properly optimized.

There are several classes of generic optimizations that are applied for many-core applications [1]. In this
paper, we focus on code vectorization in the context of SIMD (single instruction multiple data) cores [2]. By
vectorization we understand the transformation of scalar code (i.e., code using scalar data types and instructions)
into vectorized/SIMD code [3].

Currently, there are multiple many-core architectures that use SIMD cores. For example, AMD’s GPUs [4]
use hundreds of stream cores, each of which is an SIMD processor with four or five processing elements. More-
over, Intel has recently introduced AVX (Advanced Vector eXtension) [5], an extension of the previous SIMD
instruction sets (SSE - streaming SIMD extensions) aimed at speeding up computationally intensive floating
point applications. AVX is supported by the recently released Intel Sandy Bridge processor, and it is also
to be supported by the AMD Bulldozer architecture. Note that, in fact, NVIDIA’s GPUs, with their scalar
processing elements, are more of an exception than a rule. For these architectures, vectorization is a mandatory
optimization: without it, applications literally waste more than 50% of the processing power.

Vectorization is not a new concept - vector processors have been around for more than 30 years and various
compiler-based attempts to automate code vectorization have proved partially successful [3]. The problem was
never completely solved, but modern compilers are able to partially vectorize user code in order to use an SIMD
instruction set. The most recent example is the Intel OpenCL SDK compiler [6], which has a vectorization
module that takes scalar OpenCL code and rewrites it using SIMD data types and instructions. However, the
transformation techniques these compilers use are not visible to the programmer, who is therefore unable to
track and/or tune the changes. Furthermore, for complex codes, most compilers remain conservative and drop
aggressive solutions.

In this paper, we discuss an alternative solution for code vectorization: instead of focusing on automated
vectorization for generic cases, we propose two different vectorization approaches, specifically designed for naive
(i.e., unoptimized) OpenCL code. Essentially, we are using a source-to-source translator that starts from a
generic (scalar) kernel and applies step-by-step transformations to obtain a vectorized one.

We have tested our source-to-source vectorization on four different types of benchmarks - namely, Matrix
Multiplication (MM), 2D-Image Convolution (IC), Black-Scholes (BS), and Red-Black SOR (SOR). We compare
the performance results of the vectorized and non-vectorized codes on three different architectures: NVIDIA’s
GeForce GTX580, AMD’s Radeon HD6970, and Intel’s Xeon X5650. Furthermore, we investigate the effects of
vectorization on both the bandwidth and the overall kernel execution time. We note interesting performance
results: in most cases, vectorization boosts the application performance (improvements ranging between 4%
and 300%), but can also slow-down certain applications (up to 11%). Finally, as we believe this is a promising
approach for OpenCL kernels optimization, we propose a framework to refine this solution and further extend
it by considering the architecture specifics.

Our main contributions are as follows.

• We discuss two orthogonal kinds of source-to-source vectorization, intra-vectorization and inter-vectorization
and their implementations (see Section 2); further, we analyze their impact on overall application perfor-
mance (in Section 4).

• We present a detailed investigation on the effects of vectorization on several typical memory access patterns
(MAP), and we show that both implicit data caching and explicit data reuse contribute to the bandwidth
increase (see Section 3), which proves that vectorization also brings us a better utilization on memory
access, not only computational power.

Wp 4 http://www.pds.ewi.tudelft.nl/fang/
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• We extend our vectorization approach into the CLVectorizer framework (in Section 5), and we show how
it can be integrated with the current work and possibly further improve performance.

Based on our hands-on experience with vectorization, we believe we can generalize the optimization process
of naive OpenCL code to improve its performance portability. Therefore, our conclusions (see Section 7) are
two-fold: (1) code vectorization improves platform utilization and (2) OpenCL source-to-source vectorization
can be generalized as a platform-agnostic optimization.

2 Source-to-Source Vectorization

In this section we briefly discuss OpenCL (our target language), and we focus on presenting a solution for
OpenCL code vectorization. Specifically, we discuss two different types of vectorizations suitable for OpenCL
kernels, and we show what code transformations have to be applied to enable them.

2.1 OpenCL as an Intermediate Language (IL)

OpenCL (Open Computing Language) has emerged as an open standard for programming many-cores, defined
and managed by Khronos Group [7]. Designed as a cross-platform environment, it has been adopted by Intel,
AMD, NVIDIA, IBM, and ARM. Due to its flexibility and portability, the model is currently a viable solution for
building applications that execute across heterogeneous platforms consisting of hosts - general purpose CPUs,
and multiple devices - typically accelerators like GPUs and FPGAs, but also many-core CPUs. Note that the
memory spaces of the host and the device are (logically) separated.

In OpenCL terms, applications are composed of “host code” - i.e., the code that is meant to run on the
hosts, and “kernel code” - i.e., the massively parallel code that runs on the devices. OpenCL includes a special
language (based on C99) for writing kernels and the APIs that are used to define and then control the platforms.
Several OpenCL bindings are available to higher level languages (Java, Python, C++), allowing to write host
code in all these languages.

When a kernel is submitted for execution by the host, an index space, NDRange, is defined. An instance of
the kernel is known as a work-item. Work-items are organized into work-groups, providing a more coarse-grained
decomposition. Each work-item has its own private memory space, and can share data via local memory with
the other work-items in the same work-group. All work-items can read/write global device memory.

In terms of parallelism, OpenCL provides high-level task- and data-parallelism. It also supports SIMD
parallelism by providing vector data types as charn, intn, and floatn, and ways to access their components.
It also extends operators (e.g., arithmetic operators, relational operators, logical operators, etc.) based on
element-wise operations. Finally, OpenCL C has build-in functions that support vector operations, such as
cross product and dot product [7].

Focusing on vectorizing kernels, we use OpenCL as both the input and the output language. We argue
that OpenCL is a good choice of an intermediate language due to its cross-platform feature, which allows the
vectorization to be applied for multiple platforms.

2.2 Alternatives for vectorization

Traditionally, vectorization is loop-based: once a loop is determined to be vectorizable, the loop is strip-mined by
vector length and each scalar instruction is replaced by the corresponding vector instruction (i.e., the operands
are vectors, and the operation is element-wise) [8]. In other words, traditional vectorization is an aggregation
of consecutive loop iterations.

When it comes to many-core programming in OpenCL, the basic unit of computation is work-item. In this
case, we propose to explore two different types of vectorization: inter-vectorization (eV), and intra-vectorization

Wp 5 http://www.pds.ewi.tudelft.nl/fang/
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Listing 1: native kernel

#define N 32

kernel void native(const global float ∗ in, global float ∗ out){

int idx = get global id(0);
float val = 0.0;
for(int i=0; i<N; i++){
val += in[idx+i];

}
out[idx] = val;

}

(iV). Both strategies focus on kernels, and only eV requires a minor change (i.e., an adjustment to the overall
number of work-items) in the host programs.

For inter-vectorization (eV), we enable vectorization across work-items. eV is based on work-items merging,
a technique to merge multiple neighboring work-items as a new work-item with coarse granularity, reducing the
number of work-items by VF (vectorization factor). This technique is used by Yi Yang et. al. to enhance data
sharing [1]. In our work, we merge work-items, and store operands using vector data (the same size with the
physical SIMD register). In theory, eV can be applied to any OpenCL kernel code. Furthermore, eV requires
a minor change in the host program, to reduce the number of work-items by VF.

In intra-vectorization(iV), we focus on vectorizing the work performed per work-item. iV is based on loop
unrolling (much like the traditional vectorization). Specifically, we unroll the loop for VF times, and rewrite
the scalar computation into its vector form. There is still work to be done to deal with the loop remainder when
the loop boundary is not multiple of VF. Note that iV can only applied to kernels with loops.

We note that the two approaches - iV and eV - are orthogonal, but not exclusive. In other words, they can
both be applied individually or together on the same kernel, with different performance results (see Section 4
for a detailed analysis of several performance results).

2.3 Code transformations for vectorization

Common practice shows that OpenCL kernels have four parts: (1) work-item index calculation, (2) loading
data from device memory, (3) computation, and (4) writing data back to device memory. In the following
paragraphs, we describe the transformations to be made to each of these parts when enabling vectorization.

To make clear how both eV and iV work, we will be using a running example, shown in Listing 1.

2.3.1 Applying eV

We propose a two-step translation of an OpenCL kernel to its vectorized format using inter-work-item vector-
ization.

Step 1- Duplication:

◦ Preserve: the kernel function definition (function name, arguments and data types), and control flow
statements (e.g., if or for statements).

◦ Re-calculate work-item index (i.e., times VF in the x direction).

◦ Duplicate declarations and expressions for VF times.

· Re-name variables with unique identifiers, still derived from the original name - e.g., use a ’name counter’
scheme.

Wp 6 http://www.pds.ewi.tudelft.nl/fang/
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Listing 2: eV : step 1

#define N 32
#define VF 4

kernel void inter 1(const global float ∗ in, global float ∗ out){

int idx = get global id(0) ∗ VF;
float val 0 = 0.0;
float val 1 = 0.0;
float val 2 = 0.0;
float val 3 = 0.0;
for(int i=0; i<N; i++){

val 0 += in[idx+i+0];
val 1 += in[idx+i+1];
val 2 += in[idx+i+2];
val 3 += in[idx+i+3];

}
out[idx+0] = val 0;
out[idx+1] = val 1;
out[idx+2] = val 2;
out[idx+3] = val 3;

}

Listing 3: eV : step 2

#define N 32
#define VF 4

kernel void inter 2(const global float ∗ in, global float ∗ out){

int idx = get global id(0) ∗ VF;
float4 val = (float4)0.0;
for(int i=0; i<N; i++){

val += (float4)(in[idx+i+0], in[idx+i+1], \
in[idx+i+2], in[idx+i+3]);

}
global float4 ∗ view o = ( global float4 ∗)out;

out[idx] = val;
}

.

· Recognize data sharing - i.e., check data reading statements to see whether there is overlapped data among
the original VF work-items.

◦ Duplicate writing-back statements.

Step 2- Vectorization:

◦ Replace scalar data with vector data. Note that when using vector data type for writing operations, one
can take advantage of write buffer (if there is any available on the target platform [4]) .

The vectorized forms of the original kernel (Listing 1) are shown in Listing 2 and Listing 3.

2.3.2 Applying iV

Here we show the rules of translating an OpenCL kernel to its vectorized format using loop unrolling.

Step 1- Unrolling:

◦ Preserve the kernel function definition (function name, arguments and data types), and the index calcu-
lation.

◦ Unroll the for loop VF times (e.g., VF=4 ).

◦ Apply reduction for the calculation of the final result (e.g., a sum).

◦ Preserve the data writing part.

Step 2- Vectorization:

◦ Replace the scalar data with vector data.

Note that we do not need to make any changes on the host program. The transformations of the naive
kernel (Listing 1) based on these rules are shown in Listing 4 and Listing 5

Wp 7 http://www.pds.ewi.tudelft.nl/fang/
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Listing 4: iV : step 1

#define N 32

kernel void intra 1(const global float ∗ in, global float ∗ out){

int idx = get global id(0);
float val 0 = 0.0;
float val 1 = 0.0;
float val 2 = 0.0;
float val 3 = 0.0;
for(int i=0; i<N; i=i+4){

val 0 += in[idx+i+0];
val 1 += in[idx+i+1];
val 2 += in[idx+i+2];
val 3 += in[idx+i+3];

}

out[idx] = val 0 + val 1 + val 2 + val 3;
}

Listing 5: iV : step 2

#define N 32

kernel void intra 2(const global float ∗ in, global float ∗ out){

int idx = get global id(0);
float4 val = (float4)(0.0);

for(int i=0; i<N; i=i+4){
val += (float4)(in[idx+i+0], in[idx+i+1], \

in[idx+i+2], in[idx+i+3]);
}

out[idx] = val.x + val.y + val.z + val.w;
}

.

3 Vectorization Effects on Memory Bandwidth

In this section, we discuss the effects of vectorization on memory bandwidth by using several applications with
different MAPs. We explain typically used MAPs at two levels: work-item (WI) level and work-group (WG)
level.

For data parallel applications, we usually decompose problems based on output data, shown in Figure 1 (the
circle array represents a grid of work-items, and the square array represents input/output data). Each work-
item works on one element in the output data, and needs to read the corresponding elements from the input
data ( (I) one row, (II) one column, (III) one block of elements, or multiple elements in random formats, shown
in Figure 1a). On the WG level, neighboring work-items access the same or separate elements simultaneously,
also presenting access patterns. For simple and clear demonstration, we suppose there are 8 work-items per
work-group.

When introducing eV, MAPs change, i.e., each work-item works on VF elements of output data, and its
input data needed is expanded, as shown in Figure 1b (VF=2 ). In this section, we discuss the effects of this
change on the memory bandwidth on AMD HD6970, Intel X5650, and NVIDIA GTX580.

(a) Without vectorization (b) With vectorization

Figure 1: Mapping work-items to data. Circles represent a grid of work-items, squares represent input/output
data arrays. There are 64 (8x8) work-items altogether, and each work-item computes one element from the
output data. When using eV, each work-item works on two output elements.

Wp 8 http://www.pds.ewi.tudelft.nl/fang/
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Note that in the description of MAPs, we consider the mapping between work-items and output data to be
1:1, or 1:VF. Therefore, we do not include the output data and the work-item grid in our figures for clarity. The
shaded area covers the elements accessed by one work-item. The dashed line with single arrow represents the
memory access order by one work-item, and the dashed line with double arrows represents how (8) neighboring
work-items access input data.

3.0.3 MAP SS

Each work-item reads one element from the input data, and writes the result back when finishing computation
(see Figure 2). Neighboring work-items access separate elements. When using eV, each work-item will access
VF physically continuous data elements; the distance between neighboring work-items becomes VF, rather than
1.

(a) Without vectorization (b) With vectorization

Figure 2: MAP SS (VF=2 )

Figure 3 shows we can achieve bandwidth improvement of 1.26x, 1.39x, 1.60x on HD6970, X5650, GTX580,
respectively. The bandwidth improvements result from read-data cache, or write-data cache, or both: HD6970
keeps separate read and write caches, while they work as one entity in GTX580 and X5650. This MAP is found
in applications like Black Scholes.

 20

 40

 60

 80

 100

 120

 140

 160

HD6970 X5650 GTX580

G
B

/s

SS1
SS4

Figure 3: Bandwidth comparison when using MAP SS (VF=4 )

3.0.4 MAP RF

Each work-item accesses a whole row of elements (see Figure 4). From the WG-level perspective, neighboring
work-items will access the same data element each time. When using eV, the number of work-items is reduced
by VF times, and each work-item will access the same element for VF times, leading to register data sharing.
Therefore, we can achieve bandwidth improvements of 3.95x, 3.00x, and 2.63x when using eV on HD6970, X5650,

Wp 9 http://www.pds.ewi.tudelft.nl/fang/
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and GTX580 respectively, as shown in Figure 5. This MAP is a common one found in many applications, such
as Matrix Multiplication.

(a) Without vectorization (b) With vectorization

Figure 4: MAP RF (VF=2 )
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Figure 5: Bandwidth comparison when using RF (VF=4 )

3.0.5 MAP CS

Each work-item loads a whole column of data elements (see Figure 6). On the WG-level, neighboring work-items
will access spatially close data elements. When using eV, the number of work-items is also reduced by VF times.
Each work-item will access VF columns of data elements, and the distance with its neighboring work-items is
VF, rather than 1.

From Figure 7, we can see that the bandwidths with vectorization are 3.31x, and 1.76x higher than without
it on HD6970 and GTX580. For X5650, the results are different: we obtain similar bandwidths when using eV.
This MAP is found in applications like Matrix Multiplication.

3.0.6 MAP BS

Each work-item will read a block of data elements from the input data (see Figure 8). Neighboring data will
access spatially closed data elements. When using eV, the data block used by a single work-item is expanded
(the size of expansion area depends on VF ), which enables data sharing when computing different output data
elements. The distance between neighboring threads is VF, rather than 1.

From Figure 9, we can see that the bandwidth is around 2.66x higher than the one without vectorization on
HD6970, while on GTX580, there is little gain in bandwidth. For the X5650, the bandwidth with vectorization is
much lower. After explicitly enabling data sharing using register shuffling in kernel code, we obtain an improved

Wp 10 http://www.pds.ewi.tudelft.nl/fang/
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(a) Without vectorization (b) With vectorization

Figure 6: MAP CS (VF=2 )
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Figure 7: Bandwidth comparison when using MAP CS (VF=4 )

bandwidth of 2.89x, 1.17x, and 1.86x on HD6970, X5650, and GTX580 respectively (shown in 9b, 9c, and 9d).
This MAP appears in applications like 2D Image Convolution and Stereo Vision [9].

3.0.7 MAP NS

Each work-item will access the physically-closed four (left, right, top, bottom) elements around it (see Figure
10). Neighboring work-items access neighboring data elements. When using vectorization, the data elements
accessed by one work-item will become VF times as many as before.

Our experimental results (see Figure 11) show that we can achieve 1.18x bandwidth improvement on HD6970.
However, the bandwidth with vectorization is lower (by 4% and 19%) than the bandwidth without vectorization
on X5650 and GTX580. MAP NS is similar to MAP SS due to the fact that there is no/little data sharing
across work-items, and both can make use of the write combine buffer. However, MAP NS shows bandwidth
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(a) Without vectorization (b) With vectorization

Figure 8: MAP BS (VF=2 )
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Figure 9: Bandwidth comparison when using BS and using data shuffling (VF=4 )

degradation on X5650 and GTX580 possibly due to limited cache capacity. This MAP is found in applications
such as Red-Black SOR.

To summarize, bandwidths with vectorization are higher than those without it for most (MAP, platform)
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Wp4. Vectorization Effects on Overall Performance

(a) Without vectorization (b) With vectorization

Figure 10: MAP NS (VF=2 )

 0

 50

 100

 150

 200

 250

 300

HD6970 X5650 GTX580

G
B

/s

NS1
NS4

Figure 11: Bandwidth comparison when using MAP NS (VF=4 )

pairs, as shown in Table 1. Two factors contribute to the bandwidth improvement: (1) implicit data reuse via
caching; (2) explicit data sharing via register shuffling. However, we also see some performance degradation on
bandwidth, either because the interference of compilers (i.e., compilers have made some other optimizations),
or because of limited register/cache capacity.

4 Vectorization Effects on Overall Performance

In this section, we discuss the improvements that vectorization brings to the overall kernel performance.1

4.1 Inter-vectorization (eV)

First, we discuss how eV affects the kernel execution time on the three selected platforms, shown in Figure 12.
On HD6970, the vectorized kernels perform better than the naive kernels: the speedups are 3.27x, 3.03x, 1.26x,
and 1.18x for MM, IC, BS and SOR, respectively. On X5650, the vectorized IC, BS and SOR perform 1.20x,
1.04x, and 1.44x faster than the naive kernel. MM with our vectorization performs slightly worse than the naive
kernel. Note that the overall speedup is limited by the smaller bandwidth when there are two or more inputs.

1The source code is available here: http://code.google.com/p/clvectorizer/.
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Table 1: MAPs summary

Name WI Level WG Level Bandwidth Gain(x) Applications
HD6970 E5620 GTX580

SS single separate 1.27 1.51 1.6 Black Scholes
RF row focused 3.85 2.92 2.62 MM, Matrix A (A*B=C)
CS column separate 3.33 0.97 1.74 MM, Matrix B (A*B=C)
BS block separate 2.9 1.13 1.86 Image Convolution
NS neighbors separate 1.18 0.96 0.81 SOR

For example, for matrix multiplication (A*B=C), the bandwidth improvement for matrix A and B are 3.85x
and 3.31x; however, the overall speedup is 3.27x.

We select NVIDIA GTX580 as the scalar architecture to evaluate how the vectorized kernels perform. We
can see that the vectorized kernels are improved by 1.65x, 2.00x, 1.26x, and 1.16x, compared with the naive
ones for MM, IC, BS, and SOR. This is due to the bandwidth improvement introduced by vectorization, not to
the usage of SIMD processing elements.
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Figure 12: eV Performance on the three architectures

4.2 Intra-vectorization (iV)

For these kernels with loops, we can use iV by unrolling the loops VF times. The performance changes are
shown in Figure 13, from which we can see that MM and IC perform better (1.93x, 1.65x on HD6970, and
1.92x, 1.27x on GTX580) than the naive versions. On X5650, the vectorized IC performs better than the
original implementation (by 1.14x). However, the vectorized MM shows a performance loss of 11%. We believe
this is a result of the compiler optimizations being more aggressive than the optimizations we perform.

5 The CLVectorizer framework

In this section, we present the CLVectorizer framework as an extension to the vectorization approach.
As shown in Section 3 , MAPs present two levels: work-item level and work-group level. GPUs pay more

attention to work-group level to achieve coalescing access, i.e., neighboring work-items access physically closed
data elements, while multi-core CPUs are focusing on the work-item level to exploit data locality via cache.
A proof of this can be found in Figure 14, which shows that HD6970 and GTX580 can achieve much higher
bandwidth when each work-item accessing memory in column-major order, and X5650 prefers the row-major
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Figure 13: iV Performance on the three architectures

pattern per work-item. Therefore, we should use the suitable MAPs for target architectures to maximize memory
bandwidth.
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Figure 14: Memory bandwidth when each work-item accesses memory in row-major order and column-major
order on the three architectures.

Based on the previous vectorization work, our proposed CLVectorizer consists of two core modules: (1)
MAPer, used to recognize memory access patterns presented in programs/applications, and to transform the
input data to better match the MAP suitable for the target platforms, and (2) VECTORizer, which is used
to perform the actual transformation/vectorization of the OpenCL kernel code (see Figure 15). With this
approach, we can further improve the performance taking into account the specifics of the target architectures.
The implementation of this framework is currently the work in progress.

6 Related Work

In this section, we give a brief overview of prior work on vectorization and optimizations based on memory
access patterns.

With the advent of vector computers, there have been increased interests in making vector operations
available. In [3], Allen and Kennedy present a translator to transform programs from FORTRAN to FORTRAN
8x. From around 2000, programmers have been employing multimedia extensions by using in-line assembly
routines or specialized library calls to increase the performance. However, this error-prone process is exacerbated
by inconsistencies among different instruction sets [8]. Thus, lots of vectorizing techniques have been proposed
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Figure 15: The CLVectorizer framework

either for loops [10], or for basic blocks [11]. These vectorizers can translate C programs to programs with inline
assembly code. Our intra-vectorization is similar to the traditional vectorization, i.e., both are based on loop-
unrolling/strip-mining. However, the inter-vectorization achieves vectorization through merging work-items.
Our approach can also address the issue of portability due to the OpenCL-based implementation.

Memory access patterns have been explored extensively to maximize data locality for the traditional single-
core processors. The classical approaches are either based on array restructuring [12], or based on loop trans-
formation [13]. Recently, they have been extended to support many-core architectures [14], [15]. In this work,
rather than re-inventing the wheel, we analyze the effects of two existing vectorization approaches and their
portability for OpenCL kernels in the context of different architectures and different MAPs. Based on this
analysis, we aim to further refine (rather than generalize) the optimizations and make them easily tunable with
the target platforms and MAPs.

7 Conclusions and Future Work

In this paper, we provide two strategies to vectorize naive OpenCL kernels: inter-vectorization and intra-
vectorization. We evaluate the bandwidth changes of several MAPs in the context of vectorization, and we show
an improvement in the overall kernel execution time on both SIMD and non-SIMD architectures. We conclude
that vectorization leads to better platform utilization for both memory access and computational power. Finally,
an extended framework is presented taking data with proper data layouts as input to maximize performance.
Our immediate future work will focus on implementing the CLVectorizer framework.
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