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Abstract

Giraph, GraphLab, and other graph-processing platforms are increasingly used in a variety of domains,

including social networking and gaming, targeted advertisements, and bioinformatics. Although both indus-

try and academia are developing and tuning graph-processing algorithms and platforms, the performance of

graph-processing platforms has never been explored or compared in-depth. Thus, users face the daunting

challenge of selecting an appropriate platform for their specific application and even dataset. To allevi-

ate this challenge, in this work we propose and apply an empirical method for evaluating and comparing

graph-processing platforms. We define a benchmarking suite for graph-processing platforms, which includes

a comprehensive process and a selection of representative metrics, datasets, and algorithmic classes. In our

process, we focus on evaluating for each system the basic performance, the resource utilization, the scalabil-

ity, and various performance overheads. Our selection includes five classes of graph-processing algorithms

and seven graphs of up to 1.8 billion edges each. We report on job execution time and various normalized

metrics. Finally, we use our benchmarking suite on six different platforms and, besides the valuable insights

gained for each platform, we also present the first comprehensive comparison of graph-processing platforms.
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1 Introduction

Large-scale graphs are increasingly used in a variety of revenue-generating applications, such as social appli-
cations, online retail, business intelligence and logistics, and bioinformatics [1, 2, 3]. By analyzing the graph
structure and characteristics, analysts are able to predict the behavior of the customer, and tune and develop
new applications and services. However, the diversity of the available graphs, of the processing algorithms, and
of the graph-processing platforms currently available to analysts makes the selection of a platform an important
challenge. Although performance studies of individual platforms exist [4, 5], they have been so far restricted
in scope and size. In contrast to these previous studies, and to the Graph500 benchmark, in this work we
propose a comprehensive experimental method for comparing graph-processing platforms, implement it as a
benchmarking suite, and apply it to six real and popular graph-processing platforms.

For both system developers and graph analysts (system users), a thorough understanding of the performance
of these platforms (which we define as the combined hardware, software, and programming system that is
being used to complete a graph processing task), under different input graphs and for different algorithms,
is important—it enables informed choices, tuning of the system and of the application, and sharing of best-
practices. However, the execution time, the resource consumption, and other performance and non-functional
characteristics of graph-processing systems depend to a large extent on the input dataset, the algorithm, and
the graph-processing platform. Thus, gaining a thorough understanding is impeded by three dimensions of
diversity.

Dataset diversity: We are witnessing a significant increase in the availability and collectability of datasets
represented as graphs, from road to social networks, and from bioinformatics material to citation databases.
Algorithm diversity: A large number of graph algorithms have been implemented to mine graphs for calculating
basic graph metrics [6], for traversing graphs [7, 8], for detecting communities [9, 10, 11], for searching for
important vertices [12, 13], for sampling graphs [14], for predicting graph evolution [15, 1], etc.

Platform diversity: Many types of platforms are being used for different communities of developers and
analysts. Addressing a variety of functional and non-functional requirements, a large number of processing
platforms are becoming available. Neo4j [16], HyperGraphDB [17], and GraphChi [18] are examples of efficient
single-node platforms with limited scalability. To scale-up, distributed systems with more computing and
memory resources are used to process large-scale graphs, but they can be less efficient than even single-node
platforms. Generic data processing systems such as Hadoop [19], YARN [20], Dryad [21], Stratosphere [22],
and HaLoop [23] can scale out on multiple nodes, but may exhibit low performance due to distribution and
new overheads. Graph-specific platforms such as Pregel [5], Giraph [24], PEGASUS [25], GraphLab [26], and
Trinity [27] also address various limitations in large-scale graph processing.

New performance evaluation and benchmarking suites are needed to respond to the three sources of diversity,
that is, to provide comparative information about the performance and other non-functional characteristics of
different platforms, through the use of empirical methods and processes. However, the state-of-the-art in
graph-processing platform evaluation has very limited breadth and depth. For example, Graph500 is the de-
facto standard for comparing the performance of the hardware infrastructure related to graph processing. By
choosing BFS as the single representative application and a single class of synthetic datasets, Graph500 has
triggered a race in which winners use heavily optimized, low-level, hardware-specific code [28, 29], which is rarely
found or reproduced by common graph processing deployments and thus rarely reaches the users. Moreover,
even the few existing platform-centric comparative studies are usually performed to prove the superiority of
a given system over its direct competitors, so they only address a limited set of metrics and do not provide
sufficient detail regarding the causes that lead to performance gaps.

Addressing the lack of a comprehensive evaluation method and set of results for graph processing platforms,
this work addresses a key research question: How well do graph processing platforms perform?. To answer this
question, we propose an empirical performance-evaluation method for (large-scale) graph-processing platforms.
Our method relies on defining a comprehensive evaluation process, and on selecting representative datasets,
algorithms, and metrics for evaluating important aspects of graph-processing platforms—execution time, re-
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source use, vertical and horizontal scalability, and overhead. Using this method, we create the equivalent of a
benchmarking suite by selecting and implementing five graph algorithms and seven large-scale datasets from
different application domains. We implement this benchmarking suite on six popular platforms currently used
for graph processing—Hadoop, YARN, Stratosphere, Giraph, GraphLab, and Neo4j—and conduct a compre-
hensive performance study. This demonstrates that our benchmarking suite can be applied for many existing
platforms, and also provides a first and detailed performance comparison of the six platforms. Our approach
exceeds previous performance evaluation and benchmarking studies in both breadth and depth: we implement
and measure multiple algorithms, use different types of datasets, and provide a detailed analysis of the results.
Our work also aligns with the goals and ongoing activity of the SPEC Research Group and its Cloud Working
Group, of which some of the authors are members.

Towards answering the research question, our main contributions are:

1. We propose a method for the comprehensive evaluation of graph processing platforms (Section 2), which
defines both the algorithm and the dataset, and addresses multiple performance aspects such as raw per-
formance, scalability, and resource utilization. The proposed method, which is equivalent to a benchmark-
ing suite for graph-processing platforms, also includes 5 representative algorithms and 7 representative
datasets.

2. We demonstrate how this benchmarking suite can be implemented for six different graph processing
platforms (Section 3). We further discuss the requirements to extend this approach for other processing
platforms, showing that the feasibility of the extension depends on the usability of the platform (Section 5).

3. We provide a first performance comparison of six graph-processing platforms, emphasizing their strong
points and identifying their limitations (Section 4 and 5).

2 Towards Benchmarking Graph-Processing Platforms

In this section we present an empirical method for evaluating the performance of graph-processing platforms.
Our method includes four stages: identifying the performance aspects and metrics of interest; defining and
selecting representative datasets and algorithms; implementing, configuring, and executing the tests; and ana-
lyzing the results.

Our method can be seen as a benchmarking suite: it includes similar stages as the definition of a bench-
marking suite and has similar goals. Furthermore, we demonstrate in this work how the method introduced in
this section can provide a useful skeleton for building proper benchmarks. However, there are still numerous
limitations to our method, which we discuss in Section 5.2.

2.1 Performance Aspects, Metrics, Process

To be able to reason about performance behavior, we first need to identify the performance requirements of
such platforms, the system parameters to be monitored, the metrics that can be used to characterize platform
performance, and an overall process that defines how performance is evaluated. We discuss several important
limitations of our design, which prevent it from being a benchmark, in Section 5.2.

In this study, we focus on four performance aspects:

1. Raw processing power: the ability of a platform to (quickly) process large-scale graphs. Ideally, platforms
should combine deep analysis and near-real-time querying, but users are also interested in the the scale
and complexity of the graphs a platform can handle, and in platform programmability.

2. Resource use: the ability of a platform to efficiently utilize the resources it has. Ideally, we want platforms
to waste as little compute and memory resources as possible, while still preserving their processing power.

Wp 5 http://www.pds.ewi.tudelft.nl/yong/
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3. Scalability: the ability of a platform to maintain its performance behavior when resources are added or
removed from its infrastructure. Ideally, we want platforms to be able to automatically improve their
performance linearly with the amount of added resources, but in practice this gain (or loss) depends both
on the number and type of these resources, and on algorithm and dataset.

4. Processing overheads: the part of wall-clock time the platform does not spend on true data processing.
The overhead includes reading and partitioning the data, setting up the processing nodes, and eventually
cleaning up after the results have been obtained. Ideally, the overhead should be constant and small
relative to the overall processing time, but in practice the overhead may be related to algorithm and
datasets.

The performance aspects can be observed by monitoring traditional system parameters (e.g., the important
moments in the lifetime of each processing job, the CPU and network load, the OS memory consumption, and
the disk I/O) and quantified by extracting useful performance metrics metrics. We summarize in Table 1 the
performance metrics used in this work. #V and #E are the number of vertices and the number of edges of
graphs.

Table 1: Summary of metrics.

Metric How measured? Derived Relevant aspect

Job execution Time the full - Raw processing power

time (T ) execution Figure 1, 3, and 4

Edges per - #E/T Raw processing power

second (EPS) Figure 2

Vertices per - #V/T Raw processing power

second (VPS) Figure 2

CPU, memory, Monitoring - Resource use

network sampled each second Figure 5, 6, 7, 8, 9, and 10

Horizontal T of different - Scalability

scalability cluster size (N) Figure 11

Vertical T of different - Scalability

scalability cores per node (C) Figure 13

Normalized edges - #E/T/N or Scalability

per second (NEPS) #E/T/N/C Figure 12 and 14

Computation Time actual - Raw processing power

time (Tc) for calculating Figure 15 and 16

Overhead - T − Tc Processing overheads

time (To) Figure 15 and 16

We define the job execution time as the time from job submission until its completion, so both read and write
time are recorded in the job execution time. The job execution time can be further divided into computation
time and overhead time. The computation time is the time used for making progress with the graph algorithms.
The overhead time is the remainder from subtracting the computation time from the job execution time. Thus,
the overheads include the time for read and write, and for communication. We define the performance metric
Edges Per Second (EPS) of a platform executing an algorithm as the ratio between the number of edges of the
input graph and the job execution time. EPS is the a straightforward extension of the TEPS metric used by

Wp 6 http://www.pds.ewi.tudelft.nl/yong/
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Graph500. To investigate the performance per computing unit, we further define the Normalized Edges Per
Second (NEPS) as the ratio between EPS and the total number of computing nodes or cores. By using the
number of vertices, we define vertex-centric metrics, Vertices Per Second (VPS) and Normalized Vertices Per
Second (NVPS). For the resource use, we monitor the CPU utilization, the memory usage, and the network
traffic of platforms.

We select for the evaluation process three types of performance tests: Load (Stress) tests, which launch an
expected (peak) load on the system under test (SUT); Capacity tests, which in our method either increase the
load by changing the input dataset or keep the load fixed but vary the capacity of the (distributed) system; and
Exploratory tests, which in our method are similar to the other tests but evaluate the capacity of the system to
perform its task without crashing.

2.2 Selection of graphs and algorithms

This section presents a selection of graphs and algorithms, which is akin to identifying some of the main
functional requirements of graph-processing systems.

2.2.1 Graph selection

The main goal of the graph selection step is to select graphs with different characteristics but with comparable
representation. We use the classic graph formalism [30]: a graph is a collection of vertices V (also called nodes)
and edges E (also called arcs or links) which connect the vertices. A single edge is described by the two vertices
it connects: e = (u, v). A graph is represented by G = (V,E). We consider both directed and undirected
graphs. We do not use other graph models (e.g., hypergraphs).

Regarding the graph characteristics, we select graphs with a variety of values for the number of nodes and
edges, and with different structure (as shown by average node degree and other traditional graph metrics). We
also consider in our selection the dataset size (on disk). Since the dataset size can depend on the data format,
we store the graphs in plain text with a processing-friendly format but without indexes. In our format, vertices
have integers as identifiers. Each vertex is stored in an individual line, which for undirected graphs, includes the
identifier of the vertex and a comma-separated list of neighbors; for directed graphs, each vertex line includes the
vertex identifier and two comma-separated lists of neighbors, corresponding to the incoming and to the outgoing
edges. Thus, we do not consider other data models proposed for exchanging and using graphs [31, 32] such
as complex plain-text representations, universal data formats (e.g. XML), relational databases, relationship
formalisms (e.g., RDF), etc.

Table 2: Summary of datasets.

Graphs # V # E d (×10−5) D̄ Directivity

Amazon 262,111 1,234,877 1.8 5 directed

WikiTalk 2,388,953 5,018,445 0.1 2 directed

KGS 293,290 16,558,839 38.5 113 undirected

Citation 3,764,117 16,511,742 0.1 4 directed

DotaLeague 61,171 50,870,316 2,719.0 1,663 undirected

Synth 2,394,536 64,152,015 2.2 54 undirected

Friendster 65,608,366 1,806,067,135 0.1 55 undirected

d is the link density of the graphs. D̄ is the average degree of undirected graphs and the
average in-degree (or average out-degree) of directed graphs.

We have selected seven graph datasets for this work. Table 2 shows a summary of the characteristics of the
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selected graphs1. The graphs have diverse sources, and a wide range of different size and graph metrics. The
synthetic graph (“Synth” in Table 2) is produced by the generator described in Graph500 [33]. The other graphs
have been extracted from real-world use, and have been shared through the Stanford Network Analysis Project
(SNAP) [34]) and the the Game Trace Archive (GTA) [2]. For the Amazon graph, vertices represent products
and two frequently co-purchased products are connected by edges. The WikiTalk graph presents Wikipedia
users and their discussion. The KGS and DotaLeague represent players and their playing relationships for two
popular games, Go and Defense of the Ancients, respectively; the inclusion of gaming graphs corresponds to the
growth of the gaming industry, which now services hundreds of millions of players world-wide. The Citation
graph contains the citations between patents granted from 1975 to 1999 in the U.S. Friendster represents records
users and their friendships of in a social network. Among the graph characteristics that vary, the disk usage for
our graphs ranges from tens of MB to tens of GB.

2.2.2 Algorithm selection

We have conducted a comprehensive survey of graph-processing articles published in 10 representative confer-
ences (namely, CCGrid, CIKM, HPDC, ICDE, IPDPS, PPoPP, SC, SIGKDD, SIGMOD, and VLDB), in recent
years; in total, 124 articles. We found that a large variety of graph processing algorithms exist in practice [35].
Table 3 summarizes the survey. Because one article may use multiple algorithms, the total number of algorithms
is more than the number of articles. The algorithms can be categorized into several groups by functionality,
consumption of resources, etc. We focus on algorithm functionality and select one exemplar of each of the
following five algorithmic classes, which are common in our survey: general statistics, graph traversal (used in
Graph500), connected components, community detection, and graph evolution. We describe in the following
the five selected algorithms, in turn.

Table 3: Survey of graph algorithms.

Class Typical algorithms Number Percentage [%]

General Statistics Triangulation [36], Diameter [37], BC [38] 24 16.1

Graph Traversal BFS, DFS, Shortest Path Search 69 46.3

Connected Components MIS [39], BiCC [40], Reachability [41] 20 13.4

Community Detection Clustering, Nearest Neighbor Search 8 5.4

Graph Evolution Forest Fire Model [1], Preferential Attachment Model [42] 6 4.0

Other Sampling, Partitioning 22 14.8

Total 149 100

The General statistics (STATS) algorithm computes the number of vertices and edges, and the average of
the Local Clustering Coefficient (LCC) of all vertices. The results obtained with STATS can inform the graph
analyst about how long a more advanced algorithm may take to execute and what type of computer resource

1We extract from each raw graph the largest connected component, so that the vertices are reachable to each other in these
graphs.

Wp 8 http://www.pds.ewi.tudelft.nl/yong/
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will be utilized the most by the algorithm.

Algorithm 1: Algorithm of STATS.

Input: Graph in our defined format
Output: the number of vertices and edges, average LCC
verticesTotal = 0;1

edgesTotal = 0;2

avgLCC = 0;3

foreach Vertex v do4

SendMyOutEdges(EdgesDstList, NeighbourList);5

verticesTotal += 1;6

edgesTotal += getDegree(v);7

VertexNeighbourhood = CreateVertexNeighbourhood([EdgeList]);8

counter = CountEdgesBetweenNeighbours(V ertexNeighbourhood);9

avgLCC += CalculateLCC(counter, vertexDegree);10

avgLCC= avgLCC / verticesTotal;11

Breadth-first search (BFS) is a widely used algorithm in graph processing, which is often a building block for
more complex algorithm, such as item search, distance calculation, diameter calculation, shortest path, longest
path, etc. BFS allows us to understand how the tested platforms cope with lightweight iterative jobs.

Algorithm 2: Algorithm of BFS.

Input: Graph in our defined format and source vertex N
Output: Traversed graph
queue = N.getNeighbours();1

while queue not empty do2

vertex = queue.dequeue();3

foreach vertex : vertex.getNeighbours() do4

if vertex not visited then5

enqueue vertex onto queue6

Connected Component (CONN) is an algorithm for extracting groups of vertices that can reach each other
via graph edges. This algorithm produces a large amount of output, as in many graphs the largest connected
component includes a majority of the vertices.

Algorithm 3: Algorithm of CONN.

Input: Graph in our defined format
Output: Connected components
foreach vertex do1

vertex.label = vertex.id;2

while labelChanged do3

labelChanged = false;4

foreach vertex do5

smallestLabel = vertex.retrieveNeighboursLabel();6

if smallestLabel ¡ vertex.label then7

vertex.label = smallestLabel;8

labelChanged = true;9

Wp 9 http://www.pds.ewi.tudelft.nl/yong/
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Community detection (CD): community detection is important for social network applications, as users of
these networks tends to form communities, that is, groups whose constituent nodes form more relationships
group within the group than with nodes outside the group. Communities are also very important in the
gaming industry, as the market has an increasingly larger share of social games or of games for which the social
component is important.

Algorithm 4: Algorithm of CD.

Input: Graph in our defined format, initial score for all vertices, hop attenuation, limitation of iteration
Output: Detected communities
foreach vertex do1

vertex.label = vertex.id;2

while communityLabelChanged do3

labelChanged = false;4

foreach vertex do5

newLabel = choseLabel(receivedLabels);6

if newLabel != currentLabel then7

currentLabel = newLabel;8

labelChanged = true;9

labelScore = updateLabelScore();10

foreach neighbour do11

send(currentLabel, labelScore);12

Graph evolution (EVO): an accurate EVO algorithm not only can predict how a graph structure will evolve
over time, but can also help to prepare for these changes (for example data size increase). Thus, graph evolution
is an important topic in the field of large-scale graph processing.

Algorithm 5: Algorithm of EVO.

Input: Graph in our defined format, number of new vertices, forward (p) and backward (r) burning
probabilities, limitation of iteration

Output: Graph after evolution
while counter < v do1

ambasador = choseRandomAmbasador();2

createEdge(ambasador);3

x = geometricallyDistributedMean((1− p)−1);4

y = geometricallyDistributedMean((1− rp)−1);5

createdOutLinks = 0;6

createdInLinks = 0;7

step = 1;8

while createdOutLinks < x do9

createOutLinks(step, ambasador);10

step++;11

step = 1;12

while createdInLinks < y do13

createdInLinks(step, ambasador);14

step++;15

counter++;16

STATS and BFS are textbook algorithms. For CONN, CD and EVO, there are a number of variations.
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Considering the reported performance and accuracy of these algorithms, we select a cloud-based connected
component algorithm created by Wu and Du [8], the real-time community detection algorithm proposed by
Leung et al. [10], and the the Forest Fire Model for graph evolution designed by Leskovec et al. [1]. Algorithm
1 to 5 show the pseudo code of the five algorithms we selected.

3 Experimental setup

The method introduced in Section 2 defines a benchmarking skeleton. In this section we create a full bench-
marking suite (bar the issues explained in Section 5.2) by implementing the graph-processing algorithms of a
selected set of test platforms, and by configuring and tuning these platforms.

3.1 Platform selection

We use a simple taxonomy of platforms for graph processing. By their use of computing machines, we identify
two main classes of platforms: non-distributed platforms and distributed platforms; distributed platforms use
multiple computers when processing graphs. Orthogonally to the issue of distributed machine use, we divide
platforms into graph-specific platforms and generic platforms; graph specific platforms are designed and tuned
only for processing graph data. Importantly, we omit in our taxonomy parallel platforms; for the scale in our
real-world experiments, we see the performance of distributed systems as being a conservative estimate of what
a similarly sized but parallel system can achieve.

We select for this study graph-specific non-distributed platforms, and both graph-specific and generic dis-
tributed platforms. Because the resource limitation and relatively little interest in the community, we do not
select for this study any generic and non-distributed platform. Table 4 summarizes our selected platforms:
Hadoop, YARN, Stratosphere, Giraph, GraphLab, and Neo4j. We introduce each platform in the following, in
turn.

Table 4: Selected platforms.

Platform Version Type Release date

Hadoop hadoop-0.20.203.0 Generic, Distributed 2011-05

YARN hadoop-2.0.3-alpha Generic, Distributed 2013-02

Stratosphere Stratosphere-0.2 Generic, Distributed 2012-08

Giraph Giraph 0.2 (revision 1336743) Graph, Distributed 2012-05

GraphLab GraphLab version 2.1.4434 Graph, Distributed 2012-10

Neo4j Neo4j version 1.5 Graph, Non-distributed 2011-10

Hadoop is an open-source, generic platform for big data analytics. It is based on the MapReduce program-
ming model. Hadoop has been widely used in many areas and applications, such as log analysis, search engine
optimization, user interests prediction, advertisement, etc. Hadoop is becoming the de-facto platform for batch
data processing. Hadoop’s programming model may have low performance and high resource consumption for
iterative graph algorithms, as a consequence of the structure of its map-reduce cycle. For example, for iterative
graph traversal algorithms Hadoop would often need to store and load the entire graph structure during each it-
eration, to transfer data between the map and reduce processes through the disk-intensive HDFS, and to run an
convergence-checking iteration as an additional job. However, comprehensive results regarding graph-processing
using Hadoop have not yet been reported.

We run Hadoop on jdk1.7.0 (We keep the java version consistent in all the other platforms). We change
some configuration setting as follow: the in-memory file-system can use up to 1.5 GB memory for merging map-
outputs at the reduces; the maximum number of streams to merge at once when sorting files is set to 80; the
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memory limitation used for sorting files is 1.5 GB. In section 4.1, we set the maximum value of simultaneously
map/reduce tasks on a computing machine as 1, each task JVM process can run with a maximum heap size of
20 GB. In the experiments of vertical scalability in section 4.3, the maximum value of map/reduce will increase
to 7 and the maximum heap size per process will decrease to around 3 GB (total amount of 20 GB per machine).
For HDFS, we use only one single replica per block without compression because our focus is no fault-tolerance.
When loading input files to HDFS, we store each dataset in a number of blocks, which equals to the total
number of available slots for map (reduce) tasks we set. For writing output, we set the block size to the graph
size over the number of map tasks for the biggest graph Friendster. For the other graphs, we use the default
value 64 MB of block size.

YARN is the next generation of Hadoop. YARN can seamlessly support old MapReduce jobs, but was
designed to facilitate multiple programming models, rather than just MapReduce. A major contribution of
YARN is to separate functionally resource management and job management; the latter is done in YARN by a
per-application manager. For example, the original Apache Hadoop MapReduce framework has been modified
to run MapReduce jobs as an YARN application manager. YARN is still under development.

Since the Hadoop configuration can be ported to YARN seamlessly, we keep the settings of YARN same to
that of Hadoop. In addition, the maximum allocation for every container request at the resource manager is 20
GB, respectively. The maximum value will be modified during the vertical scalability tests.

Stratosphere is an open-source platform for large-scale data processing. Stratosphere consists of two key
components: Nephele and PACT. Nephele is the scalable parallel engine for the execution of data flows. In
Nephele, jobs are represented as directed acyclic graphs (DAG), a job model similar for example to that of the
generic distributed platform Dryad [21]. For each edge (from task to task) of the DAG, Nephele offers three
different types of channels for transporting data, through the network, in-memory, and through files. PACT is a
data-intensive programming model that extends the MapReduce model with three more second-order functions
(Match, Cross, and CogGroup, in addition to Map and Reduce). PACT supports several user code annotations,
which can inform the PACT compiler of the expected behavior of the second-order functions. By analyzing
this information, the PACT compiler can produce execution plans that avoid high cost operations such as data
shipping and sorting, and data spilling to the disk. Compiled PACT programs are converted into Nephele DAGs
and executed by the Nephele data flow engine. HDFS is used for Stratosphere as the storage engine.

We install Stratosphere using the HDFS of hadoop-0.20.203.0 as the distributed file system. The configura-
tion of HDFS is identical to that of Hadoop. We run the NameNode service of HDFS on the master node of
Stratosphere, and the DateNode services on the Stratosphere worker nodes. For each worker node, the maxi-
mum amount of main memory Stratosphere system can use is 20 GB. We select the default network channel for
transporting data between nodes. For each worker node, Stratosphere use up to 15,360 network buffers with
the default size of 64 KB. We limited the number of concurrent tasks on one work node to 1 in section 4.1. This
limitation will increase to 7 in the vertical scalability experiment.

Giraph is an open-source, graph-specific distributed platform. Giraph uses the Pregel programming model,
which is a vertex-centric programming abstraction that adapts the Bulk Synchronous Parallel (BSP) model. An
BSP computation proceeds in a series of global supersteps. Within each superstep, active vertices execute the
same user-defined computation, and create and deliver inter-vertex messages. Barriers ensure synchronization
between vertex computation: for the current superstep, all vertices complete their computation and all messages
are sent before the next superstep can start. Giraph utilizes the design of Hadoop, from which it leverages only
the Map phase. For fault-tolerance, Giraph uses periodic checkpoints; to coordinate superstep execution, it
uses ZooKeeper. Giraph is executed in-memory, which can speed-up job execution, but, for large amounts of
messages or big datasets, can also lead to system crashes due to lack of memory.

We implement the Giraph on top of hadoop-0.20.203.0. For Giraph, we keep all the configurations same
to Hadoop. When deploy Giraph on the cluster, we apply one more machine than Hadoop and YARN as the
ZooKeeper.

GraphLab is an open-source, graph-specific distributed computation platform implemented in C++. Be-
sides graph processing, it also supports various machine learning algorithms. GraphLab stores the entire graph
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and all program state in memory. To further improve performance, GraphLab implements several mechanisms
such as: supporting asynchronous graph computation to alleviate the waiting time for barrier synchronization,
using prioritized scheduling for quick convergence of iterative algorithms, and efficient graph data structures
and data placement. To match the execution mode of the other platforms, we run all our GraphLab experiments
in a synchronized mode.

Similar to Stratosphere, we deploy distributed GraphLab on top of the HDFS of hadoop-0.20.203.0 with
the same configuration. For distributed running of GraphLab program, we install MPI with the version of
mpich2-1.5rc3. Each DataNode service of HDFS run on one MPI node. The number of cores per MPI node is
limited to 1 in subsection 4.1. Up to 7 cores per node will be tested in the vertical scalability.

Neo4j is one of the popular open-source graph databases. Neo4j stores data in graphs rather than in tables.
Every stored graph in Neo4j consists of relationships and vertices annotated with properties. Neo4j can execute
graph-processing algorithms efficiently on just a single machine, because of its optimization techniques that
favor response time. Neo4j uses a two-level, main-memory caching mechanism to improve its performance. The
file buffer caches the storage file data in the same format as it is stored on the durable storage media. The object
buffer caches vertices and relationships (and their properties) in a format that is optimized for high traversal
speeds and transactional writes.

We set the Neo4j on a single machine of DAS4. The java heap size is set to 20 GB. We perform data
ingestion into Neo4j database with the use of multiple batch transactions. Our transaction threshold is set as
10,000 vertices or 250,000 edges. The data ingestion process can be shorten by increasing the batch transaction
threshold. However, there is a risk of the occurrence of GC overhead error when setting high threshold. The
in-depth analysis of the data injection process is out of scope of this paper.

3.2 Platform and experiment configuration

Platform tuning: The performance of these systems depends on tuning. Several of the platforms tested in
this work have tens to hundreds of configuration parameters, whose actual value can potentially change the
performance of the platform. However, the unsophisticated user cannot select appropriate values and tune the
task of expects. We use common best-practices for tuning each of the platforms as we discussed in Section 3.1.

Hardware: We deploy the distributed platforms on DAS4 [43], which is to provide a common computational
infrastructure for researchers within Advanced School for Computing and Imaging in the Netherlands. Each
machine we used in the experiments from DAS4 consists of a Intel Xeon E5620 2.4 GHz CPU (dual quad-core,
12 MB cache) and a total memory of 24 GB. All the machines are connected by a 10 Gbit/s Infiniband network
and 1 Gbit/s Ethernet network. NFS constructed over the Infiniband network is used as the file system in
DAS4. The operation system installed on each machine is CentOS release 6.3 with the kernel version 2.6.32.
We use a single machine with one single enterprise SATA disk (SATA 3 Gbit/s, 7200 rpm, 32 MB cache) for
the Neo4j experiments.

Platform configuration, number of nodes: We deploy the distributed platforms on 20 up to 50 com-
puting machines of DAS4. We set the Neo4j on a single DAS4 machine with regular configuration. For all the
experiments of Hadoop, YARN, Stratosphere, and GraphLab, besides the computing machines, we allocate an
additional node to take charge of all master services. For Giraph, we use one more node for running ZooKeeper.

Parameters of Algorithms: We try to configure each algorithm with default parameter values. STATS
and CONN do not need any parameters. For BFS, we randomly pick a vertex to be the source for each graph.
We use only out-edges to propagate for directed graph, thus the directed graphs are not entirely traversed. For
CD, we set the initially a score of 1.0 to vertices. The hop attenuation is set to 0.1. The limitation of iteration
is set to 5, because after 5 iterations, even the algorithms is not converge, 95% of vertices are clustered [9, 10].
For EVO, the graph evolute with a growth of 0.1% number of vertices and with 6 iterations. The forward and
backward burning probability are set to 0.5. We set the parameters of algorithms identically on all platforms.

Further experiment configuration: Unless otherwise stated, we repeat each experiment 10 times, and we
report the average results from these runs. (An example where 10 repetitions would take too long is presented
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in Section 4.4).

4 Experimental results

In this section we present a selection of the experimental results. We evaluate the six graph processing platforms
selected in Section 3, using the process and metrics, and the datasets and algorithms introduced in Section 2.

The experiments we have performed are:

• Basic performance (Section 4.1): we have measured the job execution time on a fixed infrastructure. Based
on these execution times, we further report throughput numbers, using the edges per second (EPS) and
vertices per second (VPS) metrics.

• Resource utilization (Section 4.2): we have investigated the CPU utilization, memory usage, and network
traffic. We report them for both the master and computing nodes on the distributed platforms.

• Scalability (Section 4.3): we have measured the horizontal and vertical scalability of the platforms; we
report the execution time and the normalized edges per second (NEPS) for interesting datasets.

• Overhead (Section 4.4): we have analyzed the execution time in detail, and report important findings
related to the platform overhead.

4.1 Basic performance: job execution time

The fixed infrastructure we use for our basic performance measurements is a cluster of 20 homogeneous com-
puting nodes provisioned from DAS4. With the configuration in Section 3, each node is restricted at using a
single core for computing. We configure the cluster as follows. For the experiments on Hadoop and Yarn, we
run 20 map tasks and 20 reduce tasks on the 20 computing nodes. Due to the settings used for Hadoop, the
map phase will be completed in one wave; all the reduce tasks can also be finished in one wave, without any
overlap with the map phase [44]. In Giraph, Stratosphere, and GraphLab, we set the parallelization degree to
20 tasks, also equal to the total number of computing nodes.

With these settings, we run the complete set of experiments (6 platforms, 5 different applications, and 7
datasets) and measure the execution time for each combination. In the remainder of this section, we present a
selection of our results.

Key findings:

• There is no overall winner, but Hadoop is the worst performer in all cases.

• Multi-iteration algorithms suffer for additional performance penalties in Hadoop and YARN.

• EPS and VPS are suitable metrics for comparing the platforms throughput.
• The performance of all the platforms is stable, with the largest variance for 10%.

• Several of the platforms are unable to process all datasets for all algorithms, and crash.

4.1.1 Results for one selected algorithm

We present here the results obtained for one selected algorithm, BFS (see Section 2.2.2).
Because the starting node for the BFS traversal will impact performance by limiting the coverage and number

of iterations of the algorithm, we summarize in Table 5 the vertex coverage and iteration count observed for the
BFS experiments presented in this section. Overall, BFS covers over 98% of the vertices, with the exception of
the Citation dataset. The iteration count depends on the structure of each graph and varies between 6 and 68;
we expect higher values to impact negatively the performance of Hadoop.

We depict the performance of the BFS graph traversal in Figure 1 and discuss in the following the main
findings. Similarly to most figures in this section, Figure 1 has a logarithmic vertical scale.
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Table 5: Statistics of BFS.
Amazon WikiTalk KGS Citation DotaLeague Synth Friendster

Coverage [%] 99.9 98.5 100 0.1 100 100 100

Iterations 68 8 9 11 6 8 23
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Figure 1: The execution time of algorithm BFS of all datasets of all platforms.

Hadoop always performs worse than the other platforms, mainly because Hadoop has a significant I/O
between two continuous iterations (see Section 3). In these experiments, Hadoop does not use spills, so it has
no significant I/O within the iteration. As expected, the I/O overhead of Hadoop is worse when the number of
BFS iterations increases. For example, although Amazon is the smallest graph in our study, it has the largest
iteration count, which leads to a very long execution time. YARN performs only slightly better than Hadoop—it
has not been altered to support iterative applications. Although Stratosphere is also a generic data-processing
platform, it performs much better than Hadoop and YARN (up to an order of magnitude lower execution time).
We attribute this to Stratosphere’s ability to optimize the execution plan based on code annotations regarding
data sizes and flows, and to the much more efficient use of the network channel.

In contrast to the generic platforms, for Giraph and GraphLab the input graphs are read only once, and then
stored and processed in-memory. Both Giraph and GraphLab realize a dynamic computation mechanism, by
which only selected vertices will be processed in each iteration. This mechanism reduces the actual computing
time for BFS, in comparison with the other platforms (more details are discussed in Section 4.4). In addition,
GraphLab also addresses the problem of smart dataset partitioning, by limiting the cut-edges between machines
when splitting the graph. These systemic improvements make the performance of both Giraph and GraphLab
less affected by large BFS iteration counts than the performance of other distributed platforms.

Because of the two-level main-memory cache of Neo4j, we differentiate two types of executions: cold-cache
(first execution) and hot-cache (follow-up executions). Figure 1 depicts the average results obtained for hot-
cache executions. The two-level cache allows Neo4j to achieve excellent hot-cache execution times, especially
when the graph data accessed by the algorithms fits in the cache. However, the cold-cache execution can be very
long: for example, the ratios between the cold-cache and hot-cache BFS executions for Citation and DotaLeague
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are 45 and 5, respectively. Even for cold-cache execution, Neo4j reads from the database only the graph data
needed by the algorithm. This “lazy read” mechanism minimizes the I/O overhead and accelerates traversal on
the graphs where the BFS coverage of the graph is limited, e.g., for Citation. However, limited by the resources
of a single machine, the performance of Neo4j becomes significantly worse when the graph exceeds the memory
capacity. For example, the hot-cache value of Synth is about 17 hours, exceeding the scale of Figure 1.

We now report on the achieved throughput for the BFS algorithm, in both EPS and VPS, for all platforms
and datasets (Figure 2). We note that throughput is a metric that takes into account the dataset structure and
provides an indication of the platforms performance per data item—be it an edge or a vertex. For example,
KGS and Citation, which have similar numbers of edges, file sizes, and BFS iteration counts, achieve similar
EPS values on most platforms. The exception is GraphLab, in which the EPS of Citation is about two times
larger than that of KGS. This is due to the restriction of GraphLab to process only directed graphs, which has
required the conversion of the undirected KGS to a directed version. This operation lead to a doubling in the
number of edges, resulting in a proportional increase of the execution time.
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Figure 2: The EPS and VPS of executing BFS.

4.1.2 Results for two selected platforms

We focus in this section on the graph-specific platforms—Giraph and GraphLab—, and discuss their performance
for all the algorithms and datasets, as depicted in Figure 3.

As Giraph is an in-memory-only platform, its performance is not affected by the large penalties of I/O
operations. Figure 3 shows that the execution time for all experiments is below 100 seconds. However, when
the amount of messages between computing nodes becomes extremely large (tens of gigabytes), Giraph crashes.
For example, Giraph crashes for the STATS algorithm running on the WikiTalk dataset; for Friendster, the
largest of our datasets, Giraph completes only the EVO algorithm, for which our graph evolution algorithm
generates relatively few messages. From the selected results, GraphLab performs better than Giraph for the
CONN algorithm for most graphs. Moreover, GraphLab is able to process even the largest graph in this study.

4.1.3 Results for two selected datasets

Finally, to understand the impact of algorithm complexity on each platform, we focus now on two interesting
datasets—DotaLeague and Citation. We depict their performance, for all algorithms running on all platforms,
in Figure 4.

Because Friendster is too large for some platforms, we present here the results for graphs that all platforms
can process: the second-largest one, DotaLeague, and the small Citation graph. Even for the second-largest
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Figure 3: The execution time of all algorithms for all datasets running on Giraph, and for CONN running on
GraphLab (right-most bars).
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Figure 4: The execution time for all platforms, running all algorithms for the DotaLeague dataset, and CONN
for the Citation dataset (right-most bars).

graph, Giraph, Hadoop and YARN crashed when running STATS; we also had to terminate Stratosphere after
running STATS for nearly 4 hours without success; similarly, STATS and CD run for more than 20 hours in Neo4j
and are not shown in Figure 4. For the other algorithms, BFS, CONN, CD, and EVO, the number of iterations
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is between 4 and 6. From Figure 4, the execution time of BFS is lower than the execution time of CONN and
CD, on all platforms. In each iteration of CONN and CD, many more vertices will be active, in comparison to
BFS. Furthermore, in CONN, the number of active vertices stays relatively constant in each iteration, while CD
is more compute-intensive and variable. For EVO, Stratosphere takes advantage of its programming model, as
it can represent one EVO iteration by a single map-reduce-reduce procedure; in contrast, Hadoop and YARN
need to run two MapReduce jobs per iteration and thus their execution time increases.

Citation is much smaller and sparser than DotaLeague. The CONN of Citation takes 20 iterations. The
execution time of CONN of Citation on Hadoop, YARN, and Stratosphere increases compared with 6-iteration
CONN of DotaLeague. As we explained for the analysis of BFS (Section 4.1.1), more iterations result in higher
I/O and other overheads.

4.2 Evaluation of resource usage

To understand the resource usage of each platforms, we investigate in this section the CPU load, memory, and
network usage of both the master node and the computing nodes.

For each platform, we execute BFS on DotaLeague. The configuration is consistent to Section 4.1. We
monitor the platforms by using the Ganglia Monitoring System [45] with a sampling interval of 1 second. The
monitoring results includes the usage of local system such as operating system.

To make the resource usage results comparable, We normalize the execution time of different platforms and,
for each platform, of different experiment runs (we use 10 repetitions of each experiment). For each experiment
run, we linearly interpolate the real monitoring samples to obtain 100 normalized usage points for each resource.
We depict in each figure corresponding to the resource consumption of a computing node the results obtained
in practice for a real computing node, such that the depiction is the closest to the average resource consumption
observed in practice.

Key findings:

• Few resources are needed for the master node of all platforms.
• The resource usage of the computing nodes varies widely across different platforms.
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Figure 5: The CPU utilization of the master node.

Possibly because there is only one job submitted to all platforms, the master does not heavily use resources.
As shown in Figure 5 and 7, the CPU utilization and the network traffic have low usage for job management
and platform operation (heartbeats, etc.). For all platforms, the CPU utilization is below 0.5% and the network
traffic is less than 400 Kbit/s (the only exception is Stratosphere, which sometimes can reach up to 1 Mbit/s).
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Figure 6: The memory usage of the master node.
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Figure 7: The network traffic of the master node.

From Figure 6, the monitored memory usage of all platforms is around 8 GB, including the memory consumption
of operating systems and services such as HDFS. By deploying the Stratosphere and GraphLab on the same
cluster, and by observing that GraphLab does not need a manager, we obtain the memory usage for Stratosphere:
around 400 MB from the 8 GB used in that system. Similarly, we obtain the memory usage of other platforms,
and find it to be around 200 MB.

For computing nodes, Figures 8, 9, and 10 depict the CPU utilization, the memory usage, and the network
traffic, respectively. The resource usage of computing nodes in YARN and Hadoop exhibit obvious volatility,
due to the BFS job consisting of 6 independent iterations. However, the curves do not actually exhibit 6 usage
spikes—the computing node with the resource consumption closest to the average is not used intensively in
each of the 6 iterations. The memory usage of Stratosphere keeps around 20 GB, as configured in Section 3.
This is because Stratosphere compute nodes allocate the memory assigned by the configuration immediately
after startup. This design may decrease the possibility of resource sharing between Stratosphere and other
applications. Moreover, by using the network channel for transporting data, Stratosphere exhibits the heaviest
network throughput. Compared to the generic platforms, the resource usage of Giraph and GraphLab are
much smaller. As we discussed in Section 4.1.1, the reason is the graph-friendly programming model of Giraph
and GraphLab: these platforms only process activated vertices in each iteration, which reduces the resource
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Figure 8: The CPU utilization of a computing node.
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Figure 9: The memory usage of a computing node.
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Figure 10: The network traffic of a computing node. Note that the scales of vertical axes are different.
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requirement.

4.3 Evaluation of scalability

In this section, we evaluate the horizontal and vertical scalability of the distributed platforms. Besides the job
execution time, we also report the NEPS for comparing the performance per computing unit.

To allow a comparison with the previous experiments, we use BFS results. To test scalability, we test using
the two largest real graphs in our study, Friendster and DotaLeague. For testing horizontal scalability, we
increase the number of machines from 20 to 50 by a step of 5, and keep using a single computing core per
machine. For testing vertical scalability, we keep the cluster size at 20 computing machines and increase the
number of computing cores per machines from 1 to 7. We step up the number of map (reduce) tasks and
parallelization degree equally to the available computing cores.

Key findings:

• Some platforms can scale up reasonably with cluster size (horizontally) or number of cores (vertically).

• Increasing the number of computing cores may lead to worse performance, especially for small graphs.

• The normalized performance per computing unit mostly decreases with the increase of cluster size and
with the number of computing cores per node.

4.3.1 Horizontal scalability
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Figure 11: The horizontal scalability of processing Friendster (left) and DotaLeague (right).

Figure 11 shows the horizontal scalability of BFS for Friendster and DotaLeague. Most of the platforms
presents significant horizontal scalability only for Friendster, except for GraphLab, which exhibits little scala-
bility for both datasets. The horizontal scalability of GraphLab is constrained by the graph loading phase using
one single file. We thus explore tuning GraophLab: for GraphLab(mp) we split the input file into multiple
separate pieces, as many as the MPI processes. GraphLab(mp) has much lower execution time than GraphLab,
for both datasets. Moreover, GraphLab(mp) is scalable, as its execution time decrease from about 480 seconds
to 250 seconds when resources are added.

We further investigate the performance per computing unit (computing node) to check if they also be
improved. We calculate the EPS from the execution time and normalize it by the number of computing nodes
to get the NEPS. Figure 12 depicts the NEPS of all platforms on processing Friendster and DotaLeague. The
maximum value of NEPS can be reached at different sizes of the cluster, for different platforms. For example,
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Figure 12: The NEPS of Friendster (left) and DotaLeague (right) in horizontal scalability.

the NEPS of Hadoop and Giraph peaks at 30 and 40 computing nodes of Friendster, respectively. However, the
general trend of NEPS is to decrease with the increase of cluster size. We have obtained similar results for the
vertex-centric equivalent of NEPS, NVPS.

4.3.2 Vertical scalability
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Figure 13: The vertical scalability of processing Friendster (left) and DotaLeague (right). Note that the scales
of vertical axes are different.

Figure 13 shows the vertical scalability of running BFS for the Friendster and DotaLeague datasets. There
is no result of Giraph and YARN of Friendster, because both YARN and Giraph crashed on 20 computing ma-
chines. For Friendster, both Hadoop and Startosphere can benefit from using more computing cores. However,
after 3 cores, the improvement become negligible. By using more cores, graphs can be processed with higher
parallelism, but may also incur latency, for example, due to concurrent accesses to the disk. For GraphLab(mp),
for which we split the Friendster file into more pieces with the increase of the number MPI processes, the job
execution time does not decrease correspondingly. The reason is tht each MPI instance (or machine) has a just
single loader for input files, thus in one machine, the MPI processes cannot load graph pieces in parallel. We
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have not observed significant vertical scalability for the smaller DotaLeague dataset.
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Figure 14: The NEPS of Friendster(left) and DotaLeague(right) in vertical scalability.

We check the performance per computing unit (computing core) by NEPS in vertical scalability. As shown
in Figure 14, we get similar results to that of horizontal scalability, all NEPS drops for all platforms.

4.4 Evaluation of performance overhead

In this section, we evaluate two elements of performance overhead: data ingestion time and execution time
overhead.

Key findings:

• The data ingestion time of Neo4j matches closely the characteristics of the graph. Overall, data ingestion
takes much longer for Neo4j than for HDFS.

• The data ingestion time of HDFS increases nearly linearly with the graph size.

• The percentage of overhead time in execution time is diverse across the platforms, algorithms, and graphs
in this study.

For Neo4j, data ingestion process converts input graphs to the format used by the Neo4j graph database.
In contrast, the distributed platforms evaluated in this work use HDFS, which means for them data ingestion
consists of data transfers from the local file system to HDFS. GraphLab even does not need data ingestion if
using the local file system (i.e., NFS). Only for Neo4j, because data ingestion takes long (up to days), we only
evaluate the data ingestion for Neo4j through one experiment repetition.

Table 6 summarizes the data ingestion results. The data ingestion time of Neo4j is up to several orders of
magnitude longer than that of HDFS. In our experimental environment, which uses enterprise-grade magnetic
disks, the data ingestion time of HDFS increases by about 1 second for every 100 MB of graph data. In contrast,
the data ingestion time of Neo4j depends on the structure and scale of graphs, so it changes irregularly across
the datasets in this study. Dominguez-Sal et al. [4] report similar results about data ingestion time in their
survey of graph database performance.

We can find that the fraction of time spent with overheads varies across the platforms and datasets from
Figure 15 and 16. The job execution time for CONN on Friendster of GraphLab is more than one hour, exceeding
the scale of Figure 16. Although BFS is not a compute-intensive algorithm, Hadoop and Stratosphere need to
traverse all vertices, which increases their computation time. In GraphLab, most of the time is spent on loading
the graph into memory and on finalizing the results. The percentage of overhead time on each platform is
closely related to the complexity of the algorithm and the characteristics of graph. For example, we also found
that for Citation, the percentage of overhead time is 98% and 70% for BFS and CONN, respectively.
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Table 6: Data ingestion time.

Amazon WikiTalk KGS Citation DotaLeague Synth Friendster

HDFS [s] 1.2 1.8 3.0 3.9 7.0 10.9 312.0

Neo4j [h] 2.0 17.2 2.6 28.8 3.7 24.7 N/A
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Figure 15: The execution time breakdown of platforms for BFS on DotaLeague.

5 Discussion

5.1 Our experience as platform users

Although performance is a key selection criterion for a graph-processing platforms, usability may also be im-
portant. In this section, we discuss our experience as platform users. We have documented during development
the time it took to develop each algorithm on each platform; Table 7 summarizes the development time and
the lines of code used to implement core part of algorithms (that is, without the code developed to read and
write the graph, to parse parameters, etc. In our experience, YARN and Hadoop require similar development
effort, which contrasts to the platforms that already implement our selected algorithms, such as BFS in Neo4j
and CONN in GraphLab.

Although the number lines of core code in our implementation is relatively small, in our experience the
platforms needed sufficiently long time to understand the programming models of different platforms and to
make the algorithm execute correctly. The non-core code can also be non-trivial. As most of the graph-
processing algorithms are iterative, for YARN and Hadoop a driver program is needed to run same Map and
Reduce tasks every iteration; in contrast, Stratosphere supports more complex second-order functions and is
thus more applicable for graph processing. Last, different platforms offer different programming trade-offs. We
found the vertex-centric programming models of Neo4j, GraphLab, and Giraph as facile to learn and reducing
the development effort, when compared to the other platforms. GraphLab programs need to be written in C++,
in contrast to the Java code required by the others. Regarding the data format, only GraphLab used a directed
graph data-structure, which means users have to create two edges (in and out) for undirected edges.
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Figure 16: The execution time breakdown of GraphLab for CONN on datasets.

Table 7: Example of development time and lines of core code. Legend: d–day, h–hour, loc–lines of code.

Hadoop(Java) Stratosphere(Java) Giraph(Java) GraphLab(C++) Neo4j(Java)

BFS 1 d, 110 loc 1 d, 150 loc 1 d, 45 loc 1 d, 120 loc 1 h, 38 loc

CONN 1.5 d, 110 loc 1 d, 160 loc 1 d, 80 loc 0.5 d, 130 loc 1 d, 100 loc

5.2 Towards a Benchmark

The method proposed in Ssection 2 raises several methodological and practical issues that prevent it from being
a benchmark. We argue that our method can result in meaningful, comprehensive performance evaluation
of graph-processing platforms, but the path towards an industry-accepted benchmark still raises sufficient
challenges. Outside the scope of this work, we continue to pursue resolving these issues via the SPEC Cloud
Working Group2.

Methodologically, our method has limitations in its process, workload design, and metrics design. Our
method does not offer a detailed, infrastructure- and platform-independent process; for example, it does not
limit meaningfully the amount of tuning done to a system prior to benchmarking and it does not precisely
specify the acceptable components of a platform (would a cloud-based platform include the Internet linking its
users to the data center?). The workload design, although it covers varied datasets and algorithms, does not
feature an industry-accepted process of selection for them, and does not select datasets and algorithms that
can stress a specific bottleneck in the system under test. Metrics-wise, our method does not provide only a
single result—which helps with the analysis of the causes of performance gaps between platforms—; does not
provide metrics for a variety of interesting platform characteristics (e.g., power consumption, cost, efficiency,
and elasticity); and could do more in terms of normalized metrics (i.e., by normalizing by various types of
resources provided by the system, such as number of cores or size of memory). These limitations also affect all
other benchmarks and performance evaluation studies included in the related work of this study.

From a practical perspective, our method has limitations in portability, time, and cost. The portability

2http://research.spec.org/working-groups/rg-cloud-working-group.html
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is limited by the need to re-implement algorithms for each platform and to re-configure platforms for each
experiment. The time spent in implementing our method is analyzed in Section 5.1. The cost of performing a
benchmark, in particular in tuning, is a non-trivial issue, for which few benchmarks provide a solution. Another
non-trivial practical aspect is reporting (an outcome of the analysis stage), which our method does not precisely
specify. In contrast, SPEC benchmark users can report report results for baseline (not tuned) and peak (tuned)
systems, and SPEC results include a full disclosure of the parameters used in configuring the systems; however,
SPEC benchmarks are sophisticated products and the result of years of development.

6 Related Work

Table 8: Overview of performance evaluation and comparison of graph-processing on different platforms. Leg-
end: V–vertices, E–edges, C–computers.

Platforms Algorithms Dataset type Largest dataset System

Neo4j, MySQL [46] 1 other synthetic 100 KV 1 C

Neo4j, etc. [4] 3 others synthetic 1 MV 1 C

Pregel [5] 1 other synthetic 50 BV 300 C

GPS, Giraph [47] CONN, 3 others real 39 MV, 1.5 BE 60 C

Trinity, etc. [27] BFS, 2 others synthetic 1 BV 16 C

PEGASUS [25] CONN,2 others synthetic, real 282 MV 90 C

CGMgraph [48] CONN, 4 others synthetic 10 MV 30 C

PBGL, CGMgraph [49] CONN, 3 others synthetic 70 MV, 1 BE 128 C

Hadoop, PEGASUS [50] 1 other synthetic, real 1 BV, 20 BE 32 C

HaLoop, Hadoop [23] 2 others synthetic, real 1.4 BV, 1.6 BE 90 C

Our method 5 classes synthetic, real 66 MV, 1.8 BE 50 C

Many previous studies focus on performance evaluation of graph-processing, for different platforms. Table 8
summarizes these studies and compares them with our work. Overall, for the studies in our survey, most of
the datasets included in previous evaluation are synthetic graphs. Although some of the synthetic graphs are
extremely large, they may not have the characteristics of real graphs. Our evaluation selects 6 real graphs
and 1 synthetic graph with various characteristics. Relative to our study, fewer classes of algorithms are used
to compare the performance of platforms. From our observation, a very limited number of metrics have been
reported, with many of the previous studies focusing only on the job execution time. Our work evaluates
performance much more in-depth, by considering many types of metrics. Finally, previous research compares
few platforms; in contrast, we investigate 6 popular graph-processing platforms with different architectures.

Except for graph processing, as the de-facto platforms for large-scale date processing, Hadoop has often
been compared with other systems. Pavlo et al. [51] note that Hadoop loads input data faster than two parallel
DBMSs, DBMS-X and Vertica, but it is outperformed in running real tasks. In an in-depth study, Jiang et
al. [52] report that the performance of Hadoop can be fine-tuned to approach that of Parallel DBMS. Similar to
Pavlo’s result, from the investigation of Chen and Hsu [53], Hadoop performs worse than Vertica on extracting
information from large-scale text. Ouaknine and Kirkpatrick [54] conduct a performance comparison between
Hadoop and another large data platform HPCC Systems, when processing ECL queries; their experiments reveal
that Hadoop runs nearly 2 times slower than the HPCC Systems, on average.
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7 Conclusion and Future Work

An quickly increasing number data-intensive platforms can process large-scale graphs, and have thus become
potentially interesting for a variety of users and application domains. To compare in-depth the performance of
graph-processing platforms, and thus facilitate platform selection and tuning, we have proposed in this work an
empirical method and applied it to a comprehensive performance study of six graph-processing platforms.

Our method defines an empirical performance evaluation process and selects metrics, datasets, and algo-
rithms; thus, it acts as a benchmarking suite despite not covering all the methodological and practical aspects
of a true benchmark. Our method focuses on four performance aspects, raw performance, scalability, re-
source consumption, and performance overhead. We use both performance and throughput metrics, and also
use normalized metrics to characterize scalability. We select five typical graph algorithms—general statistics,
breadth-first search, connected component, community detection, and graph evolution—, and seven graphs that
represent graph structures for multiple application domains, and size of up to 1.8 billion edges and tens of GB
of stored data.

Using our method, we conduct a first detailed, comprehensive, real-world performance evaluation of six
popular platforms for graph-processing, namely, Hadoop, YARN, Stratosphere, Giraph, GraphLab, and Neo4j.
Our results show quantitatively and comparatively the highlights and weaknesses of the tested platforms.

For the future, we plan to extend our work by enhancing our method towards a true benchmark and building
an empirically validated performance-boundary model for predicting the worst performance of these platforms.
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