Delft University of Technology
Parallel and Distributed Systems Report Series

An Empirical Performance Evaluation of
Distributed SQL Query Engines: Extended Report

Stefan van Wouw, José Vina,
Alexandru Iosup, and Dick Epema
stefanvanwouw@gmail.com, jose@azavista.com,

{a.iosup,d.h.j.epema}t@tudelft.nl

Completed September 2014.

Report number PDS-2014-002

] e
TUDelft PDSZ=%
ISSN 1387-2109

Published and produced by:

Parallel and Distributed Systems Group

Department of Software and Computer Technology

Faculty Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

Mekelweg 4

2628 CD Delft

The Netherlands

Information about Parallel and Distributed Systems Report Series:
reports@pds.ewi.tudelft.nl

Information about Parallel and Distributed Systems Section:
http://www.pds.ewi.tudelft.nl/

(©) 2014 Parallel and Distributed Systems Group, Department of Software and Computer Tech-
nology, Faculty Electrical Engineering, Mathematics, and Computer Science, Delft University of
Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the publisher.

Van Wouw et al.

An Empirical Performance Evaluation of Distributed SQL Query Engines

Abstract

Distributed SQL Query Engines (DSQESs) are increasingly used in a variety of domains,
but especially users in small companies with little expertise may face the challenge of se-
lecting an appropriate engine for their specific applications. Although both industry and
academia are attempting to come up with high level benchmarks, the performance of DSQEs
has never been explored or compared in-depth. We propose an empirical method for eval-
uating the performance of DSQEs with representative metrics, datasets, and system con-
figurations. We implement a micro-benchmarking suite of three classes of SQL queries for
both a synthetic and a real world dataset and we report response time, resource utilization,
and scalability. We use our micro-benchmarking suite to analyze and compare three state-
of-the-art engines, viz. Shark, Impala, and Hive. We gain valuable insights for each engine
and we present a comprehensive comparison of these DSQEs. We find that different query
engines have widely varying performance: Hive is always being outperformed by the other
engines, but whether Impala or Shark is the best performer highly depends on the query
type.

PDS

Van Wouw et al.

An Empirical Performance Evaluation of Distributed SQL Query Engines

Contents

1 Introduction

2 Related Work

3 Query Engine Selection

4 Experimental Method
4.1 Workload
4.2 Performance Aspects and Metrics L.
4.3 Evaluation Procedure

5 Experimental Setup

6 Experimental Results
6.1 Processing Powero o
6.2 Resource Consumption L o
6.3 Resource Utilization over Time
6.4 Scalability L

7 Conclusions and Future Work

A Detailed Distributed SQL Query Engine Performance Metrics

B Detailed Distributed SQL Query Engine Resource Utilization

PDS

Van Wouw et al.

An Empirical Performance Evaluation of Distributed SQL Query Engines

1 Introduction

With the decrease in cost of storage and computation of public clouds, even small and medium
enterprises (SMEs) are able to process large amounts of data. This causes businesses to increase
the amounts of data they collect, to sizes that are difficult for traditional database management
systems to handle. This has led to Hadoop-oriented distributed query engines such as Hive [17],
Impala [5], Shark [19], and more recently, Presto [7], Drill [10], and Hive-on-Tez [3|. Selecting
the most suitable of these systems for a particular SME is a big challenge, because SMEs are not
likely to have the expertise and the resources available to perform an in-depth study. We remove
this burden from SMEs by addressing the following research question: How well do Distributed
SQL Query Engines (DSQEs) perform on SME workloads?

Although performance studies do exist for Distributed SQL Query Engines [1, 6, 8, 9, 14, 19],
many of them only use synthetic workloads or very high-level comparisons that are only based
on query response time. Our work evaluates performance much more in-depth by reporting more
metrics and evaluating more performance aspects. In addition to reporting query response times,
we also show scalability and detailed resource utilization. The latter performance aspects are
particularly important for an SME in order to choose a query engine.

In order to answer the research question we define a comprehensive performance evaluation
method to assess different aspects of query engines. We compare Hive, a somewhat older but
still widely used query engine, with Impala and Shark, both state-of-the-art distributed query
engines. This method can be used to compare current and future query engines, despite not
covering all the methodological and practical aspects of a true benchmark. The method focuses
on three performance aspects: processing power, resource utilization and scalability. With the
results from this study, system developers and data analysts can make informed choices related
to both cluster infrastructure and query tuning.

Using both a real world and a synthetic dataset with queries representative of SME workloads,
we evaluate the query engines’ performance. We find that different query engines have widely
varying performance, with Hive always being outperformed by the other engines. Whether
Impala or Shark is the best performer highly depends on the query type and input size.

Our main contributions are:

e We propose a method for performance evaluation of DSQEs (Section 4), which includes
defining a workload representative for SMEs as well as defining the performance aspects of
the query engines: processing power, resource utilization and scalability.

e We define a micro-benchmark setup for three major query engines, namely Shark, Impala
and Hive (Section 5).

e We provide an in-depth performance comparison between Shark, Impala and Hive using
our micro-benchmark suite (Section 6).

2 Related Work

We wanted to evaluate the major Distributed SQL Query Engines currently on the market
using a cluster size and dataset size that is representative for SMEs, but still comparable to
similar studies. Table 1 summarizes the related previous works. Some of them run a subset
or enhanced version of the TPC-DS benchmark [15] which has only recently been adopted for
Big Data analytics in the form of BigBench [9]. Other studies run a variant of the Pavlo et al.
micro-benchmark [14] which is widely accepted in the field.

PDS

Van Wouw et al.

An Empirical Performance Evaluation of Distributed SQL Query Engines

Table 1: Overview of Related Work. Legend: Real World (R), Synthetic (S), Modified Workload
(+)

Dataset
Query Engines Workload Type Largest Dataset | Cluster Size
Hive, Shark [19] Pavlo+, other | R, S 1.55 TiB 100
Redshift, Hive, Shark,
Impala, Tez [1] Pavlo+ S 127.5 GiB 5
Tmpala, Tez, Shark,

Presto [6] TPC-DS+ S 13.64 TiB 20
Teradata DBMS [9] TPC-DS—+ S 186.24 GiB 8
Hive, Impala, Tez [8] | TPC-DS/H+ | S 220.72 GiB 20
DBMS-X, Vertica [14] | Pavlo S 931.32 GiB 100

Pavlo+,
Our Work other R, S 523.66 GiB 5

Overall, most studies use synthetic workloads, of which some are very large. Synthetic work-
loads do not necessarily characterise real world datasets very well. For our work we have also
taken a real world dataset in use by an SME. Besides our work, only one other study uses real
world datasets [19]. However, like most of the other studies, it only reports on query response
times. Our work evaluates performance much more in-depth by reporting more metrics and
evaluating more performance aspects including scalability and detailed resource utilization. We
argue that scalability and resource utilization are also very important when deciding which query
engine will be used by an SME.

3 Query Engine Selection

In this study we initially attempted to evaluate 5 state-of-the-art Distributed SQL Query engines:
Drill, Presto, Shark, Impala and Hive. However, we ended discarding Drill and Presto because
these systems lacked required functionality at the time of testing. Drill only had a proof of
concept one node version, and Presto did not have the functionality needed to write output to
disk (which is required for the kind of workloads we wanted to evaluate).

Shark [19] is a DSQE built on top of the Spark [21] execution engine, which in turn heavily
relies on the concept of Resilient Distributed Datasets (RDDs) [20]. In short this means that
whenever Shark receives an SQL query, it will convert it to a Spark job, execute it in Spark, and
then return the results. Spark keeps all intermediate results in memory using RDDs, and only
spills them to disk if no sufficient memory is available. Mid-query fault tolerance is provided by
Spark. It is also possible to have the input and output dataset cached entirely in memory.

Impala [5] is a DSQE being developed by Cloudera and is heavily inspired by Google’s
Dremel [13]. It employs its own massively parallel processing (MPP) architecture on top of
HDFS instead of using Hadoop MapReduce as execution engine (like Hive below). One large
downside to this engine is that it does not provide fault tolerance. Whenever a node dies in the
middle of query execution, the whole query is aborted.

Hive [17] was one of the first DSQEs, introduced by Facebook and built on top of the Hadoop
platform [2]. It provides a Hive Meta Store service to put a relational database-like structure on
top of the raw data stored in HDFS. Whenever a HiveQL (SQL dialect) query is submitted to
Hive, Hive will convert it to a job to be run on Hadoop MapReduce. Although Hive provides
mid-query fault tolerance, it relies on Hadoop MapReduce and is slowed down whenever this
system stores intermediate results on disk.

PDS

Van Wouw et al.

An Empirical Performance Evaluation of Distributed SQL Query Engines

Table 2: Summary of Datasets.

Table # Columns | Description

uservisits 9 | Structured server logs per page.
rankings 3 | Page rank score per page.
hotel_prices 8 | Daily hotel prices.

4 Experimental Method

In this section we present the method of evaluating the performance of Distributed SQL Query
Engines. First we define the workload as well as the aspects of the engines used for assessing
this performance. Then we describe the evaluation procedure.

4.1 Workload

During the performance evaluation we use both synthetic and real world datasets with three SQL
queries per dataset. We carefully selected the different types of queries and datasets to match
the scale and diversity of the workloads SMEs deal with.

1) Synthetic Dataset: Based on the benchmark from Pavlo et al. [14], the UC Berkeley
AMPLab introduced a general benchmark for DSQEs [1]. We have used an adapted version of
AMPLab’s Big Data benchmark where we leave out the query testing User Defined Functions
(UDFs), since not all query engines support UDF in similar form. The synthethic dataset used
by these 3 queries consists of 118.29 GiB of structured server logs per URL (the uservisits
table), and 5.19 GiB of page ranks (the rankings table) per website, as seen in Table 2.

Is this dataset representative for SME data? The structure of the data closely resembles
the structure of click data being collected in all kinds of SMEs. The dataset size might even
be slightly large for SMEs, because as pointed out by Rowstron et al. [16] analytics production
clusters at large companies such as Microsoft and Yahoo have median job input sizes under 13.03
GiB and 90% of jobs on Facebook clusters have input sizes under 93.13 GiB.

On this dataset, we run queries 1 to 3 to test raw data processing power, aggregation and
JOIN performance respectively. We describe each of these queries below in addition to providing
query statistics in Table 3.

Query 1 performs a data scan on a relatively small dataset. It simply scans the whole rankings
table and filters out certain records.

Query 2 computes the sum of ad revenues generated per visitor from the uservisits table in
order to test aggregation performance.

Query 3 joins the rankings table with the uservisits table in order to test JOIN performance.

2) Real World Dataset: We collected price data of hotel rooms on a daily basis during a period
of twelve months between November 2012 and November 2013. More than 21 million hotel room
prices for more than 4 million hotels were collected on average every day. This uncompressed
dataset (the hotel_prices table) is 523.66 GiB on disk as seen in Table 3. Since the price data
was collected every day, we decided to partition the dataset in daily chunks as to be able to only
use data of certain collection days, rather than having to load the entire dataset all the time.

Is this dataset representative for SME data? The queries we selected for the dataset are in
use by Azavista, an SME specialized in meeting and event planning software. The real world
scenarios for these queries relate to reporting price statistics per city and country.

PDS

Van Wouw et al.

An Empirical Performance Evaluation of Distributed SQL Query Engines

Table 3: Summary of SQL Queries.

Input Size Output Size
Query Gz’g Records Gin Records Tables
1 5.19 90M 5.19 90M | rankings
2 | 118.29 752M 40 254M | uservisits
uservisits,
3| 123.48 842M | < 1077 1 | rankings

4 | 523.66 | 7900M | < 10~? 113K | hotel_prices
hotel_prices

5 20 228M 4.3 49M subsets
hotel_prices
6 8 94.7TM 4 48M subsets

On this dataset, we run queries 4 to 6 to also (like queries 1 to 3) test raw data processing
power, aggregation and JOIN performance respectively. However, these queries are not inter-
changeable with queries 1 to 3 because they are tailored to the exact structure of the hotel price
dataset, and by using different input and output sizes we test different aspects of the query
engines. We describe each of the queries 4 to 6 below in addition to providing query statistics in
Table 3.

Query 4 computes average prices of hotel rooms grouped by certain months.
Query 5 computes linear regression pricing curves over a timespan of data collection dates.
Query 6 computes changes in hotel room prices between two collection dates.

3) Total Workload: Combining the results from the experiments with the two datasets gives us
insights in performance of the query engines on both synthetic and real world data. In particular
we look at how the engines deal with data scans (Query 1 and 4), heavy aggregation (Query 2
and 5), and the JOINs (Query 3 and 6).

4.2 Performance Aspects and Metrics

In order to be able to reason about the performance differences between different query engines,
the different aspects contributing to this performance need to be defined. In this study we focus
on three performance aspects:

1. Processing Power: the ability of a query engine to process a large number of SQL queries in
a set amount of time. The more SQL queries a query engine can handle in a set amount of
time, the better. We measure the processing power in terms of response time, that is, the
time between submitting an SQL query to the system and getting a response. In addition,
we also calculate the throughput per SQL query: the number of input records divided by
response time.

2. Resource Utilization: the ability of a query engine to efficiently use the system resources
available. This is important, because especially SMEs cannot afford to waste precious
system resources. We measure the resource utilization in terms of mean, maximum and
total CPU, memory, disk and network usage.

PDS

Van Wouw et al.

An Empirical Performance Evaluation of Distributed SQL Query Engines

3. Scalability: the ability of a query engine to maintain predictable performance behaviour
when system resources are added or removed from the system, or when input datasets grow
or shrink. We perform both horizontal scalability and data input size scalability tests to
measure the scalability of the query engines. Ideally, the performance should improve (at
least) linearly with the amount of resources added, and should only degrade linearly with
every unit of input data added. In practice this highly depends on the type of resources
added as well as the complexity of the queries and the overhead of parallelism introduced.

4.3 Evaluation Procedure

Our procedure for evaluating the DSQEs is as follows: we run each query 10 times on its cor-
responding dataset while taking snapshots of the resource utilization using the monitoring tool
collectl [4]. After the query completes, we also store its response time. When averaging over
all the experiment iterations, we report the standard deviation as indicated with error bars in
the experimental result figures. Like that, we take into account the varying performance of our
cluster at different times of the day, intrinsic to the cloud [12].

The queries are submitted on the master node using the command line tools each query engine
provides, and we write the output to a dedicated table which is cleared after every experiment
iteration. We restart the query engine under test at the start of every experiment iteration in
order to keep it comparable with other iterations.

5 Experimental Setup

We define a full micro-benchmarking setup by configuring the query engines as well as tuning
their data caching policies for optimal performance. We evaluate the most recent stable versions
of Shark (v0.9.0), Impala (v1.2.3) and Hive (v.0.12). Many different parameters can influence the
query engine’s performance. In the following we define the hardware and software configuration
parameters used in our experiments.

Hardware: To make a fair performance comparison between the query engines, we use the
same cluster setup for each when running the experiments. The cluster consists of 5 m2.4xlarge
worker Amazon EC2 VMs and 1 m2.4xlarge master VM, each having 68.4 GiB of memory, 8
virtual cores and 1.5 TiB instance storage. This cluster has sufficient storage for the real-world
and synthetic data, and also has the memory required to allow query engines to benefit from
in-memory caching of query inputs or outputs. Contrary to other Big Data processing systems,
DSQEs (especially Impala and Shark) are tuned for nodes with large amounts of memory, which
allows us to use fewer nodes than in comparable studies for batch processing systems to still
get comparable (or better!) performance. An additional benefit of this specific cluster setup is
the fact it is the same cluster setup used in the AMPLab benchmarks previously performed on
older versions of Shark (v0.8.1), Impala (v1.2.3) and Hive (v0.12) [1]. By using the same setup,
we can also compare current versions of these query engines with these older versions and see if
significant performance improvements have been made.

Software: Hive uses YARN [18] as resource manager while we have used Impala’s and Shark’s
standalone resource managers respectively, because at the time of testing the YARN compatible
versions were not mature yet. All query engines under test run on top of a 64-bit Ubuntu 12.04
operating system. Since the queries we run compute results over large amounts of data, the
configuration parameters of the distributed file system this data is stored on (HDFS) are crucial.
It is therefore imperative that we keep these parameters fixed across all query engines under test.
One of these parameters includes the HDFS block size, which we keep to the default of 64 MB.
The number of HDFS files used per dataset, and how these files are structured and compressed

PDS

Van Wouw et al.

An Empirical Performance Evaluation of Distributed SQL Query Engines

Table 4: Different ways to configure Shark with caching.

Abbreviation | OS Disk Cache | Input Cache | Output Cache
Cold No No No

ocC No No Yes

osc Yes No No

Ic N/A Yes No

05C+0C Yes No Yes

1C+0C N/A Yes Yes

is also kept fixed. While more sophisticated file formats are available (such as RCFile [11]) we
selected the Sequence file key-value pair format because unlike the more sophisticated formats
this is supported by all query engines, and this format uses less disk space than the plain text
format. The datasets are compressed on disk using the Snappy compression type, which aims
for reasonable compression size while being very fast at decompression.

Each worker has 68.4 GiB of memory available of which we allow a maximum of 60GiB for
the query engines under test. This leaves a minimum of 8 GiB of free memory for other processes
running on the same system. By doing this we ensure that all query engines under test have
an equal amount of maximum memory reserved for them while still allowing the OS disk buffer
cache to use more than 8 GiB when the query engine is not using a lot of memory.

Dataset Caching: Another important factor that influences query engine performance is
whether the input data is cached or not. By default the operating system will cache files that
were loaded from disk in an OS disk buffer cache. Because both Hive and Impala do not have any
configurable caching policies available, we will simply run the queries on these two query engines
both with and without the input dataset loaded into the OS disk buffer cache. To accomplish
this, we perform a SELECT query over the relevant tables, so all the relevant data is loaded into
the OS disk buffer cache. The query engines under test are restarted after every query as to
prevent any other kind of caching to happen that might be unknown to us (e.g., Impala has a
non-configurable internal caching system).

In contrast, Shark has more options available regarding caching. In addition to just using
the OS disk buffer caching method, Shark also has the option to use an in-memory cached table
as input and an in-memory cached table as output. This completely removes the (need for) disk
I/0 once the system has warmed up. To establish a representative configuration for Shark, we
first evaluate the configurations as depicted in Table 4. OS Disk Cache means the entire input
tables are first loaded through the OS disk cache by means of a SELECT. Input Cache means the
input is first cached into in-memory Spark RDDs. Lastly, Output Cache means the result is kept
in memory rather than written back to disk.

Figure 1 shows the resulting average response times for running a simple SELECT * query
using the different possible Shark configurations. Note that no distinction is made between OS
disk buffer cache being cleared or not when a cached input table is used, since in this case Shark
does not read from disk at all.

The configuration with both input and output cached tables enabled (IC+OC) is the fastest
setup for both the small and large data set. But the IC+OC and the IC configuration can only
be used when the entire input data set fits in memory, which is often not the case with data
sets of multiple TBs in size. The second fastest configuration (OSC-+OC) only keeps the output
(which is often much smaller) in memory and still reads the input from disk. The configuration
which yields the worst results is using no caching at all (as expected).

In the experiments in Section 6 we use the optimistic IC+OC configuration when the input

PDS

Van Wouw et al.

An Empirical Performance Evaluation of Distributed SQL Query Engines

103

Uservisits table (118 GiB3) '
Rankings table (5 GiB) —=
4 min

1 min

30 s

10! - +4 10s

Mean Response Time (s)

Figure 1: Response time for different Shark caching configurations (vertical axis is in log-scale).

data set fits in memory and the OSC+OC configuration when it does not, representing the best-
case scenario. In addition the Cold configuration will be used to represent worst-case scenarios.

6 Experimental Results

We evaluate the three query engines selected in Section 3 on the performance aspects described
in Section 4.2 using the workloads described in Section 4.1. We evaluate processing power in
Section 6.1, resource consumption in Section 6.2, and scalability in Section 6.4.

6.1 Processing Power

We have used the fixed cluster setup with a total of 5 worker nodes and 1 master node as
described in Section 5 to evaluate the response time and throughput (defined as the number of
input records divided by the response time) of Hive, Impala and Shark on the 6 queries in the
workloads. The results of the experiments are depicted in Figure 2. All experiments have been
performed 10 times except for Query 4 with Impala since it took simply too long to complete.
Only 2 iterations have been performed for this particular query. We used the dataset caching
configurations explained in Section 5. For Impala and Hive we used disk buffer caching and
no disk buffer caching for the warm and cold situations, respectively. For Shark we used the
Cold configuration for the cold situation. In addition we used input and output dataset caching
(IC+0CQ) for the warm situation of queries 1 to 3, and disk buffer caching and output caching
(OSC+0C) for the warm situation of queries 4 to 6, since the price input dataset does not
entirely fit in memory.

Key Findings:

Input data caching generally does not cause a significant difference in response times.

Performance is relatively stable over different iterations.

Impala and Shark have similar performance and Hive is the worst performer in most cases.
There is no overall winner.

Impala does not handle large input sizes very well (Query 4).

PDS

Van Wouw et al.

An Empirical Performance Evaluation of Distributed SQL Query Engines

Shark-Warm [EEEE Impala-Warm [N Hive-Warm [N Shark-Warm [N Impala-Warm [N Hive-Warm [N
Shark-Cold [Impala-Cold [Hive-Cold [=) Shark-Cold [C] Impala-Cold [T Hive-Cold [
10° — T : : : ! .
= 12 hours 2
g w 5 2 hours E
£ 30 min g o107 L N
3 <
g 10 o 10 min =
8 g
2 10? 1 1 mi < "
3 3 1 min L
g S 10
= 10 e
s 5
T 5 w0
QO% “, Q%*‘p Q,,%) Q’”’L 9,% § @,,% %} Q%fl» Q%*‘z» Q%') “,

Figure 2: Query Response Time (left) and Throughput (right). Vertical axis is in log-scale.

‘ Shark-Warm Impala-Warm Hive-Warm ‘ ‘ Shark-Warm Impala-Warm Hive-Warm

Shark-Cold Impala-Cold Hive-Cold Shark-Cold Impala-Cold Hive-Cold
100 : i 20
[<
T o = E 200
2 60 £ 150
) =
=9
SR =% 100 oo
~ z \ h RN v
g a \ NS AVALNN; \ \
S K A R R A = 50 /V/ ij/ V’u/ o \"\VV/V‘VAA,») . f
: \ N4 ’ VSO N\ g N, AT \ U=y
0 N X~ . VA “ WA . " . .
0 20 10 60 80 100 0 20 10 60 80 100
Normalized Response Time (percent) Normalized Response Time (percent)

Figure 3: CPU utilization (left) and Disk Write (right) for query 1 over normalized response
time.

The main reason why Hive is much slower than Impala and Shark is because of the high
intermediate disk I/O. Because most queries are not disk I/O bound, data input caching makes
little difference in performance. We elaborate on these two findings in more detail in Section 6.3.

In the following we discuss the response times from the 6 queries in a pair-wise manner.
We evaluate the data scan queries 1 and 4, the aggregation queries 2 and 5, and the JOIN
performance queries 4 and 6 depicted in Figure 2.

1) Scan performance: Shark’s response time for query 1 with data input and output caching
enabled is significantly better than that of the other query engines. This is explained by the fact
that query 1 is CPU-bound for the Shark-Warm configuration, but disk I/O bound for all other
configurations as depicted in Figure 3. Since Shark-Warm caches both the input and output,
and the intermediate data is so small that no spilling is required, no disk I/0 is performed at all
for Shark- Warm.

Results for query 4 for Impala are particularly interesting. Impala’s response time is 6 times as
high as Hive’s, while resource utilization is much lower, as explained in Section 6.3. No bottleneck
can be detected in the resource utilization logs and no errors are reported by Impala. After re-
running the experiments for Impala on query 4 on a different set of Amazon EC2 instances,
similar results are obtained, which makes it highly unlikely an error occured during experiment
execution. A more in-depth inspection is needed to get to the cause of this problem, which is
out of the scope of our work.

2) Aggregation performance: Both the aggregation query 2 and 5 are handled quite well by
all the engines. The main reason why even though query 5 has a much smaller input dataset,
the response times are close to the ones of query 2 is that this query is relatively much more
compute intensive (see Figure 4).

3) JOIN performance: The query engines perform quite similar on the JOIN queries 3 and 6.

10

PDS

Van Wouw et al.

An Empirical Performance Evaluation of Distributed SQL Query Engines

Shark-Warm [Impala-Warm [N Hive-Warm [N

Shark-Cold [Impala-Cold [Hive-Cold [
5 10°
E - 2 days
10° Y
% = T 12 hours
n 4 T
© 10 | L] 2 hours
2 3 4 30 min
g 0%k 3 10 min
2
% 10% 3 1 min
g 10"t .
S
=100
Q’/(,, QO& QOQ(. Q{,& Q%(QO&
2 & s % 2 2
7 < & < 12

Figure 4: CPU Core Seconds. Vertical axis is in log-scale.

A remarkable result is that the fully input and output cached configuration Shark- Warm starts
to perform worse than its cold equivalent when dataset sizes grow. This is explained in more
detail in Section 6.4.

6.2 Resource Consumption

Although the cluster consists of both a master and 5 worker nodes, we only evaluate the resource
consumption on the workers, since the master is only used for coordination and remains idle the
most of the time. For any of the queries the master never used more than 6 GiB of memory
(<10% of total available), never exceeded more than 82 CPU Core Seconds (<0.0005% of the
workers’ maximum), has negligible disk I/O, and never exceeded total network I/O of 4 GiB
(<0.08% of the workers’ maximum).

Key Findings:

e Impala is a winner in total CPU consumption. Even when Shark outperforms Impala in
terms of response time, Impala is still more CPU efficient (Figure 4).

e All query engines tend to use the full memory assigned to them.

e Disk I/0O is as expected significantly higher for the queries without data caching vs. the
queries with data caching. Impala has slightly less disk I/O than Shark. Hive ends last
(Figure 5).

e Network I/0 is comparable in all query engines, with the exception of Hive, which again
ends last (Figure 5).

In the following we discuss the resource consumption per query averaged over 5 workers and
10 iterations (50 datapoints per average). We show the CPU Core Seconds per query in Figure
4. This shows how much total CPU a query uses during the query execution. The CPU Core
Seconds metric is calculated by taking the area under the CPU utilization graphs of all workers,
and then multiplying this number by the number of cores per worker (8 in our setup). For
example, a hypothetical query running 2 seconds using 50% of CPU uses 1 CPU Second which
is equal to 8 CPU Core Seconds in our case. A query running on Impala is the most efficient in
terms of total CPU utilization, followed by Shark. This is as expected since although Shark and
Impala are quite close in terms of response time, Impala is written in C/C++ instead of Scala,
which is slightly more efficient.

11

PDS

Van Wouw et al.

An Empirical Performance Evaluation of Distributed SQL Query Engines

Shark-Warm EEEEE Impala-Warm [Hive-Warm [N Shark-Warm EEEEE Impala-Warm [Hive-Warm [N
Shark-Cold [Tmpala-Cold [Hive-Cold [T Shark-Cold [Tmpala-Cold [Hive-Cold [T

= 10° . . - 2107 . -
=} s 50 GiB
S - 50 GiB < e N — 10 GiB
3 K|
E ol 10 GiB e
= L 510 L 41GiB
Z10° - 1 GiB £
= | i Z o 10% - 100 MiB
T 102 4 100 MiB =
ST 4 10 MiB g 10 - 10MiB
g 10° 25 10°

2] 2] 2] [2) [2) [2) [2) [2) [2) [2) [2) [2)

“, “, “, “, “, “, “, “, “, “, “, “,

< < B4 B G k4 < B4 s T G

— | s
=) 0 = g T T
g 10 R 50 GiB
s 5 50 GiB R 7 N | 10 GiB
Z 0 - 10 GiB ;
z ' £ o0t b 1 1GiB
% 10° e M- AW W BN 4 1GiB E
A g Lo)
a 102 | -{ 100 MiB
= 107 - 100 MiB z !
5 8 1 .
ST 410 MiB g 10 < 10 MiB
E o . E o

4, 4, 9, 9 9 9 2 o, 4, 9, 9 9 9,

T To ‘ s Yo "o) Y P Ty Ve

Figure 5: Total Disk Read (left-top), Disk Write (left-bottom), Network In (right-top) and
Network Out (right-bottom). Vertical axis is in log-scale.

The total disk I/O per query is depicted in Figure 5. It shows that data caching does make a
significant difference in the number of disk reads performed, but as shown in Section 6.3, this is
hardly ever the bottleneck. Although the input datasets are entirely cached in the Shark- Warm
configuration for queries 1 to 3, disk reading still occurs. This can be explained by the fact that
Shark writes shuffle output of intermediate stages to the disk buffer cache (which eventually spills
to disk). For queries 4 to 6 less significant differences occur since Shark- Warm only uses the OS
disk buffer cache mechanism, like Impala and Hive. Note that because the input and output are
compressed (compression ratio around 10), generally no more than 10% of the datasets is read
or written to disk. Query 1 and 3 have very small output datasets, which makes Shark- Warm’s
output not visible in the figure for query 1. Similarly for query 3 Impala does not show up at all
because Impala does not write intermediate shuffle data to disk.

Figure 5 (right) shows the network I/O per query. Since most network I/O occurs between
the workers, the network in and out look similar. Hive has a very variable network output total.
Exact resource consumption numbers can be found in the tables of Appendix A

6.3 Resource Utilization over Time

In addition to reporting the average resources used per query, we show a more in depth analysis on
the resource utilization over time for each query. Since queries have different response times each
iteration, we normalize the response time to a range between 0 and 100% of query completion,
and we show the mean values of each resource for all worker nodes averaged over all iterations
(5 worker nodes, 10 iterations equals 50 data points per average total). We do not show network
in performance in the figures since this is very similar to the network out, and we omit memory
utilizations since for the majority of query engines the memory does not get deallocated until
after the query execution has been completed. All the resulting figures are in Appendix B for
brevity.

12

PDS

Van Wouw et al.

An Empirical Performance Evaluation of Distributed SQL Query Engines

Key Findings:

e While the scan queries were expected to be disk I/O bound, query 1 is generally I/O bound,
and query 4 is CPU bound because it also performs complex aggregation (Figure 7 and
10).

e The aggregation queries are both CPU bound (Figure 8 and 11).
e The JOIN queries are network I/O bound as expected (Figure 9 and 12).

In the following we go over each of the queries in detail in pair wise manner.

1) Scan performance: As explained in Section 6.1 query 1 is bound by disk and network I/0
with the exception of the Shark- Warm configuration because the dataset is so small and entirely
cached in memory (see Figure 7). As seen in Figure 10, query 4 is so computation heavy due to
the additional aggregations performed, that it can suffice with a very low Disk read per second
to keep up with the calculations. Because of the same reason the network out is low. And since
the output size is so small, little to no disk writes are performed.

2) Aggregation performance: Both query 2 and 5 are CPU bound as shown in Figure 8 and
11 respectively. Both the queries show typical behaviour with higher CPU load at the start of
query execution and higher disk I/O at the end.

3) JOIN performance: As expected both query 3 and 6 are network I/O heavy (see Figure
9 and 12 respectively). This is because one of the tables being joined is distributed over the
network of workers.

6.4 Scalability

In this section we analyze both the horizontal and the data size scalability of the query engines.
We decided to scale horizontally down instead of up because a cluster of 5 nodes of this caliber is
already quite expensive for SMEs (more than $7000 a month), and from our experimental results
it shows that some queries already do no longer scale well from 4 to 5 worker nodes. We used
queries 1 to 3 for data size scaling (since this dataset was already synthetic in the first place)
and queries 4 to 6 for horizontal scaling.

Key Findings:

e Both Impala and Shark have near linear data size scalability on the scan and aggregation
queries, whereas scaling on the JOIN queries is sub-linear.

e Hive has sub-linear data size scalability in all cases.

o If Shark-Warm’s input dataset is too large for its data storage memory, the response time
will increase beyond Shark-Cold due to swapping (Figure 6; left).

e Shark and Impala horizontally scale reasonably well on all types of queries up to 3 nodes,
whereas Hive only scales well on queries with large input sizes (Figure 6; right).

e The query engines do not benefit from having more than 3 or 4 nodes in the cluster. Impala
even performs worse for query 6 at bigger cluster sizes (Figure 6; right).

1) Data Size Scalability: The data size scalability of the query engines is depicted in Figure 6
(left). We have sampled subsets from the original dataset and display these along the horizontal
axis of the figure. For small datasets the query engines do not scale well since in that case there

13

Van Wouw et al.

An Empirical Performance Evaluation of Distributed SQL Query Engines

Shark-Warm [EEEEN Impala-Warm [N Hive-Warm [N Shark-Warm [N Impala-Warm [N Hive-Warm [N
Shark-Cold 7] TImpala-Cold [Hive-Cold [Shark-Cold 7] Tmpala-Cold [Hive-Cold [
200 - - - - - - - 10° - = - - T
180 ‘ = I 12 hours
160 1 T g 10t 2 2 hours
140 "] = 4 30 min
120 4 2 min g 10° | q
100 1 g
80 . Z 10 L 1
60 4 1 min 4
40 . £ 10" b .
20 | i Ii‘ . E
0 100 L L L
5 10 2 50 75 90 100 5 1 3 2 1
Dataset Size (percent) Number of Worker Nodes
"
960 . T T T T T T o 10 T T T T T 2 hours
- 15 min =
840 1 PR— & 30 min
720] Z 7 10 min
600 4 10 min g 4 5 min
T 1 107 b 1 .
g 1 1 min
. g
4 5 min nﬁ: o L 1
E S £ {35
JI 1 1 min = o
10
5 10 2 50 75 90 100 5 4 3 2 1
Dataset Size (percent) Number of Worker Nodes
10* T T T T T T T 10° T T T T T i
1 hour = 10 min
- 4 30 min o 4 5 min
4 10 min £ 02l 1
g { 1 min
4 1 min 2
| | < 10 .
g
=
10° 10°
5 10 25 50 75 90 100 5 1 3 2 1
Dataset Size (percent) Number of Worker Nodes

Figure 6: Data size scalability: Response time Query 1, 2 and 3 (left; from top to bottom).
Horizontal scalability: Response time Query 4, 5 and 6 (right; from top to bottom) vertical axis
in log-scale.

14

PDS

Van Wouw et al.

An Empirical Performance Evaluation of Distributed SQL Query Engines

is more engine overhead than data to be processed. For example when looking at the difference
in response time between 5% and 10% dataset size for query 1, it takes almost the same time to
process 5% as 10% of the dataset. However, when the dataset grows beyond a certain threshold
the query engines all scale about linearly on query 1 (25% to 100%) except for Hive. Similar
phenomena occur for query 2 and 3.

An interesting phenomenom occurs with Shark for query 3. When the data input size grows
and passes 75%, Shark-Warm actually starts becoming slower than Shark-Cold. This is caused
by the fact that Shark allocates only around 34 GiB of the 60 GiB it was assigned for data
storage and uses the remaining amount as JVM overhead. This means that the total cluster can
only store about 170 GiB of data instead of the 300 GiB it was assigned. The input dataset is
123.48 GiB for query 3, which has some of the worker nodes’” memory fully filled at the start of
query execution. When JOINs are performed even more memory is needed for the shuffled data
received from the other worker nodes, causing the node to spill some of its input data back to
disk.

2) Horizontal Scalability: The horizontal scalability of the query engines is depicted in Figure
6 (right) (note that we are scaling down instead of up). For Impala we only ran 4 and 5 nodes
since it already took 12 hours to complete. Both Shark and Hive scale near linearly on the
number of nodes. Hive only scales well on query 4 since Hive’s Hadoop MapReduce overhead
likely outweighs the computation time for query 5 and 6. This is because they have a relatively
small input size. Impala actually starts to perform worse on query 6 if more than 3 nodes are
added to the cluster. Similarly, both Shark and Impala no longer improve performance after
more than 4 nodes are added to the cluster for query 4 and 5.

This remarkable result for horizontal scaling shows that whenever a query is not CPU-bound
on a cluster with some number of nodes, performance will not improve any further when adding
even more nodes. In the case of network I/O bound queries like query 6, it might even be more
beneficial to bind these to a smaller number of nodes so less network overhead occurs.

7 Conclusions and Future Work

In recent years an increasing number of Distributed SQL Query Engines have become available.
They all allow for large scale Big Data processing using SQL as interface language. In this work
we compare three major query engines (Hive, Impala and Shark) with the requirements of SMEs
in mind. SMEs have only little resources available to run their big data analytics on, and cannot
afford running a query engine with large overhead.

In this work we have defined an empirical evaluation method to assess the performance
of different query engines. Despite not covering all the methodological aspects of a scientific
benchmark, this micro-benchmark gives practical insights for SMEs to take informed decisions
when selecting a specific tool. Moreover, it can be used to compare current and future engines.
The method focuses on three performance aspects: processing power, resource utilization, and
scalability.

Using both a real world and a synthetic dataset with representative queries, we evaluate the
query engines’ performance. We find that different query engines have widely varying perfor-
mance. Although Hive is almost always outperformed by the other engines, it highly depends on
the query type and input size whether Impala or whether Shark is the best performer. Shark can
also perform well on queries with over 500 GiB in input size in our cluster setup, while Impala
starts to perform worse for these queries. Overall Impala is the most CPU efficient, and all query
engines have comparable resource consumption for memory, disk and network. A remarkable re-
sult found is that query response time does not always improve when adding more nodes to the

15

PDS

Van Wouw et al.

An Empirical Performance Evaluation of Distributed SQL Query Engines

cluster. Remaining key findings can be found at the top of every experiment in Section 6.

This work has been an attempt to get insights in DSQE performance in order to make
life easier for SMEs picking the query engine that best suits their needs. Query engine per-
formance in a multi-tenant environment has not been evaluated, and is part of future work.

References

[1] AMPLab’s Big Data Benchmark. https://amplab.cs.berkeley.edu/benchmark/. [On-
line; Last accessed 1st of September 2014]. 3, 4, 5, 7

[2] Apache Hadoop. http://hadoop.apache.org. [Online; Last accessed 1st of September
2014]. 4

[3] Apache Tez. http://tez.apache.org. |Online; Last accessed 1st of September 2014]. 3

[4] Collectl Resource Monitoring. http://collectl.sourceforge.net. [Online; Last accessed
1st of September 2014]. 7

[5] Impala. http://blog.cloudera.com/blog/2012/10/cloudera-impala-real-time-queries-in-
apache-hadoop-for-real/. [Online; Last accessed 1st of September 2014]. 3, 4

[6] Impala Benchmark. http://blog.cloudera.com/blog/2014/05/
new-sql-choices-in-the-apache-hadoop-
ecosystem-why-impala-continues-to-lead/. [Online; Last accessed 1st of September
2014]. 3, 4

[7] Presto. http://www.prestodb.io. [Online; Last accessed 1st of September 2014]. 3

[8] A. Floratou, U. F. Minhas, and F. Ozcan. Sql-on-hadoop: Full circle back to shared-nothing
database architectures. Proceedings of the VLDB Endowment, 7(12), 2014. 3, 4

[9] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-A. Jacobsen. Bigbench:
Towards an industry standard benchmark for big data analytics. In Proceedings of the 2013
international conference on Management of data, pages 1197-1208, 2013. 3, 4

[10] M. Hausenblas and J. Nadeau. Apache Drill: Interactive Ad-Hoc Analysis at Scale. Big
Data, 2013. 3

[11] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu. RCFile: A fast and
space-efficient data placement structure in MapReduce-based warehouse systems. In Data
Engineering (ICDE), 2011 IEEE 27th International Conference on, pages 1199-1208, 2011.
8

[12] A. Tosup, N. Yigitbasi, and D. Epema. On the performance variability of production cloud
services. In Cluster, Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM Interna-
tional Symposium on, pages 104-113, 2011. 7

[13] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and T. Vassilakis.
Dremel: interactive analysis of web-scale datasets. Proceedings of the VLDB Endowment,
3(1-2):330-339, 2010. 4

16

https://amplab.cs.berkeley.edu/benchmark/
http://hadoop.apache.org
http://tez.apache.org
http://collectl.sourceforge.net
http://blog.cloudera.com/blog/2012/10/cloudera-impala-real-time-queries-in-apache-hadoop-for-real/
http://blog.cloudera.com/blog/2012/10/cloudera-impala-real-time-queries-in-apache-hadoop-for-real/
http://blog.cloudera.com/blog/2014/05/new-sql-choices-in-the-apache-hadoop-ecosystem-why-impala-continues-to-lead/
http://blog.cloudera.com/blog/2014/05/new-sql-choices-in-the-apache-hadoop-ecosystem-why-impala-continues-to-lead/
http://blog.cloudera.com/blog/2014/05/new-sql-choices-in-the-apache-hadoop-ecosystem-why-impala-continues-to-lead/
http://www.prestodb.io

PDS

Van Wouw et al.

An Empirical Performance Evaluation of Distributed SQL Query Engines

[14]

[15]

[16]

[17]

(18]

[19]

[20]

21]

A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and M. Stonebraker.
A comparison of approaches to large-scale data analysis. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of data, pages 165-178, 2009. 3, 4, 5

M. Poess, R. O. Nambiar, and D. Walrath. Why you should run TPC-DS: a workload
analysis. In Proceedings of the 33rd international conference on Very large data bases, pages

1138-1149. VLDB Endowment, 2007. 3

A. Rowstron, D. Narayanan, A. Donnelly, G. O’Shea, and A. Douglas. Nobody ever got
fired for using Hadoop on a cluster. In Proceedings of the 1st International Workshop on
Hot Topics in Cloud Data Processing, page 2. ACM, 2012. 5

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and
R. Murthy. Hive: a warehousing solution over a map-reduce framework. Proceedings of the
VLDB Endowment, 2(2):1626-1629, 2009. 3, 4

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves,
J. Lowe, H. Shah, S. Seth, et al. Apache Hadoop YARN: Yet another resource negotiator.
In Proceedings of the 4th annual Symposium on Cloud Computing, page 5. ACM, 2013. 7

R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica. Shark: Sql
and rich analytics at scale. In Proceedings of the 2018 ACM International Conference on
Management of Data, pages 1324, 2013. 3, 4

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. Franklin, S. Shenker,
and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation, pages 2-2, 2012. 4

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: cluster
computing with working sets. In Proceedings of the 2nd USENIX conference on Hot topics
i cloud computing, pages 10-10, 2010. 4

17

Van Wouw et al.

An Empirical Performance Evaluation of Distributed SQL Query Engines

A Detailed Distributed SQL Query Engine Performance Met-
rics

In this appendix detailed performance metrics of the experiments are reported as-is, extending on
the experimental results in Section 6. This information can be used to get more precise insights
into performance differences across query engines. For all tables holds that the green coloured
cells are marking the system that has the best performance for a query for a certain metric, and
that cells indicating a 0 are actually presenting values close to 0 (because of rounding).

Query 1 (cold) Hive Impala Shark

Mean CV. Max Mean CV. Max Mean CV. Maz
CPU Seconds 154 1.58 666 53 0.08 60 78 0.16 104
Disk Read (MiB/s) 8 1.82 110 17 2.05 204 13 1.40 119
Disk Read Total (MiB) 1,229 1.17 5,211 970 0.32 1,202 1,138 0.25 1,871
Disk Write (MiB/s) 24 1.35 172 53 1.05 245 35 1.11 204
Disk Write Total (MiB) 3,455 0.30 5,721 2,954 0.10 3,653 2,989 0.11 3,682
Memory (MiB) 5,320 0.51 16,171 11,346 0.27 17,059 9,696 0.37 16,494
Network In (MiB/s) 21 0.97 97 37 0.88 141 25 1.22 152
Network In Total (MiB) 3,015 0.16 3,637 2,070 0.14 2,863 2,105 0.20 2,914
Network Out (MiB/s) 20 121 117 36 0.84 141 24 1.20 134
Network Out Total (MiB) 2,919 0.57 5,452 1,996 0.13 2,681 2,047 0.15 2,842
Response Time (s) 142 0.13 191 54 0.12 69 81 0.21 108

Table 5: Statistics for Query 1 (cold), Data Scale: 100%, Number of Nodes: 5.

Query 1 (warm) Hive Impala Shark

Mean CV. Max Mean CV. Max Mean CV. Mazx
CPU Seconds 149 1.69 674 54 0.08 63 59 0.07 65
Disk Read (MiB/s) 2 3.51 78 1 7.09 146 5 2.98 117
Disk Read Total (MiB) 202 2.68 2,674 67 1.47 384 60 1.46 341
Disk Write (MiB/s) 29 1.27 180 63 1.04 248 0 2.97 0
Disk Write Total (MiB) 3,272 0.31 5,609 2,971 0.10 3,809 0 0.56 0
Memory (MiB) 17,041 0.27 27,134 66,865 0.02 68,249 53,384 0.13 67,168
Network In (MiB/s) 26 0.91 93 14 0.73 142 1 2.15 11
Network In Total (MiB) 2,929 0.11 3,642 2,102 0.14 2,911 11 0.44 23
Network Out (MiB/s) 25 1.20 113 43 0.70 132 1 2.91 14
Network Out Total (MiB) 2,837 0.62 5,597 2,029 0.12 2,603 10 0.97 33
Response Time (s) 110 0.08 129 45 0.06 50 11 0.04 12

Table 6: Statistics for Query 1 (warm), Data Scale: 100%, Number of Nodes: 5.

Hive Tmpala Shark
Query 2 (cold) Mean | _CV. Maz Mean | _CV. Maz Mean | _CV. Maz
CPU Seconds 2,852 0.41 4,807 417 0.14 638 1,346 0.08 1,563
Disk Read (MiB/s) 12 1.67 116 30 1.42 193 28 0.87 101
Disk Read Total (MiB) 10,680 0.94 38,117 10,237 0.16 11,491 11,145 0.12 13,330
Disk Write (MiB/s) 11 1.87 184 10 2.97 235 14 1.46 148
Disk Write Total (MiB) 9,502 0.38 17,079 3,499 0.08 4,209 5,554 0.08 6,488
Memory (MiB) 20,100 0.65 63,388 28,471 0.35 55,062 31,317 0.36 62,393
Network In (MiB/s) 10 1.59 185 14 1.10 85 11 2.52 171
Network In Total (MiB) 8,747 0.46 14,998 4,758 0.14 6,449 4,163 0.05 4,580
Network Out (MiB/s) 10 1.88 151 14 1.18 102 10 2.49 148
Network Out Total (MiB) 8,687 1.10 35,624 4,648 0.16 6,508 4,035 0.07 4,493
Response Time (s) 891 0.08 1,004 340 0.06 379 389 0.07 438
Table 7: Statistics for Query 2 (cold), Data Scale: 100%, Number of Nodes: 5.

Query 2 (warm) Hive Impala Shark

Mean CV. Max Mean CV. Max Mean CV. Max
CPU Seconds 2,648 0.49 5,106 399 0.02 425 938 0.08 1,102
Disk Read (MiB/s) 3 2.49 96 2 4.11 116 3 1.47 35
Disk Read Total (MiB) 2,439 1.17 11,615 433 0.80 1,373 1,129 0.53 2,250
Disk Write (MiB/s) 12 1.84 187 13 2.65 250 9 1.65 111
Disk Write Total (MiB) 8,779 0.48 17,612 3,512 0.09 4,176 2,861 0.06 3,178
Memory (MiB) 47,685 0.25 68,255 62,154 0.07 68,249 68,206 0.00 68,252
Network In (MiB/s) 11 1.87 203 16 1.09 86 7 2.30 209
Network In Total (MiB) 8,013 0.53 16,480 4,457 0.07 5,178 2,458 0.21 3,857
Network Out (MiB/s) 10 2.02 129 16 1.05 93 7 2.50 155
Network Out Total (MiB) 7,620 1.12 30,953 4,358 0.06 5,083 2,381 0.36 6,491
Response Time (s) 800 0.01 811 276 0.02 283 333 0.13 410

Table 8: Statistics for Query 2 (warm), Data Scale: 100%, Number of Nodes: 5.

18

Van Wouw et al.

An Empirical Performance Evaluation of Distributed SQL Query Engines

Hive Impala Shark
Query 3 (cold) Mean | _CV. Maz Mean ov. Maz Mean | _CV. Maz
CPU Seconds 6,647 0.39 10,853 551 0.01 569 1,726 0.08 1,924
Disk Read (MiB/s) 3 3.56 143 30 1.47 192 15 1.29 125
Disk Read Total (MiB) 12,624 0.95 45,355 11,959 0.03 12,449 12,645 0.09 14,605
Disk Write (MiB/s) 18 1.74 250 0 20.41 0 9 0.72 46
Disk Write Total (MiB) 64,007 0.30 106,898 0 1.45 1 7,353 0.09 8,384
Memory (MiB) 38,205 0.38 68,250 34,437 0.42 55,775 33,857 0.48 68,250
Network In (MiB/s) 11 1.75 198 21 1.30 102 5 4.40 216
Network In Total (MiB) 39,728 0.17 53,539 8,260 0.01 8,391 4,414 0.08 5,157
Network Out (MiB/s) 11 1.92 160 21 1.37 152 5 3.48 152
Network Out Total (MiB) 38,552 0.44 95,724 8,080 0.04 8,466 4,293 0.08 4,991
Response Time (s) 3,699 0.06 3,947 390 0.03 422 829 0.04 882

Table 9: Statistics for Query 3 (cold), Data Scale: 100%, Number of Nodes: 5.

Query 8 (warm) Hive Impala Shark
Mean CV. Max Mean CV. Mazx Mean CV. Mazx
CPU Seconds 6,347 0.36 13,671 561 0.02 606 1,413 0.10 1,664
Disk Read (MiB/s) 2 3.87 118 8 2.63 170 4 1.31 27
Disk Read Total (MiB) 6,704 1.03 24,295 2,786 0.88 9,649 4,554 0.26 5,906
Disk Write (MiB/s) 19 1.70 249 0 6.42 0 6 1.25 53
Disk Write Total (MiB) 62,028 0.24 100,819 0 0.14 0 7,194 0.08 8,074
Memory (MiB) 53,394 0.20 68,253 59,443 0.16 68,249 67,823 0.03 68,257
Network In (MiB/s) 12 1.79 197 24 1.29 112 4 2.52 202
Network In Total (MiB) 39,201 0.18 57,428 8,460 0.00 8,575 4,974 0.25 7,825
Network Out (MiB/s) 12 1.90 161 23 1.32 132 4 2.79 154
Network Out Total (MiB) 37,796 0.40 92,610 8,268 0.03 8,578 4,812 0.33 10,326
Response Time (s) 3,350 | 0.06 3,725 350 | 0.05 384 1,168 | 0.06 1,253

Table 10: Statistics for Query 3 (warm), Data Scale: 100%, Number of Nodes: 5.

Hive Impala Shark
Query 4 (cold) Mean | CV. Maz Mean cv. Maz Mean | CV. Maz
CPU Seconds 29,615 0.05 32,528 15,022 1.48 78,620 10,741 0.03 11,321
Disk Read (MiB/s) 6 1.11 79 1 2.96 105 18 0.26 78
Disk Read Total (MiB) 28,445 0.82 77,034 79,334 0.38 159,037 27,229 0.06 29,998
Disk Write (MiB/s) 0 | 6.29 95 0 6.55 0 1 2.32 20
Disk Write Total (MiB) 1,245 0.15 1,618 21 0.26 29 1,205 0.04 1,297
Memory (MiB) 34,162 0.41 68,251 41,967 0.50 68,250 45,285 0.32 68,250
Network In (MiB/s) 2 0.78 67 0 23.04 112 1 6.79 143
Network In Total (MiB) 11,011 0.47 16,226 4,158 2.90 40,329 1,175 0.15 1,510
Network Out (MiB/s) 2 2.04 85 0 21.58 65 1 6.46 125
Network Out Total (MiB) 10,843 1.76 50,992 4,287 1.88 25,404 1,133 0.43 2,212
Response Time (s) 4,727 0.12 5,809 63,936 0.27 81,178 1,489 0.01 1,521

Table 11: Statistics for Query 4 (cold), Data Scale: 100%, Number of Nodes: 5.

Query 4 (warm) Hive Impala Shark
Mean CV. Max Mean CV. Max Mean CV. Max
CPU Seconds 58,536 0.05 66,008 13,182 0.02 13,579 11,276 0.02 11,733
Disk Read (MiB/s) 6 0.86 60 1 3.59 103 10 0.49 48
Disk Read Total (MiB) 50,883 0.51 87,299 40,925 0.09 45,915 16,687 0.17 24,282
Disk Write (MiB/s) 0 8.95 205 0 6.26 0 1 2.50 21
Disk Write Total (MiB) 2,753 0.14 3,796 16 0.01 16 1,205 0.04 1,322
Memory (MiB) 67,780 0.02 68,251 68,239 0.00 68,250 67,998 0.02 68,251
Network In (MiB/s) 2 0.86 127 0 17.10 18 1 3.64 48
Network In Total (MiB) 21,062 0.28 29,399 173 0.68 407 1,188 0.16 1,680
Network Out (MiB/s) 2 1.38 131 0 8.29 21 1 4.12 74
Network Out Total (MiB) 21,095 1.02 51,920 368 0.11 428 1,148 0.41 2,022
Response Time (s) 9,507 0.13 10,957 45,396 0.00 45,396 1,668 0.02 1,738

Table 12:

Statistics for Query 4 (warm), Data Scale:

19

100%, Number of Nodes: 5.

Van Wouw et al.

An Empirical Performance Evaluation of Distributed SQL Query Engines

Hive Impala Shark
Query 5 (cold) Mean | _CV. Maz Mean | _CV. Maz Mean | _CV. Maz
CPU Seconds 1,470 1.76 7,351 269 0.16 445 1,355 0.11 1,664
Disk Read (MiB/s) 2 1.16 40 3 4.37 189 4 0.77 38
Disk Read Total (MiB) 1,808 0.57 4,628 703 0.36 1,064 999 0.10 1,245
Disk Write (MiB/s) 3 4.91 248 9 3.08 234 8 1.90 144
Disk Write Total (MiB) 3,577 1.39 16,997 1,900 0.11 2,293 2,164 0.09 2,662
Memory (MiB) 1,510 0.70 16,746 13,045 0.30 26,812 23,039 0.25 30,706
Network In (MiB/s) 1 7.80 168 15 1.04 78 6 3.30 177
Network In Total (MiB) 872 1.14 2,902 3,242 0.12 4,825 1,601 0.06 1,791
Network Out (MiB/s) 1 7.80 156 15 1.06 79 6 3.02 129
Network Out Total (MiB) 854 1.17 2,923 3,173 0.14 4,840 1,551 0.10 1,882
Response Time (s) 1,116 0.01 1,134 208 0.03 221 269 0.02 277
Table 13: Statistics for Query 5 (cold), Data Scale: 100%, Number of Nodes: 5.
Query 5 (warm) Hive TImpala Shark
Mean CV. Mazx Mean CV. Mazx Mean CV. Mazx
CPU Seconds 4,452 0.94 15,631 263 0.03 278 1,338 0.11 1,656
Disk Read (MiB/s) 1 1.10 9 1 1.53 53 1 1.04 8
Disk Read Total (MiB) 1,743 0.22 3,611 188 0.18 281 295 0.42 772
Disk Write (MiB/s) 4 3.52 186 9 3.46 251 5 1.79 81
Disk Write Total (MiB) 6,324 0.86 22,651 1,793 0.12 2,466 1,302 0.15 1,795
Memory (MiB) 62,400 0.07 68,252 27,611 0.16 38,695 63,480 0.05 68,252
Network In (MiB/s) 1 5.37 195 15 1.08 78 4 4.55 194
Network In Total (MiB) 2,389 0.82 6,272 3,136 0.07 3,692 982 0.10 1,108
Neotwork Out (MiB/s) 1 | 5.20 150 15 | 1.10 92 1 | 4.07 160
Network Out Total (MiB) 2,330 | 0.54 1,718 3,068 | 0.06 3,501 953 | 0.15 1,335
Response Time (s) 1,775 | 0.08 2,045 200 | 0.02 208 250 | 0.05 281
Table 14: Statistics for Query 5 (warm), Data Scale: 100%, Number of Nodes: 5.
Hive Impala Shark
Query 6 (cold) Mean | CV. Maz Mean | V. Maz Mean | CV. Maz
CPU Seconds 426 1.29 1,908 122 0.07 132 332 0.10 385
Disk Read (MiB/s) 2 1.39 27 4 3.82 132 4 1.09 22
Disk Read Total (MiB) 890 0.46 2,012 418 0.12 468 415 0.17 551
Disk Write (MiB/s) 3 3.84 172 22 1.68 231 11 1.84 148
Disk Write Total (MiB) 1,441 1.14 5,886 2,205 0.07 2,384 1,318 0.11 1,647
Memory (MiB) 3,030 0.39 7,151 12,716 0.28 17,151 12,758 0.49 23,980
Network In (MiB/s) 1 6.08 165 34 0.69 89 9 2.24 125
Network In Total (MiB) 650 0.83 1,859 3,378 0.03 3,523 1,035 0.07 1,186
Network Out (MiB/s) 1 5.98 162 33 0.77 108 9 2.10 146
Network Out Total (MiB) 631 0.89 1,733 3,276 0.14 4,085 1,008 0.11 1,234
Response Time (s) 547 0.01 561 96 0.00 96 113 0.06 124
Table 15: Statistics for Query 6 (cold), Data Scale: 100%, Number of Nodes: 5.
Query 6 (warm) Hive Impala Shark
Mean CV. Max Mean CV. Max Mean CV. Max
CPU Seconds 427 1.38 1,944 121 0.07 139 333 0.08 381
Disk Read (MiB/s) 1 1.09 7 1 4.22 121 1 1.08 7
Disk Read Total (MiB) 536 0.09 827 123 0.61 340 106 0.31 231
Disk Write (MiB/s) 3 4.07 167 22 1.70 234 6 1.59 48
Disk Write Total (MiB) 1,437 1.23 5,968 2,218 0.12 2,700 598 0.18 787
Memory (MiB) 6,974 0.29 12,306 15,839 0.23 22,259 19,358 0.23 29,049
Network In (MiB/s) 1 | 5.83 162 34 | 0.72 90 5 | 3.32 103
Network In Total (MiB) 582 0.88 1,837 3,381 0.10 4,045 465 0.08 534
Neotwork Out (MiB/s) 1 5.84 150 33 | 0.79 117 5 | 3.07 124
Network Out Total (MiB) 568 0.97 1,809 3,289 0.13 4,159 449 0.18 612
Response Time (s) 536 0.01 543 97 0.04 103 96 0.06 106

Table 16: Statistics for Query 6 (warm), Data Scale: 100%, Number of Nodes: 5.

B Detailed Distributed SQL Query Engine Resource Uti-
lization

This appendix gives more insights in how resources are utilized over time. See Section 6.3 for
accompanying explanations.

20

Van Wouw et al.

An Empirical Performance Evaluation

100
T s
2 60
£
5
El
I 20
P

0
200
a
2150
E
g
=100
5
a
g 50
g
g
3

0

Shark-Warm
Shark-Cold

Hive-Warm

Impala-Warm
Hive-Cold

Impala-Cold

\/
R T T RS PN e
N ‘ SR
0 20 40 60 80 100
Normalized Response Time (percent)
Shark-Warm Impala-Warm ——— Hive-Warm ———
Shark-Cold Impala-Cold Hive-Cold
= ~ o~~~ |
0 20 40 60 80 100

Normalized Response Time (percent)

Mean Network Out (MiB/s)

Mean Disk Write (MiB/s)

160
140
120
100
80
60
40

Shark-Warm
Shark-Cold

Hi
Hive-Cold

re-Warm

Impala-Warm

Impala-Cold

ARG
VN s
,/' . M AA R
. — Y
20 40 60 80 100

Normalized Response Time (percent)

Shark-Warm
Shark-Cold

Hive-Warm
Hive-Cold

Impala-Warm

Impala-Cold

/

oS

20

Normalized Response Time (percent)

Figure 7: CPU utilization (top-left), Network Out (top-right), Disk Read (bottom-left), Disk
Write (bottom-right) for query 1 over normalized response time.

100
T 0
g
2 60
£
& 40
g
g 2
=

0
—~ 200
a
2 150
=
g
=100
=
%
E:
= 50
g
g
=

0

Shark-Warm
Shark-Cold

Hive-Warm
Hive-Cold

Impala-Warm

Impala-Cold

)
;,r “Q A
\ \ \
|
SRR N A e
|
W v
| AN -
0 20 40 60 80 100
Normalized Response Time (percent)
Shark-Warm Impala-Warm Hive-Warm
Shark-Cold Impala-Cold Hive-Cold
0 20 40 60 80 100

Normalized Response Time (percent)

Mean Network Out (MiB/s)

Mean Disk Write (MiB/s)

160
140
120
100
80
60
40
20

Shark-Warm
Shark-Cold

Hive-Warm
Hive-Cold

Impala-Warm

Impala-Cold

— T e

20 40 60 80

Normalized Response Time (percent)

100

Hive-Warm
Hive-Cold

Impala-Warm

Shark-Cold

Impala-Cold

60

Normalized Response Time (percent)

Figure 8: CPU utilization (top-left), Network Out (top-right), Disk Read (bottom-left), Disk
Write (bottom-right) for query 2 over normalized response time.

21

PDS

Van Wouw et al.

An Empirical Performance Evaluation of Distributed SQL Query Engines

Shark-Warm Tmpala-Warm Hive-Warm Shark-Warm Tmpala-Warm Hive-Warm
Shark-Cold Impala-Cold Hive-Cold Shark-Cold Impala-Cold Hive-Cold
100
7160
T 50|t 2 1o
8 \ S 1
\ 5
Y | g 10
2 \ Z£ 80
5 \\ A 2 6 YA
g \ J - / / ki 1/
Eoal [\ \l/ v SN A ol V
s N) 7 = \) N,
AP - i : - e
o ‘V\/J S/ \\ A c = e LN | A
0 20 40 60 80 100 0 20 40 60 80 100
Normalized Response Time (percent) Normalized Response Time (percent)
Shark-Warm Tmpala-Warm ——— Hive-Warm —— Shark-Warm Tmpala-Warm Hive-Warm
Shark-Cold Impala-Cold Hive-Cold Shark-Cold Impala-Cold Hive-Cold
— 250 , : : :
2 200
2150
= 150
g
=100
% 100
(=]
- 50 -
g 50 S
= L \ e e
0 =4 0 : = = —
0 20 40 60 80 100 0 20 40 60 80 100
Normalized Response Time (percent) Normalized Response Time (percent)

Figure 9: CPU utilization (top-left), Network Out (top-right), Disk Read (bottom-left), Disk
Write (bottom-right) for query 3 over normalized response time.

Shark-Warm Impala-Warm Hive-Warm Shark-Warm Tmpala-Warm Hive-Warm
Shark-Cold Impala-Cold Hive-Cold Shark-Cold Tmpala-Cold Hive-Cold
100 — - . - .
Z 160
2wl 2w
g < 120
5 s
=) 60 S 100
2 % 80
o 4
S 4 % P
Z 2 7: 40
= R
0 L L = 0 EE— T — —_— — L e
0 20 40 60 80 100 0 20 40 60 80 100
Normalized Response Time (percent) Normalized Response Time (percent)
Shark-Warm Impala-Warm Hive-Warm Shark-Warm Tmpala-Warm Hive-Warm
Shark-Cold Impala-Cold Hive-Cold Shark-Cold Impala-Cold Hive-Cold
- - . - . _ %0
2 £ 200
2150 =)
z £ 150
g g
=100 =
% = 100
[e
- 50 R
= =
0 0
0 100 0 20 40 60 80 100
Normalized Response Time (percent) Normalized Response Time (percent)

Figure 10: CPU utilization (top-left), Network Out (top-right), Disk Read (bottom-left), Disk
Write (bottom-right) for query 4 over normalized response time.

22

Van Wouw et al.

An Empirical Performance Evaluation of Distributed SQL Query Engines

Shark-Warm
Shark-Cold

Impala-Warm

Impala-Cold

Hive-Warm
Hive-Cold

100 : . .
— AN
z 80 i
-l |
2 60
= [
5 40 —
El
Z 2 - — ’*’\ N —
s
\/—’—"—J \V\J \
0 . . . \
0 20 40 60 80 100
Normalized Response Time (percent)
Shark-Warm Tmpala-Warm ——— Hive-Warm ———
Shark-Cold Impala-Cold Hive-Cold

200 ! ! ! !
a
2150
3
=100
=
a
= 50
g
g
=

0 . . .

0 20 40 60 80 100

Normalized Response Time (percent)

Mean Network Out (MiB/s)

Mean Disk Write (MiB/s)

Shark-Warm
Shark-Cold

Hi
Hive-Cold

re-Warm

Impala-Warm

Impala-Cold

160

140

120

100

80

60

40

20 40 60

Normalized Response Time (percent)

Shark-Warm
Shark-Cold

Hive-Warm
Hive-Cold

Impala-Warm

Impala-Cold

e e e e

20 40 60

Normalized Response Time (percent)

100

Figure 11: CPU utilization (top-left), Network Out (top-right), Disk Read (bottom-left), Disk
Write (bottom-right) for query 5 over normalized response time.

Shark-Warm
Shark-Cold

Impala-Warm

Impala-Cold

Hive-Warm
Hive-Cold

100
T 0
g
2 60
£
& 40
g
g 2
=
o
0
Normalized Response Time (percent)
Shark-Warm Impala-Warm Hive-Warm
Shark-Cold Impala-Cold Hive-Cold
o
a
2 150
=
g
= 100 b
=
Z
A
= 50
E
=
NN ‘ ‘ ‘ ‘
0 20 40 60 80

Normalized Response Time (percent)

100

Mean Network Out (MiB/s)

Mean Disk Write (MiB/s)

Shark-Warm
Shark-Cold

Hive-Warm
Hive-Cold

Impala-Warm

Impala-Cold

160

140

120

100

80

60 -
40 +

B Ny

20

60 80

Normalized Response Time (percent)

Shark-
Shark-Cold

Hive-Warm
Hive-Cold

Varm

Impala-Warm

Impala-Cold

100

. \\/V’\V A\

40 60 80

Normalized Response Time (percent)

100

Figure 12: CPU utilization (top-left), Network Out (top-right), Disk Read (bottom-left), Disk
Write (bottom-right) for query 6 over normalized response time.

23

	Introduction
	Related Work
	Query Engine Selection
	Experimental Method
	Workload
	Performance Aspects and Metrics
	Evaluation Procedure

	Experimental Setup
	Experimental Results
	Processing Power
	Resource Consumption
	Resource Utilization over Time
	Scalability

	Conclusions and Future Work
	Detailed Distributed SQL Query Engine Performance Metrics
	Detailed Distributed SQL Query Engine Resource Utilization

