
Delft University of Technology
Parallel and Distributed Systems Report Series

Investment strategies for credit-based P2P

communities

Mihai Capotă, Nazareno Andrade,
Johan Pouwelse, and Dick Epema

mihai@mihaic.ro

Completed December 2014.

Report number PDS-2014-005

PDS

ISSN 1387-2109

Published and produced by:
Parallel and Distributed Systems Group
Department of Software and Computer Technology
Faculty Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

Information about Parallel and Distributed Systems Report Series:
reports@pds.ewi.tudelft.nl

Information about Parallel and Distributed Systems Section:
http://www.pds.ewi.tudelft.nl/

© 2014 Parallel and Distributed Systems Group, Department of Software and Computer Tech-
nology, Faculty Electrical Engineering, Mathematics, and Computer Science, Delft University of
Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the publisher.

Capotă et al. Wp

Investment strategiesWp

PDS

Wp

Wp

Abstract

P2P communities that use credits to incentivize their members to contribute have emerged
over the last few years. In particular, private BitTorrent communities keep track of the
total upload and download of each member and impose a minimum threshold for their up-
load/download ratio, which is known as their sharing ratio. It has been shown that these
private communities have significantly better download performance than public communi-
ties. However, this performance is based on oversupply, and it has also been shown that it is
hard for users to maintain a good sharing ratio to avoid being expelled from the community.
In this paper, we address this problem by introducing a speculative download mechanism
to automatically manage user contribution in BitTorrent private communities. This mech-
anism, when integrated in a BitTorrent client, identifies the swarms that have the biggest
upload potential, and automatically downloads and seeds them. In other words, it tries to
invest the bandwidth of the user in a profitable way. In order to accurately asses the upload
potential of swarms we analyze a private BitTorrent community and derive through multiple
regression a predictor for the upload potential based on simple parameters accessible to each
peer. The speculative download mechanism uses the predictor to build a cache of profitable
swarms to which the peer can contribute. Our results show that 75 % of investment deci-
sions result in an increase in upload bandwidth utilization, with a median 207 % return on
investment.1

1This paper is an extension of our work published at Euromicro PDP 2013 [1].

Wp 1

Capotă et al. Wp

Investment strategiesWp

PDS

Wp

WpContents

Contents

1 Introduction 4

2 Related work 5

3 Problem statement 5

4 Design 6
4.1 Speculative download . 6
4.2 Predicting future upload speed . 6
4.3 Putting it all together . 7

5 Trace based evaluation 8
5.1 Dataset . 8
5.2 Evaluation methodology . 9

6 Results 11

7 Conclusion 13

Wp 2

Capotă et al. Wp

Investment strategiesWp

PDS

Wp

WpList of Figures

List of Figures

1 Speculative download mechanism. 7
2 CDF of the gain in upload bandwidth utilization for the SDE, SeederRatio, Ran-

dom, and Optimal algorithms, in all four scenarios, when Optimal gain > 0. (n
denotes the number of users in the experiment.) 12

3 CDF of the gain in upload bandwidth utilization for the SDE, SeederRatio, Ran-
dom, and Optimal algorithms, in scenario U, when Optimal gain > 0 and SDE
performed a cache replacement. (n denotes the number of users in the experiment.) 13

4 CDF of the return on investment for the SDE, SeederRatio, Random, and Optimal
algorithms, in all four scenarios, when Optimal gain > 0. (n denotes the number
of users in the experiment.) . 14

List of Tables

1 Characteristics of the dataset . 9
2 Size of swarm sets per peer for all input data scenarios 11
3 Performance when there is no potential gain . 15

Wp 3

Capotă et al. Wp

Investment strategiesWp

PDS

Wp

Wp1. Introduction

1 Introduction

User-contributed resources are the basis of high performance in P2P systems. Because of that,
an adequate incentive structure that encourages users to contribute is paramount to the success
of a P2P system. BitTorrent presently stands at a crossroads in this respect. On the one hand,
BitTorrent has become arguably the most successful P2P system at least in part because of
its built-in contribution incentive mechanism, tit for tat [2, 3], which rewards users that are
downloading, called leechers, with better performance if they contribute high upload bandwidth
to help other leechers. On the other hand, seeding – uploading after the download is finished
– is not incentivized in the BitTorrent protocol, and there is insufficient attention given to the
simultaneous distribution of many files.

The result of these drawbacks is the creation of hundreds of private BitTorrent communities
that employ extra incentive mechanisms to encourage their users to contribute resources. Private
BitTorrent communities address the lack of incentives for seeding in BitTorrent by tracking the
sharing behavior of users across swarms [4, 5]. Typically, users who do not keep a minimum
ratio of uploaded and downloaded data—the sharing ratio—are penalized and/or expelled from
the community. This leads to an oversupply of upload bandwidth which gives users of private
communities very good download performance [4].

Unfortunately, the upload bandwidth oversupply in private communities has a negative side
effect. It makes it difficult for users that are willing to contribute to do so. A user may have
to compete with too many other users to upload in a swarm, and may be unable to attain a
sufficient sharing ratio to maintain membership in the community [6]. If, on top of that, a user
downloads some content that is not popular and therefore won’t be downloaded by many others
in the future (which is a common phenomenon [7]), it becomes very difficult to upload that file
to rebalance the sharing ratio.

We argue that while sharing ratio enforcement currently encourages contribution, the skewed
distribution and temporal variability of content popularity often make it exceedingly hard for
users to contribute effectively in BitTorrent private communities. In short, for a user, there
is a fundamental mismatch between the acts of downloading and uploading when it comes to
maintaining a good sharing ratio while pursuing their own interest in files.

In this paper, we propose, as a solution to this problem, the decoupling of downloading
and seeding, and put forward an automatic mechanism for users who are willing to contribute
resources to the community to do so easily. This mechanism speculatively downloads and seeds
swarms with the sole purpose of increasing the upload/download ratio. As long as the choice is
made by an informed algorithm, the user stands to gain, and so does the community, since the
download performance of the other users increases.

The solution we introduce can be described in terms of a cache that contains the swarms that
have been downloaded speculatively. Its most important component is the swarm replacement
algorithm: How to select which new swarm should go into the cache and what old swarm should
be removed? To answer this question, we build a regression model with as input the swarm
characteristics available to each peer, and obtain a prediction of the amount of bytes the peer
will be able to upload to that swarm in the near future. Note that, as opposed to a traditional
cache, we do not store in our system the swarms downloaded by the user of the BitTorrent client.
Instead, we consider any swarm available in the community as a candidate for download.

The rest of the paper is structured as follows. In Section 2 we present related work. We
describe the problem being addressed in Section 3. Section 4 presents in detail the design of our
solution. Section 5 presents the evaluation setup we use and Section 6 describes the results we
obtain. We conclude with Section 7.

Wp 4

Capotă et al. Wp

Investment strategiesWp

PDS

Wp

Wp2. Related work

2 Related work

A considerable body of research focuses on incentive mechanisms in BitTorrent, especially con-
sidering individual download sessions [2, 8, 9]. However, users can be observed downloading
many files, often in overlapping download sessions. Since the pure BitTorrent protocol does not
provide any way to identify peers across download sessions, many other works propose reputa-
tion systems that are supposed to keep track of user behavior. Research has focused mainly
on decentralized methods to build reputation systems [10, 11]. In practice however, centralized
solutions are widespread, in the form of private BitTorrent communities that use a centralized
server to keep track of user identity and activity [4]. Although we use data from a private com-
munity as opposed to a decentralized reputation system, we note that our work is orthogonal to
the practical implementation of such a system; the only requirement for our solution to work is
having a system that keeps track of user contribution across swarms – a credit system.

The oversupply problem of private BitTorrent communities is well documented in the litera-
ture, along with the problems it raises for maintaining membership [4, 6, 5].

There are many examples of caching in P2P systems [12, 13, 14, 15]. While our system
resembles a cache, remember that it plays an active role in selecting the swarms that it can store
and does not rely on the user for this. In fact, one of the goals of our work is to decouple a
user’s contribution to the community from the user’s preference for content, since it is not likely
the two will match. On this topic, Wu et al. [7] propose a solution based on a centralized server
that assigns users to semi-static groups that contribute upload bandwidth to specific channels
in a live video streaming system. Instead, we solve the problem for file-sharing systems, but in
a completely decentralized manner. Carlsson et al. [16] propose another solution, again based
on central servers, that “inflate” swarms with peers that are not currently fully utilizing their
upload bandwidth. Garbacki et al. [17] propose a mechanism for bandwidth exchange between
peers that decouples peer contribution from peer interest, but is based on explicit help requests
peers send to one another to request the download of specific swarms.

Regression models have been used before to predict characteristics of BitTorrent, like online
time [18], or peer download speed [19]. However, to the best of our knowledge, we are the first
to predict the upload speeds that peers can achieve in BitTorrent swarms.

3 Problem statement

Because of oversupply, in many private BitTorrent communities it is hard for users who are willing
to contribute upload bandwidth to actually do so. This unnecessarily limits the sharing ratio
of these users, as well as the global download performance in the community. The goal of this
work is to make use of any idle upload bandwidth users have in an automatic and decentralized
manner that is compatible with regular BitTorrent clients, such that the sharing ratio of users is
increased. We name problem of deciding whether and what to automatically download in order
to increase upload bandwidth usage the Bandwidth Investment Problem.

To solve the bandwidth investment problem, a BitTorrent client must identify swarms –
also called torrents – that are undersupplied in the community, download some portion of their
content and seed those torrents using the idle upload bandwidth. In some sense, this is what
experienced users often do manually, in addition to downloading torrents they are interested in.
We aim to automate this process.

As a success criteria, if a solution is applied to this problem and used for a reasonable amount
of time – on the order of hours –, it should cause an increase in the sharing ratio of its user. To
compare the quality of several solutions, we can run them at the same time and compare the

Wp 5

Capotă et al. Wp

Investment strategiesWp

PDS

Wp

Wp4. Design

sharing ratios they produce. From the perspective of bandwidth investment, we are comparing
the profits produced by the different strategies.

There are two constraints we also consider solutions must satisfy. Any mechanism that
qualifies as a solution must be integrated into a regular BitTorrent client which is under user
control. As such, it always has to give priority to user actions. If the user decides to download a
torrent, the mechanism must yield bandwidth so that the user download can proceed as fast as
possible. Similarly, it must limit storage usage so that the user always has available storage.

In addition to the previous constraint, the information used to decide which swarms are under-
supplied must already be available to regular BitTorrent peers. We do not believe a mechanism
that requires changes to the established BitTorrent protocol has chances to be adopted.

4 Design

In this section, we introduce and describe in detail the speculative downloading mechanism, the
solution we propose for the Bandwidth Investment Problem.

4.1 Speculative download

The main contribution of this paper is the speculative download mechanism depicted in Figure 1
that identifies, downloads, and seeds undersupplied swarms in private communities. The new
module to be added to BitTorrent clients is called the Speculative Download Engine (SDE). All
user commands pass through it, so that it can react appropriately, e.g., yield bandwidth when the
user is downloading. At the same time, it gets input from a Discovery module, which provides a
list of available swarms, together with their characteristics. This module already exists in many
BitTorrent clients as an RSS feed parser, and many communities offer customizable RSS feeds
for announcing newly available torrents. The commands issued by the SDE are executed by the
Data transfer module which implements the BitTorrent protocol to transfer data between other
peers and the Storage module. After a warm-up period, during which the engine adds data to
the storage, the mechanism will start operating in a full-cache mode, where every new swarm has
to replace an old one. For simplicity, and since the user is not interested in the actual data, we
establish a standard size for downloads instead of downloading all data from a swarm, and use
partial seeding [20]. This way, the storage is divided in pieces of equal size and the replacement
policy does not have to consider the space swarm data occupies.

Considering the speculative download mechanism is similar to a cache, we can also analyze its
functionality in terms of cache replacement. Given a set of available swarms in the community
and a set of swarms already in the cache, find the best swarm not in the cache and the worst
swarm in the cache and decide whether to replace the swarm in the cache with the one available.
The decision is based on the predicted upload speed in the swarms. In the next subsection, we
show how this decision can be made.

4.2 Predicting future upload speed

For any BitTorrent peer and swarm, given the set P of characteristics of the swarm that are
available to all peers (number of seeders, number of leechers, file size, swarm age), the set I
of characteristics of the peer (download and upload bandwidth), and, optionally, the set H of
records of the peer’s historical activity in the swarm (download and upload history), we must
give an estimate of the expected upload speed the peer will achieve in the swarm.We can asses
the accuracy of an upload speed predictor by comparing the prediction to the actual upload

Wp 6

Capotă et al. Wp

Investment strategiesWp

PDS

Wp

Wp4.3 Putting it all together

Figure 1: Speculative download mechanism.

speed a peer achieves when participating in the swarm. We then use this predictor to drive the
SDE.

In this paper, we predict upload speed using regression analysis. Given a trace of the be-
haviour of a peer with s samples, each describing the activity of the peer in a swarm during a
certain time interval, we construct a multiple regression model

yi = β0 + β1x1i + β2x2i + · · ·+ βnxni, i = 1, . . . , s

where the upload speed of the peer in the swarm during the interval when sample i was captured,
yi, is a dependent variable determined by the independent variables {x1i, . . . , xni} = P ∪ I ∪
H. For a trace with s samples, we have s equations. Usually we have more samples than
independent variables, so s > n, which means we have an overdetermined system of equations
that is inconsistent and has no exact solution. We choose parameters β1, . . . , βn and the intercept
β0 so that they fit the data best using the least squares method. We then use the parameters
β to predict the upload speed of the peer in any new swarm at any time, given characteristics
x1new, . . . , xnnew.

Because our data has unknown distributions for characteristics, we use a technique called
multivariate adaptive regression splines (MARS) [21], which is an extension of the linear regres-
sion we presented. MARS builds a model for the dependant variable using an iterative process.
Starting from a model using only the intercept, MARS creates intermediary models by gradually
adding independent variables such that the least squares error of the model is minimized.

4.3 Putting it all together

We can now present in detail the operation of the cache replacement mechanism of the SDE
using upload prediction. This is depicted in Algorithm 1.

Wp 7

Capotă et al. Wp

Investment strategiesWp

PDS

Wp

Wp5. Trace based evaluation

Algorithm 1 Cache replacement algorithm

1: N = {Swarms not in cache}
2: C = {Swarms in cache}
3: for all s ∈ N do
4: prediction[s] = predict upload speed new(s)
5: end for
6: for all s ∈ C do
7: prediction[s] = predict upload speed old(s)
8: end for
9: h = highest(N, prediction)

10: l = lowest(C, prediction)
11: if prediction[h] > prediction[l] then
12: remove from cache(l)
13: add to cache(h)
14: end if

The algorithm predicts the upload speed of all the swarms that have not been downloaded yet
(N), and, separately, it predicts the upload speed of all the swarms that have been downloaded
already (C). Note that we can use different regression models for the two sets of swarms, since
we have more information for C (set H is available, i.e., history of download and upload). Next,
the algorithm sorts the two sets of swarms according to the predicted upload speeds and chooses
the swarm with the highest predicted upload speed from the new set, and the swarm with the
lowest predicted upload speed from the old set. If the prediction for the former is higher than
the prediction for the latter, it does the cache replacement. This algorithm can be run at regular
intervals, or whenever the upload speed drops below a preconfigured threshold.

It is important to also consider the cost of downloading the new swarm that is to be put in
the cache in order to have a realistic model. Recall that our speculative download engine uses
partial seeding and that we are only downloading a fixed amount of data from every swarm we
put in the cache. We are free to set this cache block size, denoted b, to maximize the efficiency
of our algorithm; 16 MiB is a good value according to our experiments. Thus, for every cache
replacement operation, we have to not only achieve a better download speed, but also make sure
we recuperate the cost of downloading the new cache block. It is necessary to introduce a new
parameter for this, a time window w after which we expect to start profiting from the investment
in the new swarm. The cache replacement condition on Line 11 of Algorithm 1 becomes:

(prediction[h]− prediction[l])× w > b

5 Trace based evaluation

In this section, we evaluate the efficiency of the SDE using traces of activity from a BitTorrent
community.

5.1 Dataset

Our dataset, characterized in Table 1, consists of records of the activity of 84 025 peers in the
Bitsoup private community between April and July 2007. The data was collected by crawling
the website of the community once per hour (thus w = 1h). It includes, for every peer in every
torrent, the amount of data uploaded and downloaded, and the session duration. The mean

Wp 8

Capotă et al. Wp

Investment strategiesWp

PDS

Wp

Wp5.2 Evaluation methodology

Table 1: Characteristics of the dataset

Community name Bitsoup
Collection interval April to July 2007
Number of users observed 84 025
Sampling interval 1 h
Mean number of sessions 76 370

number of sessions observed was 76 370. In addition, we have data about the file size for every
torrent from the website. For the swarms that started after our monitoring began, we also have
the age of the swarm. This gives us all the variables for the prediction algorithm belonging
to sets P and H, regarding swarms and past peer activity, respectively (see Section 4.2). We
approximate the variables in set I describing the characteristics of the peer, download and upload
bandwidth, by using the maximum values observed in the trace for download and upload speed.

We only use samples in which the peer is participating in a single swarm at a time. This
gives us a record of the download and upload performance of the peer at a time when the peer
is not involved in any other activity in the community, creating a level playing field where each
swarm is likely to receive the full bandwidth of the peer.

We differentiate between two types of BitTorrent sessions recorded in the trace. Sessions can
either be considered new, where the peer is observed downloading in the trace, or old, where
the peer has finished downloading and is now seeding. For the old set, we can use the past peer
activity in the swarm to inform the prediction algorithm and improve prediction accuracy.

5.2 Evaluation methodology

To evaluate the sharing speculative download mechanism using the Bitsoup trace, we use Algo-
rithm 2. This is very similar to Algorithm 1, which describes the normal operation of the SDE
cache replacement when deployed in a BitTorrent client. However, in addition to predicting the
upload speeds of swarms, it also checks the quality of those predictions against the data in the
trace. The indicator for prediction quality is the gain in upload speed resulting from the cache
swap:

gain =
upload speed(added swarm)− upload speed(removed swarm)

upload bandwidth

The gain is a dimensionless quantity and it can take values between 1, when a peer is replacing
an idle swarm with a swarm with an upload speed that saturates the peer’s upload bandwidth,
and −1, when a peer replaces a swarm that was saturating its upload bandwidth with a swarm
with no upload potential.

For every peer in the community, we select the best swarm not in the cache (i.e., from set
N), and the worse swarm in the cache (i.e., from set C). We do this selection according to
the upload speed prediction obtained using our predictor function (Lines 11 and 12), just like
Algorithm 1 would do. In addition, we also select the best new swarm and the worse old swarm
according to the upload speed recorded in the trace (Lines 13 and 14). The decision to do the
cache replacement is similar to the one in normal operation, taking into account the time window
w and cache block size b. Additionally, bandwidth is added as a factor because the trace records
upload speeds relative to the upload bandwidth of the peer. If the replacement is made, the
resulting gain is evaluated using the actual data from the trace (Line 16). This represents the

Wp 9

Capotă et al. Wp

Investment strategiesWp

PDS

Wp

Wp5.2 Evaluation methodology

Algorithm 2 Evaluating prediction efficiency

1: N = {Swarms not in cache}
2: C = {Swarms in cache}
3: for all s ∈ N do
4: prediction[s] = predict upload speed new(s)
5: trace[s] = get upload from trace(s)
6: end for
7: for all s ∈ C do
8: prediction[s] = predict upload speed old(s)
9: trace[s] = get upload from trace(s)

10: end for
11: hp = highest(N, prediction)
12: lp = lowest(C, prediction)
13: ht = highest(N, trace)
14: lt = lowest(C, trace)
15: if (prediction[hp]− prediction[lp])× w × bandwidth > b then
16: prediction gain = trace[hp]− trace[lp]
17: optimal gain = trace[ht]− trace[lt]
18: end if
19: return prediction gain, optimal gain

extra upload speed the peer gains by replacing the swarm it predicted was the worst in its cache
with the swarm it predicted was the best available and not already in its cache. We also compute
the optimal gain that is achievable by the peer if the prediction is perfect and identifies the real
best and worst swarms in the trace (Line 17).

Algorithm 2 is run once for every peer in the cache. The sets of new and old swarms are
built from the sessions of the peer in the trace. All leeching sessions of the peer are put in the
new set N , and all seeding sessions of the peer are put in the old set C. It is important to note
that time does not play a role in the evaluation, as we are not considering the effects of running
the algorithm on the trace, but only evaluate the quality of each peer decision individually. The
cache replacement algorithm will try to replace a swarm from C with one from N , according
to their predicted upload speeds. The fact that the sessions have taken place at different times
in the trace is irrelevant because this is not one of the parameters that influence the upload
speed. Notice also that the trace is only used for evaluating the prediction. It is not in any way
“replayed” by our algorithm, and the algorithm is not running a simulation of the activity in
the community. We are only interested in evaluating the upload speed prediction of single peers
using real-world data.

The practical performance of a prediction algorithm depends on the size of the input data.
The more swarms used as input, the lower the chances the prediction algorithm will find the
cache swap producing the maximum upload speed gain. Because of the importance of input data
size, we create from the dataset using random sampling three constrained input data scenarios,
in addition to the complete set containing all sessions. Table 2 show the size of swarm sets for all
input data scenarios, small (S), medium (M), large (L), and unconstrained (U). We use more new
swarms than old swarms in our evaluation because this is the case in real world usage. Because
we use random sampling when creating S, M, and L, we repeat the prediction 5 times for every
peer and take the mean.

One threat in using regression analysis is over-fitting. This means obtaining a model that
gives highly accurate results for the data that was used to create it, but that has poor prediction

Wp 10

Capotă et al. Wp

Investment strategiesWp

PDS

Wp

Wp6. Results

Table 2: Size of swarm sets per peer for all input data scenarios

S M L U

|N | 10 20 40 |All leeching sessions in trace|
|C| 5 10 20 |All seeding sessions in trace|

performance. We avoid over-fitting, by splitting our data in two sets, one that we use for creating
the regression model and one that we use for testing the prediction which we present in Section 6.
The ratio for splitting in our experiments is 80/20.

In addition to SDE, we define three other algorithms to put the results into context. Random
shows the results of a simulation of repeatedly selecting a random new swarm to replace a random
old swarm. On average, this produces a gain equal to the difference between the mean upload
speed of the new and old swarms. SeederRatio represents a simple heuristic that selects the new
swarm with the lowest ratio of seeders to replace the old swarm with the highest ratio of seeders.
Finally, we also present an algorithm called Optimal, which always replaces the worst old swarm
with the best new swarm, thereby producing the best possible gain in upload speed.

6 Results

We start the results presentation by looking at gains in upload speed, i.e., how much faster is the
peer uploading after the cache swap relative to its maximum upload speed. Figure 2 shows the
CDFs of gains for SDE compared to Random, SeederRatio, and Optimal, for the situations when
there is a potential gain, i.e., Optimal gain is positive. Random is not making any difference
to the upload speed in the median case. Still, when factoring in the cost of downloading a new
swarm, it is immediately obvious that Random would result in a decrease of the sharing ratio in
the median case (as we will show in Figure 4). SeederRatio produces a small increase in upload
speed for the median case, and produces significantly less negative results than Random. We
can conclude that SeederRatio is a simple to implement strategy that is effective at increases to
upload speed.

For virtually all peers, SDE performs better than SeederRatio. Although there is some varia-
tion with input data size, the performance of the different algorithms does not vary significantly.
Note that in some cases, SDE decides not to make the cache replacement. These are included in
the CDF as having 0 gain.

While SDE does not attain optimal performance, it is important to note that all gains pre-
sented in this section are the average case for a single cache replacement. Instead, in normal
usage, the algorithm will be run many times by a peer, every time upload speed drops below a
certain threshold, so the effects will be cumulative. Furthermore, we expect the upload speed of
a peer using our algorithm to be constantly close to maximum, so the necessary gain to reach
the maximum will normally be low.

In Figure 3, we present the cases when SDE decides to make a replacement. This time we only
show the unconstrained scenario U, since the others are similar. We observe that SDE manages
to make a cache replacement that results in an upload bandwidth usage increase in 75 % of the
cases. To put this into perspective, note that Random produces no effect for the median case.
SeederRatio is once again better than Random, but not as good as SDE.

We analyze the return on investment (ROI) for cache replacement decisions in potential gain
situations in Figure 4. For every cache replacement, we compute the ROI considering that for

Wp 11

Capotă et al. Wp

Investment strategiesWp

PDS

Wp

Wp6. Results

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Scenario S: 5/10 (n=
3947)

Scenario M
: 10/20 (n=

1203)
Scenario L: 20/40 (n=

119)
Scenario U

: A
ll swarm

s (n=
10072)

-1.0 -0.5 0.0 0.5 1.0
Gain [proportion of upload bandwidth]

C
D

F
SDE SeederRatio Random Optimal

Figure 2: CDF of the gain in upload bandwidth utilization for the SDE, SeederRatio, Random,
and Optimal algorithms, in all four scenarios, when Optimal gain > 0. (n denotes the number
of users in the experiment.)

Wp 12

Capotă et al. Wp

Investment strategiesWp

PDS

Wp

Wp7. Conclusion

0.00

0.25

0.50

0.75

1.00 S
c
e
n

a
rio

 U
: A

ll s
w

a
rm

s
 (n

=
8

4
0
6

)

-1.0 -0.5 0.0 0.5 1.0

Gain [proportion of upload bandwidth]

C
D

F
SDE SeederRatio Random Optimal

Figure 3: CDF of the gain in upload bandwidth utilization for the SDE, SeederRatio, Random,
and Optimal algorithms, in scenario U, when Optimal gain > 0 and SDE performed a cache
replacement. (n denotes the number of users in the experiment.)

one hour (the time window w for our dataset) the peer will benefit from the upload speed gained.
The investment represents downloading 16 MiB (the cache block b we use) from a new swarm.

ROI =
gain× upload bandwidth

b

We can see that using random choices for swarms results in a negative ROI for the majority
of peers in all input data scenarios. Using SeederRatio choices instead gives a positive median
ROI for all scenarios except L. On the other hand, using SDE, the median ROI is always positive,
ranging from 74 % for the L scenario to 222 % for the S scenario. For U, median ROI is 207 %.
We conclude that SDE makes highly profitable investment decisions.

The converse situation for potential gain is when there is no profitable replacement, i.e., no
new swarm has a better upload potential than any of the old swarms and Optimal gain < 0.
Intuitively, this situation should be rare in private communities. Nevertheless, we examine the
performance of SDE in such situations in Table 3. For all scenarios, we see that SDE makes the
correct choice of not doing any cache replacement most of the times (for scenario L, the perfect
result comes from the small number of samples). When SDE does make a mistake, the cost is
usually low: 2–9 % of upload bandwidth is lost in the median case. Note that the statistics for
mistakes and loss refer only to the situations where SDE makes a cache replacement.

7 Conclusion

In this paper, we provide a solution to the problem of bandwidth investing in private BitTorrent
communities. We show how this problem occurs in the first place when oversupply makes it hard
for honest users to contribute their upload bandwidth. The solution design is based on speculative
downloading: identifying swarms in need of upload bandwidth in the community, downloading,
and seeding them. At the heart of the solution is the Speculative Download Engine (SDE)—a
prediction algorithm which we implement using multiple regression.

Wp 13

Capotă et al. Wp

Investment strategiesWp

PDS

Wp

Wp7. Conclusion

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

S
c
e
n

a
rio

 S
: 5

/1
0

 (n
=

3
4

2
5

)
S

c
e
n

a
rio

 M
: 1

0
/2

0
 (n

=
1

0
8

8
)

S
c
e
n

a
rio

 L
: 2

0
/4

0
 (n

=
1

0
3

)
S

c
e
n

a
rio

 U
: A

ll s
w

a
rm

s
 (n

=
8

4
0
6

)

-10 0 10 20

Return on investment

C
D

F
SDE SeederRatio Random Optimal

Figure 4: CDF of the return on investment for the SDE, SeederRatio, Random, and Optimal
algorithms, in all four scenarios, when Optimal gain > 0. (n denotes the number of users in the
experiment.)

Wp 14

Capotă et al. Wp

Investment strategiesWp

PDS

Wp

WpReferences

Table 3: Performance when there is no potential gain

S M L U

Correct (%) 68 75 100 63
Median mistakes (%) 100 33 NA 100
First quartile loss 0.008 0.033 NA 0
Median loss 0.033 0.023 NA 0.091
Third quartile loss 0.132 0.019 NA 0.095

We test our solution with real-world data from a private BitTorrent community with more
than 80 000 peers. The results show that SDE is successful for different types of input scenarios
and that it produces a sizeable return on investment. In most situations when there is no
possibility for gain, SDE correctly predicts a cache replacement should not take place.

In future work, we plan to deploy SDE in a BitTorrent client and conduct a live Internet
performance evaluation. This will also reveal the effects of repeatedly running SDE for a peer,
as well as the effects of multiple peers collectively using SDE. We hypothesize that, while the
positive effect of using SDE will diminish when deployed throughout the community, there will
be no negative effect for download performance, since using SDE leads to an increase in available
upload bandwidth. Because the presence of other SDE-enabled peers in swarms will be reflected
in the swarm characteristics, i.e., the number of seeders will increase, SDE will predict less
potential for gain and will make fewer replacement decisions.

Acknowledgments

This work was partially supported by the European Union’s Seventh Framework Programme
through projects P2P-Next and QLectives (grant numbers 216217 and 231200).

References

[1] M. Capotă, N. Andrade, J. A. Pouwelse, and D. H. J. Epema, “Investment Strategies
for Credit-Based P2P Communities,” in Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (PDP), pp. 437–443, IEEE, Feb. 2013. 1

[2] A. Legout, G. U. Keller, and P. Michiardi, “Rarest first and choke algorithms are enough,”
in ACM IMC, pp. 203–216, ACM, 2006. 4, 5

[3] C. Zhang, P. Dhungel, D. Wu, and K. W. Ross, “Unraveling the BitTorrent ecosystem,”
IEEE TPDS, vol. 22, pp. 1164–1177, July 2011. 4

[4] M. Meulpolder, L. D’Acunto, M. Capotă, M. Wojciechowski, J. Pouwelse, D. Epema, and
H. Sips, “Public and private bittorrent communities: A measurement study,” in IPTPS,
2010. 4, 5

[5] Z. Liu, P. Dhungel, D. Wu, C. Zhang, and K. W. Ross, “Understanding and improving ratio
incentives in private communities,” in IEEE ICDCS, pp. 610–621, IEEE, June 2010. 4, 5

Wp 15

Capotă et al. Wp

Investment strategiesWp

PDS

Wp

WpReferences

[6] A. L. Jia, R. Rahman, T. Vink, J. Pouwelse, and D. Epema, “Fast download but eternal
seeding: The reward and punishment of sharing ratio enforcement,” in IEEE P2P, pp. 280
– 289, IEEE, 2011. 4, 5

[7] D. Wu, Y. Liu, and K. W. Ross, “Modeling and analysis of multichannel P2P live video
systems,” IEEE/ACM TON, vol. 18, pp. 1248–1260, Aug. 2010. 4, 5

[8] D. Qiu and R. Srikant, “Modeling and performance analysis of BitTorrent-like peer-to-peer
networks,” SIGCOMM Comput. Commun. Rev., vol. 34, pp. 367–378, Oct. 2004. 5

[9] R. Rahman, T. Vinkó, D. Hales, J. Pouwelse, and H. Sips, “Design space analysis for
modeling incentives in distributed systems,” SIGCOMM Comput. Commun. Rev., vol. 41,
pp. 182–193, Aug. 2011. 5

[10] M. Meulpolder, J. A. Pouwelse, D. H. J. Epema, and H. J. Sips, “BarterCast: A practical
approach to prevent lazy freeriding in P2P networks,” in IPDPS, pp. 1–8, IEEE Computer
Society, 2009. 5

[11] M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderson, “One hop reputations for peer to
peer file sharing workloads,” in NSDI, pp. 1–14, USENIX, 2008. 5

[12] J. Terrace, H. Laidlaw, H. E. Liu, S. Stern, and M. J. Freedman, “Bringing P2P to the Web:
Security and privacy in the Firecoral network,” in IPTPS, USENIX, 2009. 5

[13] S. Iyer, A. Rowstron, and P. Druschel, “Squirrel: a decentralized peer-to-peer web cache,”
in PODC, pp. 213–222, ACM, 2002. 5

[14] A. Wierzbicki, N. Leibowitz, M. Ripeanu, and R. Wozniak, “Cache replacement policies
revisited: the case of P2P traffic,” in IEEE CCGrid, pp. 182–189, IEEE, 2004. 5

[15] M. Hefeeda and O. Saleh, “Traffic modeling and proportional partial caching for Peer-to-
Peer systems,” IEEE/ACM TON, vol. 16, pp. 1447–1460, Dec. 2008. 5

[16] N. Carlsson, D. L. Eager, and A. Mahanti, “Using torrent inflation to efficiently serve the
long tail in Peer-Assisted content delivery systems,” in IFIP NETWORKING, vol. 6091,
ch. 1, pp. 1–14, Springer Berlin / Heidelberg, 2010. 5

[17] P. Garbacki, D. Epema, and M. van Steen, “An amortized tit-for-tat protocol for exchanging
bandwidth instead of content in p2p networks,” in IEEE SASO, pp. 119–128, IEEE, 2007.
5

[18] D. Nie, Q. Ma, L. Ma, and W. Tan, “Predicting peer offline probability in BitTorrent using
nonlinear regression,” in ACM ICEC, vol. 4740, ch. 40, pp. 339–344, Springer Berlin /
Heidelberg, 2007. 5

[19] A. H. Rasti and R. Rejaie, “Understanding peer-level performance in BitTorrent: A mea-
surement study,” in IEEE ICCCN, pp. 109–114, IEEE, Aug. 2007. 5

[20] A. Norberg, G. Hazel, and A. Grunthal, “Extension for partial seeds,” bittorrent extension
proposal, BitTorrent, 2008. [Online] http://bittorrent.org/beps/bep_0021.html. 6

[21] J. H. Friedman, “Multivariate adaptive regression splines,” The Annals of Statistics, vol. 19,
no. 1, pp. pp. 1–67, 1991. 7

Wp 16

http://bittorrent.org/beps/bep_0021.html

	Introduction
	Related work
	Problem statement
	Design
	Speculative download
	Predicting future upload speed
	Putting it all together

	Trace based evaluation
	Dataset
	Evaluation methodology

	Results
	Conclusion

