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Abstract

Online networks like Facebook and BitTorrent are based on user interactions such as wall posts and

content exchange. In such systems, user relationships can be used to enhance security and promote

cooperation, but in order to be meaningful, these relationships should be based on user interaction

strength instead of “binary” friendships. To date, several theoretical, centralized schemes for estimating

user interaction strength have been proposed. Here we present the design, deployment, and analysis of

the UISE scheme for User Interaction Strength Estimation for both centralized and decentralized online

networks.

Among the strong points of UISE is that it captures direct and indirect user interactions, that it scales

with only partial information dissemination in decentralized systems, and that it provides disincentives

for malicious user behaviors. We apply UISE to detect user interaction patterns based on wall posts in

Facebook, which resemble those observed in the offline human society. We further apply UISE to online

time estimation based on rendezvous as user interactions in Tribler, an online network for media and social

applications like file sharing, streaming, and voting. We demonstrate the accuracy and scalability of UISE

with different information dissemination protocols and user behaviors using simulations, emulations, and

a real-world deployment.
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1 Introduction

Online networks are complex distributed computer systems that involve potentially large numbers of humans
with their inputs and decisions. Typical examples of online networks include email, Facebook, LinkedIn,
Wikipedia, eBay, and BitTorrent-like Peer-to-Peer (P2P) systems. They have become popular and powerful
infrastructures for communication and they provide various mechanisms for users to interact. For instance,
in Facebook, users maintain friendships, post messages on their friends’ walls, and comment on their friends’
photos. In Wikipedia, users collectively edit articles in their areas of expertise, and in BitTorrent, users
upload to and download from each other to share the contents of their common interests.

In this paper, we present a new view that sees user interactions as the most basic underpinning of online
networks such as Facebook, Wikipedia, and BitTorrent. The key research question we address is whether
we can devise a framework for expressing user interactions and their strengths that is both generic and can
be applied to a wide range of systems and applications.

The patterns and strengths of user interactions are prominent in online networks. For example, in BitTor-
rent, user interactions can be used as the foundation for designing incentive policies to promote contribution.
Through estimating the interaction strengths between users in terms of the amounts or durations of uploads,
system designers can make users favor the highly ranked users for future uploads. As another example,
a number of applications [16, 17, 23, 24] leverage online friendships to enhance security, to promote co-
operation, to improve item recommendation, etc. However, it has long been observed that low-interaction
friendships, as exemplified by the “Familiar Stranger” [18], are prevalent, and it has been shown that the
dynamics of user interactions is more representative for inferring user relationships [19, 21] than simple,
statically established “binary” friendships. Distributed systems often rely on importing trust relationships
from social networks such as Facebook to improve security [24]. Instead, users would be much better off by
estimating their interaction strengths with others and by trusting the ones with whom they have interacted
frequently. Last but not least, sociologists often rely on user interactions for identifying social ties [8, 22],
and therefore a proper estimation of user interaction strength is essential.

The importance of user interactions in online networks leads to the question: How can we estimate
user interaction strength? Previous work addressing this issue [2, 19, 21, 22] has focused only on online
social networks like Facebook, and has only considered binary and direct user interactions, simply indicating
whether a user has directly interacted with another user or not. To remedy this, in this paper we propose a
User Interaction Strength Estimation scheme called UISE that has a much more fine-grained notion of user
interaction and that is applicable to a more general category of online networks. With the astounding growth
of online networks—with Facebook exceeding a billion users and BitTorrent serving hundreds of millions of
users—UISE has a scalable design. Specifically, we make the following contributions.

As a model for representing user interaction histories, we introduce the bitmap-based user interaction
graph, based on which UISE estimates user interaction strengths. UISE captures the frequencies of both direct
and indirect interactions, provides disincentives for malicious user behaviors, and can be easily incorporated
into distributed systems (Section 4).

We apply UISE to detect user interaction patterns in online networks. We take Facebook as an example
and we derive patterns resembling those often observed in the offline human society—users in Facebook
tend to interact frequently and stably with relatively small groups, occasionally with persons outside those
groups, and they make new friends while in the meantime losing touch with some old friends (Section 5).

We further apply UISE to derive a decentralized scheme for estimating the time users are online, which
is an important aspect of user activity and has yet not been studied before. We have implemented this
application into the Tribler [13] online network and we demonstrate the scalability and the accuracy of UISE
through simulations, emulations, and Internet deployment (Sections 6-9).

As it turns out, UISE achieves accurate estimations even when users hold only 5% of the global infor-
mation related to user interactions. In fact, in order to maintain the accuracy of UISE, its requirement for
the coverage of global information decreases with the population size, thus allowing UISE to achieve good
scalability in a self-organized manner. Furthermore, although a user only possesses a partial view of the
system, with UISE he can derive a ranking of users according to his estimations of their interaction strength
that highly resembles the ranking derived from the global view. Thus, UISE achieves the most important
application of estimating user interaction strength, i.e., differentiating users with different levels of activity.

Wp 4
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2 User interactions

Online networks provide various mechanisms for users to interact. In Facebook, users exchange messages,
post on each other’s walls, and comment on photos. In BitTorrent, where the main application is file sharing,
users meet (rendezvous), and if possible, upload to and download from each other. As users evolve in online
networks, they gradually build up a long history of user interactions. Some of these interactions are directed,
such as uploads and downloads, while others are undirected, such as rendezvous and a chat over a photo.
Online networks provide abundant user interactions, which, however, change rapidly over time: only 30% of
Facebook users consistently interact from one month to the next [19], and in BitTorrent, users who directly
download from each other for one file rarely meet again—the so-called problem of low rendezvous.

Fortunately, users not only interact directly, but also indirectly. An indirect interaction is formed when
users are linked through a sequence of interactions, such as in Facebook when a user posts on another user’s
wall who in turn posts on a third user’s wall, and so on, or in BitTorrent when a user uploads to another
user who further uploads to a third user, and so forth. When direct interactions are relatively scarce,
such as in BitTorrent-like P2P systems where the problem of low rendezvous exists, indirect interactions
provide supplementary information for inferring user relationships. Moreover, a group of direct and indirect
interactions that happen within a short time frame may be caused by offline interactions. In the Facebook
example, the corresponding users could have participated in some offline event together and are sharing
their experiences. Indirect interactions that happen widely apart in time, however, are of limited use. For
example, a user may have exchanged messages with a high-school friend three years ago and with a college
friend one hour ago—these interactions hardly indicate any meaningful user relationships between the user’s
two friends.

To achieve a meaningful estimation of user interaction strength, the above aspects of user interaction
should be considered. In the following section, we give the problem statement and discuss the challenges
that need to be addressed.

3 Problem statement

User interaction strength is reflected by two aspects: the frequency of interactions and the intensity of each
interaction. In this paper, we do not consider the latter aspect in order to avoid evaluating the strengths
of words, such as to decide which comment should get a higher weight, “Happy birthday” or “You look
nice”. Rather, in this paper we define user interaction strength as the frequency that two users interact, and
we propose a model for estimating user interaction strength based on this definition. In this context, the
following four issues are addressed.

Partial history versus full history of user interactions. A properly selected partial history of
user interactions is more suitable for estimating user interaction strength than a full history. First, as
user interactions may change rapidly over time, the stale ones are no longer useful for inferring meaningful
relationships. Secondly, keeping a full history of user interactions induces a “glass ceiling” for new users:
they will always be evaluated as less active than old users who have already accumulated a long history.
When user interaction strengths are used to decide on the service level a user can get, such an unfair playing
field will discourage new users from joining and will eventually decay the system.

Direct versus indirect interactions. As stated in Section 2, direct and indirect interactions are both
important and therefore should both be included. In our model, we provide two options to control the level
of indirect interactions to be included in the estimation of user interaction strength. The first is a distance
limit in terms of the number of hops between interacting users. The second is an eligible period . Only
indirect interactions that happened together with related direct interactions within this eligible period are
included, e.g., when a user exchanges messages with another user who further exchanges messages with a
third user, the first and third users are only linked when these interactions happened within, say one week.
The distance limit and the length of the eligible period are tunable parameters, so that our design will be
applicable to different applications. For example, researchers analyzing social ties can leverage our design to
include different levels of indirect interactions in their models [8, 22].

Scalability. As an online network evolves, users involve in a huge number of interactions. Somehow,
user interaction records have to be collected and analyzed to estimate user interaction strengths, but doing
so at central servers may be neither scalable nor practical. We propose a decentralized approach in which
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(a) Undirected (b) Directed

Figure 1: Examples of user interaction graphs

the collection of interaction records and the estimation of interaction strengths are performed by the end
users, where the estimations are actually used. When applied in such a distributed way, the design should
be lightweight so that it will not impose a high computational load on the end users.

Security. Online networks are subject to security concerns. When user interaction strengths are used to
decide on the service level a user can get, malicious users may disseminate false information to be better off
than others, e.g., through Sybil attacks. Traditional defenses against these attacks rely on trusted identities
provided by an authority or automatically imported from some other online social networks [9, 24]. However,
requiring users to present trusted identities runs counter to the open membership that underlies the success
of these systems in the first place, and inferring trustworthy relationships purely from online friendships has
been proven to be insufficient [19, 21]. Without assuming secure super-nodes, we propose a design in which
malicious users that disseminate false information will not gain any privileges, i.e., in which disincentives for
malicious user behaviors are provided.

4 Design description

In this section, we introduce UISE, a user interaction strength estimation scheme that addresses the issues
listed in Section 3. In UISE, users collect the whole or parts of the interaction histories of other user
pairs through central servers or distributed information dissemination, based on which they estimate their
user interaction strengths with other users. UISE consists of four parts: representing the user interaction
history, estimating the user interaction strength, maintaining security against malicious user behaviors, and
incorporating it into distributed systems. In the following sections, we discuss them in turn.

4.1 Representing user interaction history

In UISE, the interaction histories received by a user are incorporated into its bitmap-based user interaction
graph (UIG), a model that we introduce to represent user relationships based on their interactions. Different
users build different UIGs unless they can obtain full knowledge of the system, for example, through central
servers. Therefore, a UIG reflects a user’s local view of the system.

In a UIG, a vertex represents a user and the edge between two vertices represent the interaction history
of the users it connects. The interaction history of two connected users is reflected by a label of the
corresponding edge, which is a string called the interaction bitmap, or simply bitmap. To capture the
interaction frequency, we abstract time into cycles where one cycle represents a certain unit of time such
as 30 minutes. We keep the interaction history in a time-based (cycle-based) sliding window fashion, with
the window size being equal to the length of the kept history. When two users have directly interacted in a
particular cycle, the corresponding bit in their bitmap is set to 1 (otherwise it is set to 0). As time evolves,
their interaction bitmap becomes a binary string and the number of “1”s shows how frequently they have
recently interacted.

Fig. 1 shows examples of UIGs for undirected and directed user interactions, respectively, with a window
size of 4. For example, when Fig. 1(a) is derived from wall posts in Facebook, it specifies that users i and
j have chatted on each other’s wall in cycles 1 and 3. When the example is derived from the upload and
download interactions in BitTorrent, Fig. 1(b) specifies that user i has uploaded to user k in cycles 2 and 4.

Wp 6
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Figure 2: Per-cycle user interaction graphs generated from Fig. 1(a).

Figure 3: Per-cycle user interaction graphs generated from Fig. 1(b).

4.2 Estimating user interaction strength

To calculate the interaction strength, i.e., the frequency that two users interact (directly or indirectly), we
perform cycle by cycle examinations. First, a UIG is divided into a number of per-cycle UIGs. Then, for
each of these per-cycle UIGs, an algorithm for finding connected components or reachability is applied when
the interactions are undirected or directed, respectively: if two users are connected (or one is reachable from
the other) in a per-cycle UIG, they are considered as having interacted in that cycle. Finally, the ratio
between the total number of these recognized cycles and the window size gives their interaction strength. In
this way, UISE captures the frequency of both direct and indirect interactions.

Figs. 2 and 3 show the per-cycle UIGs derived from Figs. 1(a) and 1(b), respectively. In Fig. 2, an
algorithm for finding connected components is applied. Here, users i and j have interacted directly in cycles
1 and 3, and indirectly in cycle 2. Therefore, their user interaction strength is estimated to be 0.75. Similarly,
in Fig. 3 an algorithm for finding the reachability is applied and user j is reachable from user i in cycles 1,
2, and 3. Therefore, the user interaction strength from user i to j is estimated to be 0.75.

The requirement for being in the same connected component or being reachable serves two purposes.
First, it specifies that only indirect interactions that happened together with related direct interactions
within the same cycle are included in the estimation. Secondly, when UISE is applied in a distributed
system, it alleviates the potential manipulations of malicious users, since users only trust the bitmaps that
can link back to themselves in their UIGs. During the calculation of user interaction strength, we also
provide the option of a distance limit in terms of the number of hops between interacting users. This limit is
a tunable parameter for specifying the range of indirect interactions to be included in the calculation. With
a limit of one hop, only direct interactions are included.

The connected components in an undirected graph and the reachability in a directed graph can be
computed in linear time (in terms of the numbers of the vertices and edges of the graph) using either
breadth-first search or depth-first search [11]. Thus, UISE achieves linear time complexity for estimating
user interaction strength.

(a) UIG (b) Per-cycle UIGs

Figure 4: An example of user interaction graph (UIG) with false information from user j and user m

Wp 7
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(a) Global UIG (b) Local UIG of user i

(c) Local UIG of user j (d) Local UIG of user k

Figure 5: An example of the global and local user interaction graphs (UIGs)

4.3 Maintaining security

Through UISE a user can rank other users based on its interaction strengths with them. When some privilege
is give to the high-ranked ones, malicious users are incentivized to spread false information to be better off
than others. One prevalent way to do so is through a Sybil attack [4, 20]. Under a Sybil attack, the attacker
generates multiple sybils with fake identities, and together they distribute false information about strong
interactions among them. These forged interaction histories cause false edges to be added to the per-cycle
UIGs of other users, where the attacker manages to connect to its sybils and to further connect to more users
(victim users) through its sybils. In this way, the attacker potentially achieves higher estimated interaction
strengths at victim users than without the sybil attack. Nevertheless, the false edges not only connect the
attacker and victim users, but also victim users themselves (indirectly). Similarly, they also potentially
increase the estimated user interaction strength between victim users. So, spreading false information does
not make the malicious users be better off than others. In this way, UISE actually provides disincentives for
malicious user behaviors.

Fig. 4 shows an example of a Sybil attack. Here, the attacker uses its real identity, j, to interact with
user i in cycles 1 and 3, and with user k in cycle 2; it uses its fake identity, m, to interact with user k in cycle
3. Further, j and m claim that they have interacted in all 4 cycles. Because of the false edge added between
j and m (represented by the dashed line), the attacker is connected to the victim user (user k) through its
Sybil m in cycle 3 (Fig. 4(b)). As a consequence, user k is considered to have interacted with the attacker
in cycles 2 and 3, while originally only in cycle 2. On the other hand, user k is now connected to user i
(another victim user) through m in cycle 3. It is considered to have interacted with i in cycles 2, 3 and 4,
while originally only in cycles 2 and 4.

4.4 Incorporating into distributed systems

We now show how UISE can be incorporated into a distributed system without central servers, which comes
down to the question of how a user obtains interaction histories of other user pairs and builds its local UIG,
and to what extent that a local UIG resembles the global one.

We assume that in a distributed system, users can obtain information through dissemination. In UISE,
after two users have directly interacted with each other for the first time in a particular cycle, they generate an
interaction record, and disseminate this record into the system through the dissemination protocol provided
by the system. Based on the interaction records obtained through dissemination, each user builds its own
local UIG, which represents its local view of the system. Further dividing a local UIG based on cycles gives
the local per-cycle UIGs. A local UIG is a subset of the global UIG, in terms of the vertices, the edges, and
the interaction bitmaps. The global UIG can only be obtained when the underlying dissemination protocol
achieves a 100% coverage. In this paper, the 100% coverage case is used as the baseline for performance

Wp 8
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evaluation in Sections 7, 8, and 9.
Fig. 5 shows an example of the global and local UIGs. Notice that user i did not receive the interaction

record between j and k for cycle 3. Therefore, in its local UIG (Fig. 5(b)), the interaction bitmap between j
and k is 0100, instead of the ground truth 0110. A similar loss of information also happens to j (Fig. 5(c))
and k (Fig. 5(d)).

Until now, we have introduced the basic design of UISE. In the following sections, we demonstrate and
evaluate two examples of its application. In Section 5, we apply it to detect user interaction patterns in
Facebook, a centralized online social network. In Sections 6-9, we apply it to derive a decentralized scheme
for estimating the online times of users and we evaluate its performance through simulations, emulations,
and Internet deployment.

5 Interaction pattern detection

In this section, we apply UISE to detect user interaction patterns in online networks. There have been
several works addressing this issue [2, 19, 21, 22], but they only consider direct and binary user interactions.
Instead, UISE captures the frequency of both direct and indirect interactions, and therefore provides a more
thorough indication of the nature of user interactions. We take Facebook as an example and we apply UISE
to detect its user interaction patterns. As a result, we have derived patterns that highly resemble the ones
often observed in the offline human society.

5.1 Applying to interaction pattern detection

We take wall posts in Facebook as the example of user interactions. In Facebook, each user can post messages
on the walls of his friends. Wall posts are visible to others who visit the user profiles. A previous measurement
study [19] contains a snapshot taken on Jan 22, 2009, of the entire wall post histories of 60,290 users in the
New Orleans network. We select their data of the last year—from Jan 23, 2008 to Jan 22, 2009—as the user
behavior imported into our experiment. In total, 44,397 users and 876,993 posts are included.

We set the cycle size to one week and we divide the data into two parts: we take the first 80% as
the training data (weeks 1-43), and the latter 20% as the testing data (weeks 44-54). When a message is
posted on a wall in some week, the two friends involved are considered as having directly interacted, and the
corresponding bit in their interaction bitmap is set from 0 to 1. As Facebook is centralized, we can obtain
the interaction bitmaps of all user pairs. For every user pair, we evaluate their user interaction strength
(UIS) based on the two parts of the data, and we refer to the results as UIS80 and UIS20, respectively.
We use UIS80 to demonstrate the user interaction pattern and we use the ratio between UIS20 and UIS80
(represented as UIS20/UIS80) to demonstrate the evolution of the user interaction. The results are shown
in the following section.

5.2 Results

We first show the UISs of a highly active and a medium active user with all users with whom they have
interacted, either directly or indirectly. The highly active user has been active in 53 out of 54 weeks and
has exchanged 2,083 messages with 25 of his friends; the medium active user has been active in 26 out of 54
weeks and has exchanged 84 messages with 8 of his friends. For each of these users (called the evaluating
user) we calculate his UIS80 and UIS20 with all other users (called the evaluated users), including the friends
he has interacted with directly. We group the evaluated users based on the value of their UIS80.

For the highly active user, we show in Fig. 6 the number of users and the average UIS20/UIS80 for each
UIS80 group (represented by the black triangles, we do not consider a limit to the distance between interacting
users here). While this evaluating user has only interacted directly with 25 friends, UISE links him to more
than one thousand users through indirect interactions, among which, obviously, it interacts intensively with
only a small group: as shown in Fig. 6(a), the number of users in the UIS80 groups decreases dramatically
with increasing values of UIS80. A similar phenomenon is often observed in human society where people
tend to interact frequently with relatively small groups and occasionally with the people outside those groups
[10]. The small group could be friends, with whom people interact directly, or friends of friends, with whom
people build bonds through, for example, sharing gossips with friends.

Wp 9
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Figure 6: Interaction pattern of a highly active Facebook user (the vertical axes are in log-scale)

Another interesting observation is that, as shown in Fig. 6(b), the average value of UIS20/UIS80 decreases
with increasing values of UIS80 until UIS80 equals 0.25, and stays stable (at a little bit less than 1) afterwards.
This indicates that (1) the interactions between the evaluating user and the users with whom it has high
interaction strengths in the first 80% of the year tend to stay stable, with slightly decreased interaction
strengths in the latter 20% of the year; and (2) the interactions between the evaluating user and the users
with whom it has low interaction strengths in the first 80% of the year tend to become more intense. It can
be conjectured that the same dynamic holds in offline social relationships.

To verify whether the above observations are due to indirect interactions linking too many strangers
to the evaluating user, we have also performed tests where we consider a limited distance in terms of the
number of hops between interacting users. For example, for the result of “within 2 hops” as shown in Fig. 6,
we have only considered the evaluating user’s friends and friends of friends. We show the results for different
numbers of hops, and we observe a similar tendency as for our original design without a hop limit.

For the medium active user we show in Fig. 7 the number of users and the average UIS20/UIS80 for each
UIS80 group. In general, this user achieves a similar interaction pattern as the highly active user, except
that his interaction strengths with other users are always less than 0.4—indicating that he is indeed a user
with medium activity.

We have tested all users as in the above two examples and in Fig. 8 we show the minimum, the maximum,
the median, and the 25th and 75th percentiles of the number of evaluated users and of the average value of
UIS20/UIS80 of all users (there is no limit to the distance between interacting users here). We find similar
user interaction patterns in these results as in the two examples we gave earlier.

6 Distributed online time estimation

In this section, we introduce another application of UISE, which is distributed online time estimation. Online
time directly reflects user activity and is therefore important for online networks. A potential utilization
in Facebook (especially in a distributed version) is evaluating user’s stickiness by estimating the time users
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Figure 7: Interaction pattern of a medium active Facebook user (the vertical axes are in log-scale)
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Figure 8: Interaction pattern of all Facebook users (the vertical axes are in log-scale)
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Figure 9: The Tribler system

spend being online. And in BitTorrent, as users upload when they download, online time implies a user’s
contribution level and therefore can be used to design incentive policies [7]. The advantage of online time is
that it is a metric with a ground truth—by comparing the real and the estimated online times, we can assess
the accuracy of UISE. In this section, we introduce how to apply UISE to derive a decentralized scheme for
online time estimation, and how to implement this application into Tribler. In Sections 7-9, we evaluate its
performance by means of simulation, emulation, and real world deployment.

6.1 Applying to distributed online time estimation

Similarly as we previously took wall posts in Facebook as the example of user interactions, in this application
we take rendezvous as the example of user interactions. By applying UISE, a user can now estimate the
online time of another user through calculating their interaction strength, i.e., the frequency of their direct
and indirect interactions. Here, when two users meet (rendezvous) in a particular cycle, they generate an
interaction record and disseminate it into the system. Based on the records received through dissemination,
a user i builds its local per-cycle UIGs, which are undirected since rendezvous is undirected, and if in any
of these a user j is in the same connected component as i, i recognizes j to be online in that cycle. The
number of these recognized cycles gives j’s online time as estimated by i, and the user interaction strength
between i and j computed as the number of these cycles divided by the length of the interaction history,
gives j’s fraction of online time as estimated by i.

The requirement for being in the same connected component is for maintaining the security against
malicious users, as in the example shown in Fig. 4, which generates a side effect of UISE—the accuracy of
an evaluating user’s estimations is limited by its own online time: as we will see, the more active a user is,
the more accurate his estimations of the online times of others will be.
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Figure 10: Comparison between the real and estimated fractions of online time

6.2 Implementing into Tribler

We have implemented the distributed online time estimation application with UISE into Tribler [13], which
is a fully distributed open-source online network for media and social applications like file sharing, live
streaming, video-on-demand, content searching, voting, and interest-based channels. Users in Tribler interact
in various ways including rendezvous, upload, download, and additionally, commenting, replying, voting,
and reporting spam in the channels they join. Tribler serves well as a general framework for implementing,
testing, and analyzing user interaction related studies. It has been instrumented with monitoring capabilities
to measure both system and component specific performance for design improvements. In this section we
give a brief overview of the design features of Tribler relevant for this paper.

Fig. 9 shows the general architecture of the Tribler system. To capture user behavior across sessions,
Tribler assigns each user a permanent identifier. It uses the BitTorrent protocol for P2P file sharing, and it
uses the Libswift protocol [12], which is an IETF (Internet Engineering Task Force) standard protocol for
streaming proposed by the Tribler group, for P2P streaming. We have implemented UISE into Tribler as a
separate component for estimating user interaction strength. The estimations can be fed back to applications
for policy design, such as in file sharing to reciprocate active users with priority for future downloads; they
can also be visualized in the user interface to psychologically motivate users to contribute.

Tribler uses the following protocol to discover new users and to disseminate interaction records. Every 5
seconds, a user i contacts one of its neighbors, for example, j. First, i and j generate an interaction record
for this rendezvous. Secondly, j introduces one of its own neighbors to i for later contacts. Finally, i sends a
Bloom filter expressing the interaction records it currently possesses and fetches the ones it is missing from
j. In this way, each Tribler user can build its local UIG and estimate the online time of other users.

7 Simulation

In order to evaluate the performance of UISE, we take distributed online time estimation as the example and
we address three questions: how well does UISE perform for different information dissemination protocols;
how well does it perform for different user behaviors; and how well does it perform in the real world.

To answer the first question, in this section we run simulations with generic information dissemination,
which allow us to explore the accuracy and scalability of UISE under different dissemination protocols by
tuning the coverage. To answer the second question, in Section 8 we run emulations of UISE under various
synthetic and real-world user behaviors. To answer the last question, in Section 9 we report measurement
results derived from the Internet-deployed Tribler system.

7.1 Basic simulation model

Synthetic user behavior: We consider synthetic user behavior in our simulation. At any time, a peer1

1From here, we use user and peer alternatively to refer to the functioning agent in our experiments.
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Figure 11: CDFs of the absolute accuracy, PCC, and SRCC in a simulation with 500 peers.
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Figure 12: Average user interaction strengths for different values of P1 and P2.

can be either online or offline. When an online session ends, it starts an offline session immediately, and vice
versa. The online and offline session lengths follow exponential distributions, as observed in many distributed
systems [5]. We do not consider population turnover in synthetic user behavior. Instead, later in Sections 8
and 9 we use user behavior generated from measurements where population turnover is naturally included.

Let (Son, Soff) represent the average online and offline session lengths. We consider two classes of peers:
(i) active peers, class A, with (8, 2) cycles, and (ii) less active peers, class B, with (2, 8) cycles.

Synthetic peer discovery and record dissemination: In our simulation, we abstract peer discovery
into a constant probability, P1, and we apply it in every cycle to specify the probability that any two online
peers meet and generate an interaction record. Similarly, we abstract record dissemination into another
constant probability, P2, and we apply it in every cycle to specify the probability of an interaction record
being received by a third peer. Real-world protocols are more complicated and they normally result in
dynamic probabilities. Nevertheless, by assuming a constant probability and setting different values to it,
we can analyze the performance of UISE for different peer discovery and dissemination protocols.

Simulation setup: We run each simulation for 336 cycles, i.e., 168 hours (7 days) when one cycle
represents 30 minutes in the real implementation2. Unless otherwise stated, we consider 250 peers in class
A and 250 in class B, and we set P1 to 20% and P2 to 50%.

Based on the synthetic user behavior and record dissemination, each peer gradually collects interaction
records and builds its local UIG. At the end of the simulation, it estimates its user interaction strength with
every other peer, which, as specified in Section 6.1, is equal to its estimation of the fraction of online time of
another peer. By comparing this estimation with the real fraction of online time, we evaluate the accuracy
and scalability of UISE. The results are presented in the following sections.

7.2 Accuracy

We first show in Fig. 10 the comparison between the real and estimated fractions of online times, where the
latter is represented by the user interaction strengths (UISs) between the evaluating and evaluated peers.

2We will give the reason later in Section 8.3
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Figure 13: Average user interaction strengths for different values of PC
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Figure 14: Average user interaction strengths for different populations and values of PC

In Figs. 10(a) and 10(b), the evaluated peers are ranked according to their UISs with an evaluating peer
in class A and in class B, respectively. We see that the estimation is improved when the evaluating peer is
more active: the peer in class A achieves more accurate estimations than the peer in class B. Peers in class
B only stay online for SB

on/(SB
on + SB

off ) = 20% of the time and therefore they meet few peers to build their
local views. As stated in Section 6.1, this is a compromise for maintaining the security.

Absolute accuracy: We define the absolute accuracy achieved by a peer as the ratio between its
estimation and the real online time of another peer, averaged over all evaluated peers. In Fig. 11(a) we show
the CDF of the absolute accuracies achieved by peers in class A and in class B, respectively. In general,
peers in class A achieve better absolute accuracies than peers in class B.

Relative accuracy: We use the Pearson Correlation Coefficient (PCC) [14] and the Spearman Ranking
Correlation Coefficient (SRCC) [15] to assess the relative accuracy achieved by each peer. In brief, PCC
and SRCC measure the linear and the monotonic dependence between two variables, respectively. For each
evaluating peer, first, we rank its evaluated peers based on its online-time estimations for them; then, we
generate two variables, a list of the real online times and a list of the online-time estimations, in the order of
this ranking; finally, we calculate the PCC and the SRCC of these two variables. In this way, we can assess
the correlation between the local rank of peers at the evaluating peer and the global rank of peers based
on their real online times. For the two examples shown in Figs. 10(a) and 10(b), the PCCs are 0.9848 and
0.9026, and the SRCCs are 0.7968 and 0.7812, respectively. Figs. 11(b) and 11(c) show the CDFs of the
PCC and the SRCC achieved by peers in class A and in class B. We see that peers achieve decent relative
accuracies, i.e., their local ranks of peers resemble the global one.

Absolute accuracy versus relative accuracy: One important application of online time estimation
is to differentiate users with different levels of activity. Then, only the rank of users is needed and a design
with high relative accuracy, like UISE, will be suitable. Further, as we will show in the next section, UISE
gives accurate estimations even under low coverages of peer discovery and information dissemination.
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7.3 Accuracy under partial information

To test the accuracy of UISE under partial information, we first vary P1 and P2 in such a way that PC =
P1 ×P2 is constant (equal to 10%). PC represents the probability of establishing an edge between two peers
in a local per-cycle UIG of a third peer. Intuitively, it decides the third peer’s estimations for others. In
Fig. 12 we show the user interaction strengths (estimated fractions of online time) averaged over the classes
of evaluating (“from” in the figure) and evaluated (“to” in the figure) peers. We find that, consistent with
our intuition, the estimations stay stable for different values of P1 and of P2 while PC is constant. This
allows us to analyze the influence of PC without exploring extensive combinations of P1 and P2. We keep
P1 constant (equal to 1) and vary P2 in such a way that PC is decreased from 100% to 0.1%. In Fig. 13 we
show the user interaction strengths averaged over classes. We find that when PC is at least equal to 5%,
i.e., when peers hold at least 5% of the total information, the estimations stay stable. Further reducing PC

results in noticeable decreases of estimations, nevertheless, UISE still achieves decent relative accuracies: on
average, peers in class A are correctly estimated as more active than peers in class B.

7.4 Scalability

In this section we test the scalability of UISE under different populations. Let N(t) represent the number
of online peers at cycle t. At the end of the simulation, for cycle t, each peer will receive N(t)(N(t) − 1)PC

records and will generate N(t)(N(t) − 1)PC edges in its local per-cycle UIG. To test the scalability, when
the population increases, we decrease PC in such a way that N(t)(N(t) − 1)PC is constant.

In UISE, an evaluating peer recognizes another peer to be online at cycle t if they are in the same
connected component in its local per-cycle UIG for cycle t. In graph theory, for a random graph with n
vertices to be connected, the expected number of edges needed is less than n lnn [11]. Therefore, the basic
condition for a peer to correctly recognize all the peers online at cycle t is:

N(t)(N(t) − 1)PC ≥ N(t) ln(N(t)) ⇒ PC ≥
ln(N(t))

N(t) − 1
.

As ln(N(t)) increases very slowly with N(t), the required value for PC decreases strongly with the population.
Thus, UISE achieves good scalability in a self-organized manner.

The simulation result confirms the above analysis. Fig. 14 shows the average user interaction strengths
(estimated fractions of online time). We see that while we increase the population and decrease PC accord-
ingly, UISE achieves stable estimations.

8 Emulation

In this section we evaluate the performance of UISE for different user behaviors. As we have tested different
dissemination protocols in Section 7, we now release the assumption of a generic information dissemination
and we test UISE under Tribler’s dissemination protocol. As we intend to test different user behaviors that
we cannot control in real world experiments, we use emulation in this section. Based on synthetic user
behaviors, we test the performance of UISE for different online patterns. Based on user behaviors generated
from measurement traces, we test its performance across different online networks.

8.1 Emulation setup

The emulation is performed on an anonymous cluster that contains 23 nodes, each of which has two 2.4 Ghz
quad-core processors and 24 GBytes of memory. The nodes are connected by a 10 Gb/s QDR Infiniband
interconnect. Unless otherwise stated, we deploy 500 peers evenly on 20 nodes. Peers run Tribler’s dissem-
ination protocol: they meet, generate, and disseminate interaction records, and store the records received
from dissemination in their local SQLite databases. At the end of each emulation, they estimate their user
interaction strengths with others, which give their estimations of the fractions of online time of others.

We set the cycle size to 2 minutes and we run each emulation for 10 hours, resulting in interaction
bitmaps of 10 × 60/2 = 300 bits. The small cycle size and short emulation time are compromises for the
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Figure 15: Comparison between real and estimated fractions of online time for different churn patterns (Son,
Soff )
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Figure 16: Comparison between the original FileList trace and our sample.

time consumption of the cluster. This parameter setting represents a running time of 7 days when the cycle
size is set to 30 minutes in the real world implementation.

8.2 Synthetic user behavior

In this section we evaluate the performance of UISE under different mixtures of active peers, less active
peers, peers with heavy churn, and peers that always stay online. Here, we use the synthetic user behaviors
as introduced in Section 7.1 and we test four scenarios in our emulation: (i) peers always online with A(∞,
0) and B(∞, 0); (ii) active peers A(20, 5) versus less active peers B(5, 20); (iii) active peers A(20, 5) versus
heavy churn peers B(5, 5); and (iv) heavy churn peers with A(5, 5) and B(5, 5). All the session lengths are
in minutes. The results are shown in Fig. 15.

Under scenario 1, peers have the highest chance to meet and hence generate a large number of records.
Fig. 15 shows that UISE achieves accurate estimations under this scenario: on average, 93.33% of the online
time is successfully identified. Under scenario 2, the active peers achieve higher accuracies than the less
active peers. Interestingly, comparing scenarios 2 and 3, when the less active peers are changed to peers
with heavy churn, their estimations for active users (“from B to A” in the figure) become more accurate.
Under scenario 4, though peers are with heavy churn, they can still identify 0.4/0.6 = 67% of the online
time. These results indicate that the absolute accuracy depends on the availability, i.e., the fraction of online
time, of the evaluating peer, rather than its churn pattern.

8.3 Trace-based user behavior

To test the performance of UISE across different online networks, we run emulations based on measurement
traces generated from the private BitTorrent community FileList [1]. These traces contain uptime and
downtime of every user that was online at least once during the measurement period. In total, we captured
63,548 users in 7 days, from which we randomly select 500 users for our emulations. Fig. 16 shows the CDFs
of the average online session length and the total online time for the original trace and our sample. We see
that our sample represents the original trace very well. Further, as 94% of the online sessions are longer
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(b) Evaluating peer with an availability of 90%
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(c) Evaluating peer with an availability of 50%
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Figure 17: Comparison between real and estimated fractions of online time for FileList trace
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Figure 18: Comparison between fraction of concurrent online time and user interaction strength.

1 0.5 0.1 0.05
0

0.2

0.4

0.6

0.8

1

Record generation probability

 

 

A
ve

ra
ge

 u
se

r 
in

te
ra

ct
io

n 
st

re
ng

th

From A to A
From A to B
From B to A
From B to B

Figure 19: User interaction strength under random-generation for different values of PG.
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Figure 20: User interaction strength under targeted-generation for different values of NG.

than one hour, we set the cycle size to 30 minutes in the real implementation, so as to capture most of the
online sessions.

Fig. 17 shows four examples of comparisons between the real and estimated fractions of online time,
where the latter one is represented by the user interaction strengths between the evaluated and evaluating
peers. In Figs. 17(a), 17(b), 17(c), and 17(d), the evaluated peers are ranked based on their online times
estimated by a peer with an availability of 100%, 90%, 50%, and 10%, respectively. The first three peers
achieve estimations very close to the real fractions of online time, with an SRCC equal to 0.9998, 0.9945,
and 0.9388, respectively. We can see a clear decrease of the real fractions of online time when the evaluated
peers are ranked based on the estimations from these three evaluating users, indicating that their local ranks
of peers closely resemble the global one.

Evaluating peer 4 (Fig. 17(d)), however, only achieves an SRCC equal to 0.6853. The reason is that,
as stated in Section 6.1, in UISE an evaluating peer only trusts the interaction records that can link back
to itself (reflected by being in the same connected component in a local UIG). Therefore, its estimation for
another user in fact reflects their concurrent online time. As evaluating peer 4 is only online for 10% of the
time, it achieves a low accuracy. Nevertheless, its estimation for another user can be used to assess their
availability to each other—an important issue for distributed online networks where users collaborate and
only the ones online simultaneously can help each other. In Fig. 18 we show evaluating peer 4’s estimations
and its fraction of concurrent online time with other peers, where we observe very accurate estimations with
an SRCC equal to 0.9973.

8.4 Preparing for the real world: strategies for reducing the workload

As we found in Section 7.3, UISE achieves good estimations even with limited information. This desirable
feature allows us to introduce two practical strategies, random-generation and targeted-generation, to reduce
the workload imposed on the system, in terms of the number of interaction records to be disseminated. In
random-generation, when two online peers meet for the first time in some cycle, with a probability PG they
generate an interaction record (in the original design they will for sure generate a record). In targeted-
generation, for each cycle, a user only generates records with the NG users that it has observed to be online
the longest during the past M cycles, resulting a constant number of records being generated per user per
cycle.

We run emulations to test the performance of these two strategies, where we use the same parameter
settings as in Section 8.2. Figs. 19 and 20 show the user interaction strengths (estimated fractions of online
time) averaged over classes for different values of PG and NG (we set M = 1 in our emulations). We see that
UISE performs stably when PG is decreased from 1 to 0.05 and when N decreases from 10 to 1. This implies
that we can decrease the workload dramatically without deteriorating the accuracy of the estimation.
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Figure 21: CDF of online time of Tribler users

9 Real-word deployment

We have implemented UISE into Tribler. In addition to its qualitative impact on design, Tribler’s user
community serves as the basis for our real-world performance evaluation. In this section, we report mea-
surements of the user behavior, the overlay structure, the performance of interaction record generation, and
the accuracy of online time estimation.

9.1 Deployment techniques

In the real world deployment, the cycle size is set to 30 minutes and the interaction history is kept in a sliding
window fashion with a window size of 7 days, resulting in interaction bitmaps of 7 × 24 × 60/30 = 336 bits.
We adopt the targeted-generation version of UISE as introduced in Section 8.4, with NG = 5 and M = 1.
In addition, we specify that two users generate their first interaction record only until they have seen each
other online for at least two cycles. This effectively prevents “hit-and-run” users generating records that are
of limited use.

Tribler is fully distributed, containing no central servers and hence no records of user behaviors from the
global view. To obtain the ground truth for our experiment, we deploy log servers and every 5 minutes,
each user reports its online activity to one of them, including its identifier, its timestamp, the number
of interaction records it generated successfully, and the updated information about interaction records of
other user pairs it received since last report. In total, for the first week of Tribler’s new release, we obtain
2,874 active users with unique identifiers, among which there are 1,713 users that have generated at least
one interaction record. For weeks 2, 3, and 4, we obtain 2,673, 2,905, and 2,884 active users with unique
identifiers, respectively. We use the data from weeks 1-4 to analyze the evolution of Tribler user’s online
time; and we use the data of week 1 to evaluate the overlay structure, the performance of record generation,
and the accuracy of online time estimation. Results are shown in the following sections.

9.2 Evaluation

Online time: The dashed blue line in Fig. 21 shows the CDF of online times of Tribler users obtained from
log servers during the first week. Around 15% users are online for more than 7 hours, resulting in an average
of more than one hour per day. Nevertheless, 60% users are online for less than one hour in total. Comparing
Figs. 21 and 16(b), clearly users in FileList are more active than users in Tribler. FileList specifies that users
with high contribution levels will be rewarded with the preference for future downloads, and therefore users
are incentivized to stay online longer. To do so, FileList constantly monitors user activities through central
servers—UISE achieves exactly the same goal, and moreover, is performed in a distributed manner. As a
matter of fact, in the current release of Tribler, users are educated with the fact that their activities will be
evaluated through a distributed algorithm (i.e., UISE). Though at this moment the estimated online times
are not utilized explicitly as in FileList, we can already observe a gradual increase of user’s online time from
week 1 to week 4 (Fig. 21). This promising observation indicates that, being aware of their activities being

Wp 20



Adele L. Jia et al. Wp

Estimating user interaction strengthWp

PDS

Wp

Wp9.2 Evaluation

10
0

10
1

10
20

50

100

150

Cumulative node degree

O
nl

in
e 

tim
e 

(h
ou

r)

Figure 22: Online time versus cumulative node
degree

10
0

10
1

10
2

10
30

50

100

150

Number of generated records

O
nl

in
e 

tim
e 

(h
ou

r)
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Figure 25: Online time versus record generation
success rate

evaluated, users in Tribler are becoming more committed—a behavioral change that has been observed by
many sociologist and psychologists under similar circumstances in human society [6].

Overlay structure: When users are online, they gradually meet more users and generate more interac-
tion records. This effect is further amplified by targeted-generation where users that stay online longer are
preferred by other users to generate interaction records with. In Fig. 22 we show the scatter plot of each
user’s online time and its cumulative node degree, which is defined as the number of unique users that it
has generated interaction records with. We see a clear positive monotony trend between them, achieving an
SRCC of 0.7883. In Fig. 23 we show the scatter plot of each user’s online time and the number of interaction
records it generated successfully, where we observe a positive monotony trend with an SRCC of 0.9312.

Interaction record generation: In Fig. 24 we show the CDF of record generation success rate, which is
defined as the ratio between the number of generated records and the number of record generation attempts,
for each user. We see that in general, 80% of the users achieve success rates larger than 0.7. The failures may
come from several circumstances including the churn of users, the recipients being saturated by requests, and
the NATs between users that prevent them to connect. One may argue that with the preference to generate
records with highly active users, those users can be fully occupied and therefore resulting in low record
generation success rates. Nevertheless, we show in Fig. 25 the scatter plot of each user’s online time and its
record generation success rate. The corresponding SRCC is only -0.1591 and therefore shows no correlation
between these two metrics. Particularly, a highly active user that stays online for 151 hours generates 2,410
records, achieving a success rate of 85.92%.

The accuracy: Fig. 26 shows the comparisons between the real and estimated fractions of online time
of each Tribler user, where the latter is represented by the user interaction strengths between the evaluating
and the evaluated users. In Figs. 26(a), 26(b), and 26(c), the evaluated users are ranked based on their user
interaction strengths with a user with an availability of 90%, 50%, and 10%, respectively. Similar to the
results of Filelist trace relay in Section 8.3, the accuracy of the estimation is limited by the availability of the
evaluating user: the more active it is, the more accurate its estimations will be. In total, the three evaluating
users have successfully identified 976, 745, and 217 users to be online for at least one cycle; and the SRCCs
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(a) Evaluating user with an availability of 90%
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(b) Evaluating user with an availability of 50%
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(c) Evaluating user with an availability of 10%

Figure 26: Comparison between real and estimated fractions of online time
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Figure 27: Fraction of concurrent online time versus user interaction strength

between their estimations and real online times are equal to 0.9325, 0.8635, and 0.6446, respectively. Though
evaluating user 3 (Fig. 26(c)) achieves a low accuracy, it can accurately estimate its concurrent online time
with other peers. In Fig. 27 we show its estimations (represented by user interaction strengths) and its real
fraction of concurrent online time with others, where we observe very accurate estimations with an SRCC
equal to 0.9785. Thus, it can successfully identify the users with whom it is online simultaneously, i.e., the
users with whom it has been and potentially will be collaborating.

10 Related work

To date, a few works have focused on understanding user interactions in online social networks. Moon et
al. [2] investigate the guestbook logs of Cyworld and they show that interactions between friends are highly
reciprocated. Viswanath et al. [19] study the evolution of user interactions in Facebook and they find that
user interactions change rapidly over time. These observations provide the foundation for designing UISE
that only considers recent user interactions. Wilson et al. [21] introduce an interaction graph. They show
that interaction links exhibit different properties than social links (friendships) and are more representative
for inferring meaningful user relationships. Nevertheless, their interaction graph is unweighted and does not
take the interaction frequency into account as we do.

Another direction of related research is identifying social ties. Kahanda et al. [8] propose an approach
for identifying the weak and the strong ties. They focus on supervised learning models that require human
annotation of link strength such as top friend nomination. Xiang et al. [22] develop an unsupervised model
that represents a range of tie strengths based on user interactions and profile similarity. However, they
consider only direct and binary interactions, simply indicating whether a user has interacted with another
user or not. Instead, we propose UISE that captures the frequency of both direct and indirect interactions.
Moreover, while all the above related works are centralized, UISE is applicable in distributed systems.

There are also studies on leveraging user interactions in distributed online networks for policy design.
BitTorrent [3] clients constantly monitor their direct interactions (uploads) with others and reciprocate the
ones from whom they download the fastest. However, in BitTorrent systems the problem of low rendezvous
exits and direct interactions are insufficient for inferring user relationships [7]. Meulpolder et al. introduce
BarterCast, a distributed reputation system that ranks users based on their upload and download activity
in P2P file sharing. BarterCast captures both direct and indirect user interactions, however, it adopts a
MaxFlow-based algorithm with a heavy complexity. Instead, UISE adopts an connect-component-based
algorithm and achieves a linear time complexity in terms of the number of user pairs. We have also applied
UISE to derive a decentralized scheme for online time estimation. To the best of our knowledge, this is the
first work that sheds lights on this topic.
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11 Conclusion

User interaction is the most important underpinning of online networks, in which hundreds of millions of
users communicate, interact, and share their online lives. In this paper we propose UISE, a scalable scheme
for estimating user interaction strength in both centralized and distributed online networks. We have applied
UISE to detect user interaction patterns in Facebook based on wall posts, and we have derived patterns that
resemble the ones often observed in the offline human society. We have further applied UISE to design and
deploy a decentralized scheme for online time estimation based on rendezvous. In the latter application we
shown that UISE is scalable and stable for different dissemination protocols and for different user behaviors.
We have incorporated this application into Tribler, and we have shown through measurements that UISE
effectively differentiates users with different levels of activity, and thus, accomplishes the most important
goal of estimating user interaction strength.

As future work, we plan to apply UISE to more types of interactions than only wall posts to detect
interaction patterns and rendezvous to estimate online times. For instance, we intend to explore chats over
photos to friendship recommendation and upload and download to incentive policy design.
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