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With the increasing diversity of many-core processors, it becomes more and more difficult to guarantee
performance portability with a unified programming model. The main reason lies in the architecture disparities,
e.g., CPUs and GPUs have different architectural features from each other, which leads to the differences in
performance optimization techniques. Thus, it is of great necessity to abstract performance-wise key features
from many-core processors.

In this paper, taking the Intel’s Xeon Phi as a case study, we present a two-stage comparative approach to
abstract key features. Our approach needs a reference processor and is executed at both the application level
and the microbenchmark level. We select multiple benchmarks from the Parboil benchmarks and measure the
performance differences to identify performance factors. Further, we perform an in-depth analysis to identify
the key features with microbenchmarks. Finally, we briefly discuss a use case in our optimizing framework.

Keywords: Performance Portability, Architectural Features, Many-Core Processors.
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1 Introduction

In recent years, more and more many-core processors are superseding sequential ones. Increasing parallelism,
rather than increasing clock rate, has become the primary engine of processor performance growth, and this
trend is likely to continue [1]. Particularly, today’s GPUs (Graphics Processing Units) and Intel’s MIC (Many
Integrated Cores) [2], greatly outperforming traditional CPUs in arithmetic throughput and memory bandwidth,
can use hundreds of parallel processing cores to run tens of thousands of threads.

Programming many-core processors is difficult, as it is a problem with multiple constraints: we want ap-
plications to deliver great performance, to be easy to program, and to be portable between architectures [3].
Researchers have been putting many efforts on this problem in both industry and academia. OpenCL [4],
managed by the Khronos Group, can give software developers portable and efficient access to diverse pro-
cessing platforms, while OpenMP-like programming models such as OpenACC [5] and OmpSs [6] have been
proposed/extended to support incremental parallelization.

However, the optimizations we apply in one context are not portable in another, i.e., we see poor performance-
portability across platforms, data sets, and calling-contexts [7], [8]. To this end, we propose a path towards
efficient support for portable performance. Specifically, we propose Sesame: A User-Transparent Optimizing
Framework for Many-Core Processors [9]. Taking naively parallelized code as input, Sesame performs code
transformations and generates specialized kernels for different platforms. The Sesame framework consists of
four components: (1) feature identifier, (2) impact predictor, (3) source-to-source translator, and (4) auto-
tuner. The feature identifier aims to find the architectural features that are significant (in a good or a bad way)
to application performance from the state-of-the-art many-core processors. Ultimately, we define these features
as key features. Thus, the Sesame framework can deal with the architectural disparities and optimizations in a
unified way.

In this paper, we focus on the most recent (to date) many-core processors - Intel’s Xeon Phi - and we discuss
its key features. Specifically, we focus on three questions: (1) how can we identify key features?
(2) what are the key features for Xeon Phi? (3) how can these features be used? In [10], we
microbenchmark an Xeon Phi coprocessor thoroughly. We use these results to generalize a two-stage comparative
approach to identify key features. Specifically, we take as reference the native performance of the Parboil
benchmarks [11], and, after applying various code and/or data layout changes, we study their performance
impact. These performance changes are further analyzed and correlated to architectural features. During the
second stage, we give an in-depth analysis of the features using microbenchmarks. We note that the changes
that we have applied to isolate the key features can be easily transformed into best-practice and/or optimization
techniques. Further, we illustrate how to use the key features in the Sesame framework (Section 6).

On the Xeon Phi, we have identified the following key features: KF1- the number of cores, KF2- SIMD width,
KF3- local-to-remote memory latency gap, KF4- ECC support, and KF5- prefetching. Their corresponding
optimization techniques are tabulated in Table 2. We believe these features are a subset of the key features on
Xeon Phi, and more work is needed to compile a complete list.

Through a comparative study between the Intel Xeon Phi coprocessor and the Intel Xeon processor, we
found that Intel Xeon Phi, indeed, inherits a lot of architectural features from traditional multi-core CPUs like
Intel Xeon processors. Both of them have SIMD cores and cache-based memory systems. The difference lies
in the last-level caches that Xeon Phi uses the 2nd level as the last-level and each cache slice is private to a
core. Another difference is that the Xeon Phi adopts graphics memory which can lead to a much higher (6×)
bandwidth than that on the Sandy Bridge Xeon processor.

Wp 4 http://www.pds.ewi.tudelft.nl/fang/
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2 Background

2.1 Selected Architectures

We will investigate the key features of Intel Xeon Phi. At the same time, we select the Sandy Bridge as the
reference architecture. For this, we select Intel Xeon Phi 5110P (MIC) and Intel Xeon E6-2620 (ISB) in this
paper.

2.1.1 Intel Many-Integrated Cores: Xeon Phi 5110P

The Intel Xeon Phi comprises of over 50 cores (the one used in this paper belongs to the 5110P series and has
60 cores) connected by a high-performance on-die bidirectional interconnect (shown in Figure 1). In addition
to these cores, there are 16 channels (supported by memory controllers) delivering up to 5.0 GT/s (320 GB/s
memory bandwidth) [12]. Working as coprocessor, the many-core processor is connected to a host with special
function devices such as the PCI Express system interface. Different from GPUs, a dedicated embedded Linux
µOS runs on the platform.

The cores contain a 512-bit wide vector unit with the vector register files (32 registers per thread context).
Each core has a 32KB L1 data cache, a 32KB L1 instruction cache, and a core-private 512KB unified L2 cache
(thus 30MB on the die). The L2 caches are kept fully coherent with each other by the TDs (distributed duplicate
tag directory), which are referenced after an L2 cache miss. The tag directory is not centralized but is broken
up into 64 distributed tag directories (DTDs). Each DTD is responsible for maintaining the global coherence
state in the chip for its assigned cache lines.

Figure 1: The Intel Xeon Phi Architecture.

2.1.2 Intel Sandy Bridge: Xeon E5-2620

For comparison, we analyze an Intel Sandy Bridge Xeon E5-2620, an six-core processor working at 2.0 GHz
(Figure 2). It has AVX support (advanced vector extensions), with the width of the SIMD registers increasing
from 128 bits to 256 bits. Thus, it can process 4 double-precision or 8 single-precision data elements at a time.
Each core has private L1 (32 KB data and 32 KB instructions) and L2 caches (256 KB unified), and all cores
shared a L3 cache (or LLC) of 15 MB. The internal components of the chip, including the LLC slices, are
connected via a ring bus composed by a data ring, a request ring, an acknowledge ring and a snoop ring [13].
Any core can use any of the cache slices, thus having access to data stored in any of them. From now on, we
use ‘MIC’ to represent Intel Xeon Phi 5110P and ‘ISB’ to represent Intel Xeon E5-2620 for brevity.

Wp 5 http://www.pds.ewi.tudelft.nl/fang/
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Figure 2: The Intel Xeon E5-2620.

2.2 Programming Models on ISB and MIC

Being an x86 SMP-on-a-chip running Linux [14], MIC offers the full capability to use the same tools, program-
ming languages and programming model as an Intel Xeon processor. In particular, C users have OpenMP as
well as Intel Cilk Plus. Fortran programmers can benefit from OpenMP and the added parallel features such
as DO CONCURRENT. When dealing with both tasks and vector data, programming tools like OpenMP and MPI
can be used simultaneously. In this work, we use the C language plus Intel’s OpenMP implementation, and use
the Intel icc compiler (V2013.3.163). Unless otherwise specified, we use the compiler option -O3.

There are two major approaches to involve the Intel Xeon Phi coprocessors in an application: (1) offload
mode- the program is viewed as running on the host and offloading selected work to the coprocessor, (2) native
mode-the program can run the coprocessor natively and independently, and can communicate with processors
or other coprocessors [14]. In this work, we measure the performance of all programs with Xeon Phi working in
the native execution mode.

3 A Two-stage Comparative Approach

In this section, we illustrate a two-stage comparative approach to abstract key features from Intel Xeon Phi
(Figure 3). First of all, we select a reference architecture. When running the same kernel on both Intel
Xeon Phi and the reference processor, we may observe different performance (or trends). When relating the
performance differences with the underlying architectural features, it becomes easier to isolate and/or identify
the architectural differences and obtain the key features of Intel Xeon Phi. As we know, Intel Xeon Phi inherits
more from traditional multicore CPUs than GPUs. Thus, we take a Sandy Bridge Xeon E5-2620 as a reference.

Overall, our comparative approach is executed at two levels (or in two stages): (1) the application level,
and (2) the microbenchmark level. At the application level, we take a couple of benchmarks from the Parboil
benchmark suite as input. Based on the naive kernel in the Parboil suite, we perform code changes or data
layout changes to get a counter-part (a new kernel). The changes can be constructive, which leads to a better
performance; they can also be destructive, which makes the kernel perform worse. Thereafter, we measure the
performance of the two kernels on both Intel Xeon Phi and the reference processor. The performance changes
or differences (from using different processors, or different code versions, or different data sets) are analyzed,
thus leading to the discovery of performance factors.

A performance factor gives programmers/users intuitive understanding of the performance differences. For
example, we know that accessing a cache-line in remote caches is far more expensive than accessing a line in
local caches. However, what is the ‘exact’ performance difference? For this reason, we give an in-depth analysis
based on the performance factors. We quantify the ‘exact’ difference using microbenchmarks, e.g., we use a
microbenchmark to measure the latency difference between local accesses and remote access. We found that the
access latency is of an order of magnitude differences on Intel Xeon Phi, while the differences depends on the

Wp 6 http://www.pds.ewi.tudelft.nl/fang/
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cache-line state on the reference processor. Hence, we conclude Intel Xeon Phi has a different cache memory
from the reference processor.

To summarize, our approach includes two key factors: selecting a reference processor and a two-stage
execution. In the next section, we will validate our approach in a step-by-step manner.

Figure 3: The comparative approach.

4 Performance Evaluation and Analysis

We select five benchmarks from the Parboil suite: SGEMM, Histogram, CUTCP, Stencil and SpMV. We measure
their performance on the Xeon E5-2620 (‘ISB’) and the Xeon Phi 5110P (‘MIC’). The overall results before and
after code changes are shown in Table 1.

4.1 SGEMM

4.1.1 Description

As a building block for many other routines, the SGEMM routine calculates the new value of matrix C based
on the matrix-product of matrix A and matrix B, and the old value of matrix C: C ← αAB+βC, where α and
β values are scalar coefficients. The Parboil benchmark implements the following format: C ← αABT + βC

(shown in Figure 4). We suppose A, B, C are M ×K, K ×N , and M ×N in size. Totally, SGEMM performs
2N3 operations (suppose M = N = K). Without taking caches into account, it accesses 2N3 double-precision

Wp 7 http://www.pds.ewi.tudelft.nl/fang/
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Table 1: Performance comparison of the Parboil benchmarks before and after code changes.

Xeon E5-2620 (‘ISB’) Xeon Phi 5110P (‘MIC’)
dataset t1(s) t2(s) sp(x) t1(s) t2(s) sp(x)

SGEMM medium 1.30 0.04 33 7.73 0.26 30
Histogram 224 85.77 0.16 537 407.00 0.20 1992
CUTCP large 15.86 2.19 7 14.41 3.28 4
Stencil 60× 60× 15 26.32 19.75 1.3 21.94 12.46 1.7
SpMV – – – – – – –

data elements from the off-chip memory. On the other hand, the number will be 3N2 when the data elements
are used ideally in caches.

(a) C = AB (b) C = ABT

Figure 4: SGEMM

4.1.2 High-level Analysis

We select the medium data set (M=1024, N=1056, K=992) and use 60 threads. The parboil assume that the
matrix (A, B and C) is stored in column-major order. In fact, it is stored in row-major order. We hold that
this code was originally developed in programming languages like Fortran. We change the input data layout
and exchange the two dimensions of each matrix. Using the same data set, the kernel runs around 30× faster
(Table 1). We conclude that the Xeon Phi prefers accessing data elements contiguously. Similar trends can be
found on the Xeon processor (Table 1).

4.1.3 Low-level Analysis

To analyze differences in the presence of ‘jump’ memory access, we use the Stanza Triad (STriad) benchmark
to measure the bandwidth on a single core. STriad works by performing DAXPY (Triad) inner loop for a length
L stanza before jumping k elements and then continuing on to the next L elements, until we reach the end of
the array. We set the total problem size to 128 MB, and set k to 2048 words in double-precision. Each stanza
data size was run 10 times, with the L2 cache flushed each time, and we averaged the performance to calculate
the memory bandwidth for each stanza length.

Figure 5 shows the results of the STriad experiments on the Xeon Phi and the Xeon processor. Overall,
we see an increase in memory bandwidth over the stanza length (until a big enough stanza length). Our
experimental results show that the length is around 2048 words for the ISB and 8192 words for MIC. Hence,
the non-contiguous access to memory is detrimental to memory bandwidth efficiency and thus the performance
of memory-bound kernels. In fact, the frequent ‘jump’ memory access will disturb the data prefetching from

Wp 8 http://www.pds.ewi.tudelft.nl/fang/
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the off-chip memory to on-chip memory. For these reasons, programmers should try to create a long enough
stanzas of contiguous memory accesses for better prefetching effects and larger memory bandwidths.
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Figure 5: Memory bandwidth with Stanza Triad.

4.2 Histogram

4.2.1 Description

The Histogram benchmark accumulates the number of occurrences of each output value in the input data set.
To make the benchmark more adjustable, we take the number of bins as a parameter and generate the input
image randomly.

4.2.2 High-level Analysis

The naive implementation adds parallel for pragma over the outer loop and critical pragma over the
accumulating statement. We measure the execution time of the naive implementation using different number of
threads and show the results in Figure 6. We note that using multiple threads leads to significant performance
degradation (up to 9× slower). This is because the all threads updates the same memory space exclusively and
thus results in repeated cache-lines invalidation or transfers between the processing cores. Thus, we allocate
a local space for each thread and let them accumulate results ‘independently’. Thereafter, we summarize the
sub-results into a total bin. Table 1 show that we can dramatically decrease the execution time (537× faster
on ISB and 1992× faster on MIC).
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Figure 6: The native histogram performance (in seconds).
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4.2.3 Low-level Analysis

We further show the cost of cache-line transfers between processing cores in Figure 7. Compared with accessing
the local caches, we name the operation of transferring a cache-line from another core as remote cache access.
we use the approach (proposed by Daniel Molka [15]) to measure the cache access latency. Prior to the mea-
surement, the to-be-transferred cache-line are placed in different locations (cores) and in a certain coherency
state (modified, exclusive, shared). In each measurement, we use two threads (T0, T1), with T0 pinned to
Core 0 and T1 to another certain core. The latency measurement always runs on Core 0.

Figure 7 shows the latency results of cache accesses. We see the remote cache access is 10× slower than
local cache accesses, on both ISB and MIC. Further, the remote read latency does not depends on the cache-line
state on MIC, while it differs on the Xeon processor. Specifically, when the cache-line is in shared state, the
remote read latency is much smaller and close to the latency of local L3 access (Figure 7(a)). The difference
comes from the fact that all cores on ISB share the same L3 cache. On the Xeon Phi, however, the last-level
cache is private to a core and designed in a distributed manner. Hence, the target cache-line has to be moved
to the local cache (via the ring interconnect) even when it is in shared state.
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Figure 7: Read latencies of core 0 (in seconds) when the cache-line is located at different positions.

4.3 Cutoff-limited Coulombic Potential (CUTCP)

4.3.1 Description

Some molecular modeling tasks requires a high-resolution map of the electrostatic potential field produced by
charged atoms distributed through a volume. In a complete application, this would be added to a long-range
component computed with a less computationally demanding algorithm. Cutoff-limited Coulombic Potential
(CUTCP) computes a short-range component of this map, in which the potential at a given map point comes
only from atoms with in a cutoff radius of 12Ȧ. In a simple, sequential implementation, each atom is visited
in sequence, and electropotential contributions made by a visited atom are accumulated into all output cells
within the cutoff distance before proceeding to the next atom.

4.3.2 High-level Analysis

The Parboil benchmark suite provides us with two OpenMP implementations: (a) naive implementation (List-
ing 1), and (b) the code that is optimized for vectorization (Listing 2). We measure the performance on both the
processors shown in Table 1. We note that the optimized code can run 7× faster on the ISB, but its performance
suffered a loss on MIC using the code in Listing 2, compared with the naive implementation. We assume the
code vectorization on the Xeon Phi was not successful although the emitted message from the compiler reported
“LOOP WAS VECTORIZED”. Thus, we use intrinsics to translate each statement into an assembly format.
Then the further optimized code can run 4× faster shown in Table 1.
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Listing 1: naive code

for (i=ia; i<=ib; i++,pg++,dx+=gridx)
{
r2 = dx∗dx + dydz2;
if (r2 >= a2) continue;
s = (1.f − r2 ∗ inv a2);
e = q ∗ (1/sqrtf(r2)) ∗ s ∗ s;
#pragma omp atomic
∗pg += e;

}

Listing 2: optimized code

for(i=ia; i<=ib; i++,pg++,dx+=gridx)
{
r2 = dx∗dx + dydz2;

s = (1.f−r2∗inv a2)∗(1.f−r2∗inv a2);
e = q ∗ (1/sqrtf(r2)) ∗ s;

∗pg += (r2 < a2 ? e : 0);
}

4.3.3 Low-level Analysis

The optimized CUTCP application is compute-bound, and the SIMD usage becomes a key factor to achieve
high performance. Here we explore the factors of achieving peak flops apart from the SIMD usage. The Xeon
Phi 5110P has 60 cores working at 1.05 GHz, and each core processes 8 double-precision data elements at a time,
with maximum 2 operations (multiply-add or mad) per cycle in each lane (processing element). Therefore,
the theoretical instruction throughput is 1008 GFlops. Similarly, we can calculate the peak flops on ISB is 96
GFlops in double-precision.

To measure the achievable instruction throughput, we run 1, 2, 4 threads on a core. During measurement,
each thread performs one or a set of 2 independent mad and mul instructions for a pre-defined loop count. The
loop was unrolled aggressively to hide the pipeline latency and avoid the branch overheads. The results are
shown in Figure 8. Overall, we can achieve 99% of the peak instruction throughput (using 60 cores and 240
threads) on MIC. Using mul instruction can achieve around 40% of the peak flops on ISB 1.

Furthermore, we have the following observations. First, when using one thread per core, the instruction
throughput is rather low, compared with the cases when using two or four threads on a core. This is due
to the fact that it is not possible to issue instructions from the same threads context in back-to-back cycles
on MIC [12]. Thus, programmers need to run at least two threads on each core to fully utilize the hardware
resources. Furthermore, we note that the mad throughput is twice as large as the mul throughput. Thus, we
conclude that for a given instruction mix, the achievable instruction throughput relies on not only the number
of cores/threads, but also on the issue width (i.e., the number of independent instructions). Note that the
microbenchmarks are written in intrinsics and thus we can ensure 100% vector usage.
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Figure 8: Arithmetic throughput using different threads (60, 120, 240) and issue widths (1 single instruction
versus 2 independent instructions) (in GFlops).

1The run-time emitted ’Illegal instruction’ when using the mad instruction.
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4.4 Stencil

4.4.1 Description

At the heart of partial difference equation (PDE) solvers are stencils, using iterative finite-difference techniques
that sweep over a spatial grid, performing the nearest-neighbor computations. The Parboil benchmark
includes a stencil code, representing an iterative Jacobi solver of the heat equation on a 3-D structured grid,
which can also be used as a building block for more advanced multi-grid PDE solvers. The solver can be
expressed as triply nested loops ijk over: B(i, j, k) = α · A(i, j, k) + β · (A(i− 1, j, k) + A(i+ 1, j, k) + A(i, j −
1, k) +A(i, j + 1, k) +A(i, j, k − 1) +A(i, j, k + 1)).

4.4.2 High-level Analysis

The Parboil benchmark simply puts an pragma over the outer-most loop. We change the code with the tiling
technique, and we use off-chip memory bandwidth (GB/s) as the performance metric. We measure each data set
(6 data sets all together) 10 times and get the median value. Furthermore, we perform the same measurement on
the tiling implementation (10 trials for each tile size) and get the maximum bandwidth. The memory bandwidths
(in GB/s) for both ISB and MIC are shown in Figure 9. Overall, we see that the achieved bandwidth on MIC
is twice as large as that achieved on ISB for the large data sets. On ISB, we see the bandwidth is around 30
GB/s and it changes slightly over data sets and the optimization. On MIC, however, the naive implementation
experienced a significant bandwidth change over the data sets (up to 5× faster for large data sets). The tiling
implementation brings an increase in memory bandwidth on small data sets (60× 60× 15 and 60× 60× 30).
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Figure 9: Memory bandwidth of stencil solvers (in GB/s)

4.4.3 Low-level Analysis

Tiling can bring us more parallelism than the naive implementation. As we mentioned, the Parboil simply
parallelized the stencil kernel according to the outer loop, and thus the maximum parallelism is K (K =
[15, 480]). When K is smaller than the number of cores, we can not fully utilize the processing cores on MIC.
This gives an explanation why the tiling implementation obtained a larger memory bandwidth on small data
sets than the naive implementation.

Furthermore, using the tiling implementation was expected to get better performance than the naive im-
plementation due to better utilization of caches. But in most cases we achieved similar bandwidths on both
processors with and without tiling. This is possibly because both the naive and the tiling implementations are
implemented in the tiling manner but in a different granularity. Another factor is that our tiling implementation
in OpenMP has an overhead of distributing data tiles to threads.
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4.5 Sparse Matrix-Dense Vector Multiplication (SpMV)

4.5.1 Description

Sparse matrix-vector multiplication is the core of many iterative solvers. We revised the benchmark based on
the Parboil OpenMP implementation to make the ratio of non-zero elements adjustable. Given an M × N

sparse matrix A and a dense vector x, we consider the sparse matrix-vector multiply (SpMV) y ← Ax, with
y a dense result vector. A typical way of storing a sparse matrix A is the Compressed Row Storage (CRS)
format [16], which stores data in a row-by-row fashion using three arrays: col, val, and row. The first two arrays
are of size nz(A), with nz(A) the number of nonzeroes in A, whereas row is of length M + 1. The array col

stores the column index of each nonzero in A, and val stores the corresponding numerical values. The ranges
[rowi, rowi+1) in those arrays correspond to the nonzeroes in the ith row of A. Thus, the amount of memory
that needs to be transferred (bytes) and the flops (flops) are: bytes = 2×M ×8+nz(A)× (8+4)+(M +1)×4,
flops = nz(A)× 2 (note that we use integer to store the array index and double to store the values).

4.5.2 High-level Analysis

We assign random positions to a given number of elements in a square matrix A, and use a function to encode
these positions in compressed sparse row format. Parboil parallelizes the SpMV kernel by letting each thread
(120 threads in total) process multiple contiguous rows in parallel. The ratio of non-zero data elements can
be controlled by a parameter ra. We do not make any code changes, but we change the value of ra for each
measurement. For all the experiments, we run the code for 3 times to warm up the TLB and to avoid the effect
of lazy allocation. Then we run the SpMV with a repeat of 100 times, with caches flushed between two repeats.
We show the results in terms of off-chip memory bandwidth (in GB/s) in Figure 10. We see that when changing
the ra, the bandwidth of SpMV on ISB keeps stable, while it increases over ra on MIC.

when A is sparse (i.e., it has very few non-zero data elements), we obtain poor performance on MIC. This
is because of the small bandwidth when accessing vector x. In particular, this occurs when the contiguous two
non-zero data elements are far from each other. In such case, a thread will load a cache-line of data elements
(8 doubles) on the Xeon Phi, but use only one of them. Even though the kernel can use the vector units, the
vector data from x has to be gathered from different positions and possibly from different cache-lines. On the
other hand, we can achieve high memory bandwidth on the Xeon processor even when ra is small.
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Figure 10: Memory bandwidth of SpMV (in GB/s)

4.5.3 Low-level Analysis

We measure the achieved memory bandwidth for both read and write (Figure 11). The read benchmark reads
data from an array A (b = b + A[k]). The write benchmark writes a thread-specific value into an array A

(A[k] = Ct). Note that A needs to be large enough (e.g., 1 GB) such that it cannot be held with the on-
chip memory. We use different running threads on ISB (1 ∼ 12) and MIC (1 ∼ 236). We show the memory
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bandwidth in Figure 11. Overall, we see both the maximum bandwidths are far below the theoretical numbers
(42.6 GB/s for ISB and 320 GB/s for MIC). On MIC, we note that the read bandwidth increases when using
more threads, peaking at 168 GB/s (from using 118 threads on). On the other hand, the write bandwidth is
not as large as the read bandwidth. When using 236 threads, we can obtain the maximum read bandwidth
(76 GB/s). When using more threads, we will generate more requests to memory controllers, thus making the
interconnect and memory channels busier. Therefore, programmers need to launch over 2 threads per core to
saturate the interconnect and the memory channels.

SpMV is memory-bandwidth bound when the matrix is large. According the read and write ratio in SpMV,
we use the read bandwidth to approximate the SpMV bandwidth. Hence, the maximum bandwidths on ISB
and MIC are 30 GB/s and 168 GB/s, respectively. We note that the bandwidth numbers of SpMV are very
close to the maximum ones when ra = 100% (i.e., dense-matrix dense vector multiplication). However, when
A is sparse, we obtain poor performance due to the irregular (unfriendly) memory access pattern of SpMV on
MIC. This also relates to the prefetching mechanism mentioned in section 4.1.
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Figure 11: Memory bandwidth of read and write operations (in GB/s)

5 Key Features Summary

In Table 2, we categorize the architectural features/properties into five groups: cores, on-chip memory, off-chip
memory, network-on-chip (NoC) and miscellaneous. An architectural property includes property name and its
value, which is either queried from specifications or measured with microbenchmarks. We define a property
(or a combination of multiple properties) as a key feature when it meets two criteria: (1) it is
controllable by programmers in terms of code, and (2) it can make a difference for the overall
application performance. In Table 2, all features with a tick are key features. We also show the optimization
techniques in the last column of the table.

5.1 Cores

It is indisputable that the number of cores is a key feature. Ideally, the performance will increase linearly over
the number of cores (shown in section 4.4). When programming kernels, we have control of the number of
logical threads and affinity strategies so as to map threads to cores (or hardware threads). Furthermore, within
a core, the SIMD usage plays a key role in the overall performance. Each core of MIC has a 512-bit SIMD unit
which can work on 8 double-precision or 16 single-precision data elements simultaneously. Thus, programmers
are supposed to use a vector-friendly format of code for a high SIMD usage (shown in section 4.3).

5.2 On-chip Memory

We roughly classify on-chip memory into caches (hardware-managed) and scratch-pad memory (programmer-
managed). MIC has two levels of hardware-managed caches. We measured that the local access latency (of the
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Table 2: Feature List of the Xeon Phi 5110P.

Group
Properties

Measured/Query Key Features Optimization Technique
name value

Cores
Frequency 1.05 GHz Q

NO. of cores 60 Q X enough parallelism
SIMD width 512 bits Q X vectorization

On-chip Memory
Levels 2 Q
Type Hardware Q

L1 Cache
LLC N Q

latency 6 cycles M
capacity 32KB M/Q

cache-line size 64 bytes M/Q
L2 Cache

LLC Y Q
local latency 25 cycles M X privatization

remote latency 238 cycles M X privatization
capacity 512KB M/Q

cache-line size 64 bytes M/Q

Off-chip Memory
latency 340 cycles M
capacity 8GB Q

r-bandwidth 168 GB/s M X friendly MAPs
w-bandwidth 76 GB/s M X friendly MAPs
ECC support Y Q X turn off ECC

NoC
type ring Q

Miscellaneous
prefetching Y Q X the long enough stanza

L2 cache) is 25 cycles while the remote access latency is around 238 cycles. Thus, we define a key feature based
on a combination of the two properties: we prefer using local caches rather than remote caches. We can ensure
the local caches usage by utilizing privatization.

5.3 Off-chip Memory

Vendors often report theoretical memory bandwidth for each processor. However, the numbers cannot be
achieved in both benchmarks and real-life applications. As we have shown in section 4.5, the maximum read
and write memory bandwidths are 168 GB/s and 76 GB/s on MIC, which are far below the theoretical number
(320 GB/s). We can achieve these maximum off-chip memory bandwidths in the presence of unit-stride memory
access patterns (friendly MAPs). For such cases, the prefetching mechanism can prefetch the data lines nicely,
which is further explained in section 5.4. In addition, when turning off ECC support on MIC, we can get a 15%
bandwidth improvement [10]. Thus, we see the ECC support as a key feature. Users can choose to switch ECC

Wp 15 http://www.pds.ewi.tudelft.nl/fang/



J. Fang, A.L. Varbanescu, H.J.Sips Wp

Identifying the Key Features of Intel Xeon PhiWp

PDS

Wp

Wp5.4 Miscellaneous

ON/OFF based on their requirements.

5.4 Miscellaneous

In addition, MIC provides a prefetching mechanism to fetch data from the off-chip memory into the on-chip
memory. Prefetching is based on the heuristics of predicting and moving the next-to-be-used cache-line, and
thus a regular memory access pattern can ensure the efficiency of prefetching. Ideally, the prefetcher can achieve
its highest efficiency when an application needs contiguous data from the off-chip memory. Thus, programmers
need to transform the code or change the data layout to ensure the stanza as long as possible.

6 Discussion and Conclusion

As we have mentioned, feature identifier is the component in our optimizing framework (Sesame) that can
identify the key features for a given many-core processors. Once we got a list of key features, our source-to-
source translator needs two steps to perform optimizations. The first step is matching. Each key feature has a
corresponding optimization technique(s) and an ideal use scenario(s). The ideal use scenario is the way to fully
utilize the key feature. Matching the ideal use scenario with the input kernel gives us an optimization target.
Guided by the optimization target, we use one or multiple compiling passes to translate the naive code to an
optimized format on the Xeon Phi. This is still the work in progress.

To summarize, we present a two-stage comparative approach to abstract key features for a given many-core
processor. In this paper, we took an Intel Xeon Phi coprocessor and demonstrated how to get key features with
our approach. The feature abstraction consists of two levels: the high-level (application-level) and the low-level
(microbenchmark-level). Using a reference processor makes abstraction straightforward. We summarized the
key features of Intel Xeon Phi in Table 2. We found that the Xeon Phi coprocessor works like the traditional
multi-core CPUs and thus their key features are alike. But programmers have to put more efforts on the
upgraded features (e.g., more cores and wider SIMD) to map a given application to the coprocessor.
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