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Abstract

In recent years, many distributed graph-processing systems have been designed and developed to ana-

lyze large-scale graphs. For all distributed graph-processing systems, partitioning graphs is a key part of

processing and an important aspect of achieve good processing performance. To keep low the performance

of partitioning graphs, even when processing the ever-increasing modern graphs, many previous studies

use lightweight streaming graph-partitioning policies. Although many such policies exist, currently there

is no comprehensive study of their impact on load balancing and communication overheads, and on the

overall performance of graph-processing systems. This relative lack of understanding hampers the develop-

ment and tuning of new streaming policies, and could limit the entire research community to the existing

classes of policies. We address these issues in this work. We begin by modeling the execution time of

distributed graph-processing systems. By analyzing this model under the load of realistic graph-data char-

acteristics, we propose a method to identify important performance issues and then design new streaming

graph-partitioning policies to address them. By using three typical large-scale graphs and three popular

graph-processing algorithms, we conduct comprehensive experiments to study the performance of our and

of many alternative streaming policies on a real distributed graph-processing system. We also explore the

impact on performance of using different real-world networks and of other real-world technical details. We

further discuss the coverage of our model and method, and the design of future partitioning policies.
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1 Introduction

The scale of graphs is increasing rapidly in recent years, and has already exceeded the processing capabilities of
single machines. Distributed graph-processing systems such as Pregel [1], GraphLab [2], and GraphX [3], have
been designed and developed to process large-scale graphs by using the computation and memory capabilities of
clusters. For such systems, graph partitioning is essential in achieving good performance, because it determines
the computation workload of each working machine and the communication between them. Many streaming
graph partitioning policies [4, 5, 6] have been proposed to efficiently partition graphs into balanced pieces for
distributed graph-processing systems. Streaming graph partitioning treats graph data as an online stream, by
reading the data serially and then determining the target partition of a vertex when it is accessed. However,
the impact on the overall system performance of these partitioning policies has not been thoroughly evaluated
on real graph-processing systems, and the understanding of the performance issues raised by such policies when
used in real-world graph-processing systems is currently relatively limited. Gaining such knowledge can lead to
the design of new policies, to new methods for tuning existing policies, and in general to better system design
for distributed graph processing. Addressing this lack of understanding is the goal of our present work, in which
we model, analyze and design new policies, and experimentally compare streaming graph-processing policies in
real-world environments.

In this paper we address the following five important challenges in partitioning large-scale graphs. The first
challenge is partitioning graphs into splits with balanced numbers of vertices while minimizing edge-cuts, which
is an NP-complete problem [7]. For graphs with billions of edges [8], the partitioning time can become too
long, even when using partitioning heuristics. Second, many graphs of interest are not static but dynamic, with
vertices and edges being added all the time. As a consequence, graph partitioning is then an online streaming
process rather than an offline process. Third, the performance of partitioning depends on the graph-processing
application. Fourth, because they are designed to address the needs of specific communities, each with their
own applications and domains of expertise, graph-processing systems are designed around different programming
models and generally take different evolutionary paths. The core programming model, which specifies how the
system performs computation on vertices and how the distributed components of the system communicate, can
affect the performance impact of partitioning. Fifth, the structure and capacity of the cluster used may impact
the performance effect of a partitioning policy on the run time of graph-processing systems. For instance,
switching the network from relatively low-speed Ethernet to high-speed InfiniBand, or the level of heterogeneity
of a cluster [5] may change the relative merits of partitioning policies.

Many graph-partitioning approaches have been proposed to address these challenges, from offline partitioning
heuristics to online, streaming, graph-partitioning policies. These partitioning-centric studies focus on the design
of reasonable partitioning policies that are based on heuristic and rely on a limited set of theoretical metrics,
such as the edge cut ratio [4], the number of vertices per partition [9, 10], etc. The partitions are created online
by real-world graph-processing systems, which indicates that empirical metrics, such as partitioning time and
algorithm run time are important for system developers and users. However, few partitioning policies have been
proposed from the perspective of real systems. In contrast to such policies, the policies designed from a more
theoretical perspective lack of simplicity and of considering the relationship between the computation and the
communication, because they use relatively complicated heuristics and focus on minimizing the communication.
And also, few experiments have been conducted on real graph-processing systems to evaluate the performance
of existing partitioning policies. As our own and related studies [11, 12, 13] of entire graph-processing systems
have shown, the results reported from narrow experiments can misreport performance by orders of magnitude,
especially when the input workloads and the algorithms change from the conditions tested in the limited studies.

In this work, we address the challenges of streaming graph partitioning and the problem of relative lack of
understanding about streaming graph-partitioning policies. In Section 3, we model the run time of distributed
graph-processing systems. We set the objective function of partitioning to minimizing the run time. Our model
extends related work [5] by including different programming models and implementation of graph-processing
systems.

Wp 4 http://www.pds.ewi.tudelft.nl/yong/
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In Section 4, we conduct an experimental analysis of the performance implications of partitioning policies,
using our run time model and conducting real-world measurements on a real-world graph-processing system—
PGX.D [14]. We find out what graph characteristics are closely related to the run time. We further propose
streaming graph policies based on the run-time-influencing graph characteristics.

In Section 5, we evaluate and compare the performance of our policies, other streaming alternative, and
also the start-of-the-art offline partitioner—METIS [15] on PGX.D, by using 3 large-scale graphs and 3 popular
graph-processing algorithms. We use a set of metrics to present the partitioning performance, such as run
time, partitioning time, edge cut ratio, scalability, etc. We also consider the impact of different real-world
networks (Ethernet and InfiniBand) and the impact of a common technique (selective ghost node) used by
graph-processing systems.

In Section 6, we further discuss the coverage of our method for different types of real-world graph-processing
system and the design of future partitioning policies based on our comprehensive experimental results.

2 Background and Related Work

2.1 Graph-processing systems

Single machines with limited resources are unable to handle growing modern graphs. Generic distributed data-
processing systems, such as Hadoop [16], have first been adapted to analyze and process large-scale graphs on
clusters. However, because of the limitation of programming models, generic data-processing systems cannot
support iterative graph-processing applications very well. It has been reported that the performance of generic
data-processing systems, for graph-processing applications, is much worse than specific graph-processing sys-
tems [1, 2, 17]. This has become a common knowledge in the graph-processing community.

Many graph-processing systems adapt the vertex-centric paradigm, in which graph-processing algorithms are
implemented from the perspective of each vertex of graphs. The Bulk Synchronous Parallel (BSP) computing
model has been used by many graph-processing systems, such as Pregel [1] and Hama [18], mainly because the
BSP model simplifies the design and implementation of iterative graph-processing algorithms. A BSP compu-
tation of a graph-processing algorithm consists of a series of global iterations (or supersteps). In each iteration,
active vertices execute the same user-defined function, generate messages, and transfer them to neighbours that
are not located in the same machine. Synchronization is needed between two consecutive iterations to ensure
that all vertices has been processed and all messages have been delivered. The cost of synchronization in BSP
systems may incur performance degradation, especially when the workload between working machines are not
balanced. To improve performance, graph-processing systems, such as GraphLab [2] and GraphHP [19], have
used asynchronous models to avoid using barriers for synchronization and to reduce the performance degradation
caused by imbalanced workload. The use of asynchronous models increases the complexity of graph-processing
systems and, in some cases, creates redundant messages [20] when executing graph algorithms.

Graph-processing systems can be categorized into three main multi-phase systems, based on their vertex
computation abstractions [21]: one-phase [1, 17], two-phase [14, 22, 23], and three-phase [24, 25]. The main
computation in graph processing includes processing incoming messages, applying vertex updates, and preparing
outgoing messages. In each multi-phase abstraction, the main computation is placed and executed in different
computation phases. For example, in Scatter-Gather, which is a two-phase abstraction, the scatter phase
prepares outgoing messages, and the gather phase collects incoming messages and applies updates to vertex
values. We will further analyze and discuss these three abstractions in Section 3 and Section 6.

2.2 Related work

The study of partitioning policies for graph-processing is based on two main disciplines, graph partitioning
and performance analysis. We survey in this section the related materials published in each of these two
disciplines, in turn. Overall, ours is one of the few studies combining theoretical work in graph partitioning

Wp 5 http://www.pds.ewi.tudelft.nl/yong/
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Table 1: Graph-processing systems using different partitioning approaches.

Partitioning approach Example heuristics Example systems using the approach

Traditional heuristics METIS [15], ParMETIS [30] -

Streaming Hash, LDG [4] Giraph [17], HeAPS [5]

Vertex-cut Random, Balanced p-way [24] PowerGraph [24], GraphX [3]

Dynamic Exchange [9], Migration [10] GPS [9], Mizan [10]

Chunking File size Hadoop [16], Stratosphere [32]

with experimental comparison of policies using several algorithms and datasets, which, as we indicate in the
introduction, is important for the validity of the results. Our main findings from this survey, regarding graph
partitioning, are summarized in Table 1.

Graph Partitioning. Graph partitioning has been explored and studied for a long time in many research
areas [21, 26], from scientific workflow scheduling [27] to recent work on large-scale graph processing [3]. Bal-
anced graph partitioning, which aims to balance the number of vertices in each partition while minimizing the
communication between partitions, is known as the k-way graph partitioning problem and has been proved to be
NP-hard [7]. To achieve an approximate solution, many traditional heuristics [15, 28] have been proposed. Many
of them adapt the multi-level partitioning scheme, which typically includes three main phases [28], coarsening to
reduce the size of the graph, partitioning the reduced graph, and uncoarsening to map back partitions for the
original graph. The prominent example of multi-level partitioning, METIS [15] and its family of partitioning
policies [29], are used by the community because of their high-quality partitions and relatively fast partitioning
speed. However, we identify three main reasons for which these heuristics may be unable to handle the parti-
tioning problem for distributed graph-processing systems. First, most distributed graph processing systems are
designed for large-scale graphs, with millions of vertices and billions of edges. For partitioning policies designed
explicitly for single-node operation, such as METIS, large-scale graphs and their intermediate partitioning data
often do not fit in the main memory of the system, which causes spills to disk and severe performance degrada-
tion, and in our experience even system crashes. For multi-node heuristics such as ParMETIS [30], using them
in practice may be complex and time consuming, because they need a global view of graphs and slow synchro-
nization for partitioning. Second, these heuristics are designed to operate offline. They need to access the entire
graph for every partitioning operation, which makes them relatively inefficient for growing and changing graphs.
Third, many of the heuristics are designed for scientific computing workloads. In particular, they have been
designed to solve k-way partitioning problem, by recursively executing 2-way partitioning when k is a power
of 2. They may not be able to effectively partition real-world graphs representative for other domains, and in
particular real-world graphs with arbitrary values of k [31].

To address the problems faced by offline heuristics, online streaming graph partitioning policies have been
proposed for distributed graph-processing systems. Hash partitioning, a type of streaming graph partitioning,
is used in many graph processing systems, such as Pregel-like systems [1, 17], because of its simplicity and short
partitioning time. The drawbacks of hash partitioning for real large-scale graphs are obvious. For computation,
partitions created by hash partitioning policies from highly-skewed real graphs [24] can have an even number of
vertices but will often include partitions where vertices have very diverse in-/out-degrees, case in which graph-
processing algorithms such as Breadth-First Search (BFS) traversal will incur high computation imbalance.
For communication, hash partitioning does not consider any locality of vertices and edges. There may be an
inordinate amount of edge-cuts between partitions, which results in intensive network traffic. To conclude, hash
partitioning policies have so far not considered highly-skewed graphs, and result when used on real-world graphs
in partitions that lead to imbalanced computation and communication.

Many studies make efforts in two main directions to obtain balanced graph partitions. The first direction
is to design more complex steaming graph-partitioning policies. Stanton and Kliot [4] propose more than ten
streaming policies. Many factors are selected and used in these policies, such as the relationship between the

Wp 6 http://www.pds.ewi.tudelft.nl/yong/
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vertex to be assigned and the current vertices in the partition, buffering for assigning a group of vertices, and
streaming orders. From their evaluation, a linear-weighted deterministic greedy policy (LDG) performs the best.
In LDG, a vertex is assigned to the partition with the most neighbours, while using the remaining capacity
of partitions as a penalty. Tsourakakis et al. [6] formulate a partitioning objective function, considering the
costs of edge cut and the size of partitions. Based on this function, they design a streaming graph partitioning,
FENNEL, which is a greedy policy using different heuristics to place vertices. Closest to our work, to address
heterogeneity of computing hardware and network, Xu et al. [5] build a model for the heterogeneous environment
and discuss a time-minimized objective function from the perspective of graph-processing systems. They propose
six streaming graph partitioning policies and evaluate their performance in both homogeneous and heterogeneous
environment. From their experimental results, the combined policy (CB) achieves the best performance in
homogeneous environment and reasonably good performance in different settings of heterogeneous environment.
They use the analytical method to estimate the workload of the whole computation. In our model, we further
divide the whole computation and use real experiments to find out run-time-influencing graph characteristics.
Our method can be more precise. Advanced streaming graph partitioning policies can achieve comparable
performance of METIS [4, 5].

The second direction is to partition graphs by vertex-cut [24, 3]. Vertex-cut partitioning place edges, instead
of vertices, to different partitions. According to percolation theory [33], good vertex-cuts can be achieved
in power-law graphs. Evenly placing edges can reduce the workload imbalance and the large communication
of high-degree vertices, which are represented as multiple replicas and stored in different partitions. Vertex-
cut partitioning has its drawbacks. System-wise, the graph-processing system needs to allow a single vertex’s
computation to span multiple machines, which increases the complexity of the system. Performance-wise, too
many pieces of vertex replicas can still generate high communication, primarily to synchronize vertex status. We
summarize our survey of this class of graph-partitioning policies in Table 1, in the row “Vertex-cut”. Vertex-cut
partitioning is used by few graph-processing systems. In our work, we focus on edge-cut partitioning, which is
used by more systems.

To avoid the workload imbalance incurred by static streaming partitioning and vertex-cut partitioning and
also by the execution of algorithms (for example, active vertices vary in each iteration during the process of the
BFS algorithm), dynamic repartitioning is moving vertices between working machines during the execution of
algorithms. The general process of dynamic repartitioning methods can be abstracted as the following sequence
of four steps : discover workload imbalance of computing machines, find the pairs of computing machines for
migrating vertices, determine which vertices are required to move, and migrate selected vertices from its source
to destination. Mizan [10] selects the execution time of each machines as the metric for workload imbalance and
maintains a distributed hash table to record the position of vertices. GPS [9] simply uses the outgoing messages
as the workload-imbalance metric. When computing machines are paired, they will exchange vertices rather
than migrate vertices from one to another. Both Mizan and GPS take a delay migration strategy to alleviate
the overhead of migration of vertices and their associated data. Shang et al. [34] focus on how much of the
workload should be moved between pairs of working machines and on which vertices should be moved. They
also propose several constrains to improve the benefit of migration. We show systems that support dynamic
repartitioning in Table 1, in the row “Dynamic”.

Partitioning performance. Although many graph partitioning methods and policies have been proposed,
their performance has not been thoroughly evaluated with various input graphs and algorithms. Theoretical
metrics, such as the edge cut ratio and modularity [4, 6, 35] are generally used to measure the quality of
partitions. For real graph-processing systems, these metrics do not directly represent the performance of parti-
tioning [5]. In practice, metrics such as the run time of graph-processing algorithms, partitioning time, and the
variance of the run time on different machines/threads represent the performance of bottleneck components in
real graph-processing systems. Meyerhenke et al. [36] design their graph partitioning heuristic based on label
propagation and size constrains for social networks and web graphs. Guerrieri and Montresor [37] discuss the
properties of high quality partitions and introduce a distributed edge-partitioning framework. Both studies
lack experimental results from executing algorithms on real graph processing systems, to show the performance
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of their partitioning methods in practice. Stanton and Kliot [4], FENNEL [6], and Xu et al. [5] compare the
performance of many streaming partitioning policies on data-processing systems. The systems they run experi-
ments on are not (advanced) graph-processing systems—Spark’s generic data processing for Stanton and Kliot,
Hadoop for FENNEL, and a prototype of Pregel for Xu et al., contrast starkly with highly optimized production
systems such as GraphLab [2] and Giraph [17]. Their evaluations are also limited to the use of a single algorithm,
PageRank; our own and related studies [11, 12, 13] have shown that the results obtained from a single algorithm
do not characterize well the performance expected from the general field of graph processing. In contrast, in this
work, we conduct comprehensive experiments on an advanced distributed graph-processing system—PGX.D,
using 3 representative algorithms, 3 large-scale graphs with billions of edges from different domains, different
practical configurations and in particular different types of network, and many different performance metrics.

3 A Model of Graph-Processing Systems and the Objective Func-

tion of Graph Partitioning

In this section, we model the run time of different types of graph-processing systems and we discuss the objective
function of graph partitioning of real graph-processing systems. We focus on graph-processing systems that
follow the BSP programming model, that is, for which the graph-processing algorithm is executed in super-
steps or iterations. Our model focuses on two-phase systems (described later in this section), but it can also
represent single-phase systems such as the Pregel-based Apache Giraph. We consider in our model machine-
level and thread-level programming abstractions, and blocking and parallel I/O. Conceptually, our model derives
non-trivially from prior work; in contrast to the prior model of Xu et al. [5], which is the closest related work
to our present study, our model considers a much larger variety of systems and has a higher granularity of
processing units.

Similarly to the model of Xu et al. [5], suppose we have M working machines running N iterations of the
same process. If T k

i is the run time on machine i of the k-th iteration of some application, and if T k denotes
the (total) run time of the k-th iteration across all machines, then we have:

T k = max
i
{T k

i }, k = 1, 2, . . . , N. (1)

The total run time Tr of the application running on multiple machines can now be presented as:

Tr = ΣT k, k = 1, 2, . . . , N. (2)

We assume conservatively that in each iteration all vertices are active (that is, considered for processing) and
that messages are sent to all their neighbours, for three reasons. First, many popular algorithms match well this
assumption, such as community detection [38] and PageRank [39]. Second, previous policies, and in particular
the commonly used family of policies based on METIS, partition the whole graph with all its vertices and edges,
so they implicitly follow this assumption. Last, predicting, for different algorithms, which of the vertices and
edges become active during an arbitrary iteration is an open and challenging problem, but not a part of real-
world graph-processing systems. Currently, no real graph-processing system is able to make prediction-based
workload balancing in each iteration. We further discuss how the variety of algorithms complicates prediction
in Section 6.2. Under this conservative assumption, the run time of every iteration on each machine can be
considered to be equal, say to value T i, and so we can simplify Eq. (2) to:

Tr = N ×max
i
{T i}. (3)

From the survey [21], there are three vertex-centric programming abstractions of graph-processing systems:
one-phase abstraction, two-phase abstraction, and three-phase abstraction. For each iteration, the one-phase

Wp 8 http://www.pds.ewi.tudelft.nl/yong/
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Table 2: Notations for the time of computation and communication of machine i.

Symbol Meaning

T
g

i time spent processing incoming messages and applying vertex values across all threads.

T
g

i,l time spent processing incoming messages and applying vertex values in the l-th thread, l = 1, 2, ..., L.

T
s

i time spent preparing outgoing messages across all threads.

T
s

i,q time spent preparing outgoing messages in the q-th thread, q = 1, 2, ..., Q.

T
x

i time spent in communication, data transfers.

L number of threads involved in processing incoming messages and applying vertex values

Q number of threads involved in preparing outgoing messages

Figure 1: The computation phases and communication in one iteration of the Scatter-Gather abstraction.

programming abstraction runs a single computation function, which consists of three computation tasks: pro-
cessing incoming messages, applying vertex values, and preparing outgoing messages. The communication starts
after the completion of the single computation function. The one-phase abstraction is often used in practice,
for example in Pregel-like systems [1, 17]. The two-phase abstraction usually refers to two computation phases:
the scatter phase (for preparing outgoing messages) and the gather phase (for processing incoming messages
and applying vertex values). The communication happens between the scatter phase and the gather phase.
The two-phase abstraction has been implemented in systems such as PGX.D [14]. Importantly, most one-phase
systems can be converted to two-phase systems [21], but the reverse may not be true. We summarize in Table
2 the notation we propose for the time of the computation tasks and for the communication. The three-phase
systems usually use the vertex-cut partitioning, which is out of the scope for this work. We further discuss
three-phase systems, as a future extension of our modeling work, in Section 6.1.

Graph-processing systems can use one of the following two I/O modes, between computation and communi-
cation: blocking I/O and parallel I/O. With blocking I/O, computation and communication are executed serially.
With parallel I/O, computation and communication can execute in parallel, with at least parts of the execution
overlapped. For blocking I/O, T i is the sum of the time spent on all computation phases and on communication.
For parallel I/O, T i is determined by the longest among the two computation phases and communication. We
show in Figure 1 two computation phases and communication in one iteration of the Scatter-Gather abstraction.

Another important aspect of graph processing that we consider in our model is the granularity of the
programming abstraction. In real graph-processing systems, where multi-threading has been used to accelerate
computation, the run time of a computation phase is determined by the thread with the longest run time.

Table 3 summarizes the run time of a single iteration executed on machine i for different programming
abstractions and I/O modes, in coarse-grained machine-level and fine-grained thread-level. Because the one-
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Table 3: T i for different programming abstractions and I/O modes

System I/O block, machine-level I/O block, thread-level I/O parallel, machine-level I/O parallel, thread-level

One-phase T
g

i + T
s

i + T
x

i max(T
g

i,l + T
s

i,l) + T
x

i max(T
g

i + T
s

i , T
x

i ) max(max(T
g

i,l + T
s

i,l), T
x

i )

Two-phase T
g

i + T
x

i + T
s

i max(T
g

i,l) + T
x

i +max(T
s

i,q) max(T
g

i , T
s

i , T
x

i ) max(max(T
g

i,l),max(T
s

i,q), T
x

i )

phase abstraction uses a single computation function, all computation for a vertex is always executed by the
same thread, which means processing incoming messages and applying vertex updates cannot be parallelized
with preparing outgoing messages. For the parallel I/O mode of the two-phase abstraction, the threads of
a working machine need to be assigned to different computation phases to gain all the possible performance
through parallelism. Thus, the assignment of the threads is an important factor for the run time of working
machines. Moreover, for threads in the same phase, being able to balance their workload is crucial for achieving
high performance.

The main target of partitioning graphs for real graph-processing systems is to achieve the shortest run time.
Similarly to Xu et al. [5], we set the objective function for finding a graph partitioning that minimizes the total
runtime Tr:

min{Tr} = N ×min{max
i
{T i}} (4)

In the following section, we investigate what are the interesting graph characteristics that affect the run time
of the computation phases and communication, and we use this information to design new partitioning policies.

4 A Class of Graph Partitioning Policies

In this section, we propose a method for identifying the most influential graph characteristics on the algorithm
run time in a given graph-processing system (Section 4.1), we empirically validate our method on a real graph-
processing system (Section 4.2), and design new streaming graph-partitioning policies (Section 4.3).

4.1 A method for identifying the run-time-influencing graph characteristics

As many popular graph-processing systems [1, 17] can only process directed graphs, we consider without loss
of generality, graph-processing systems which use a directed graph representation. Given a partition of a
directed graph, we distinguish several characteristics which can determine the algorithm run time and which
we summarize in Table 4. Our target is to identify the graph characteristics that have the strongest impact on
the algorithm run time. We propose a three-step method to achieve this.

Step 1: Select the run time model for the graph-processing system. As we have shown in Section 3, the
run time models are different for graph-processing systems. For a given graph-processing system, we want to
identify the category it belongs to, in order to select the corresponding run time model from Table 3.

Step 2: Determine the PRTI graph characteristics. For the selected model, we determine which are the
PRTI graph characteristics that may have an impact on each component of the model, based on the operation
of the graph-processing algorithm. The PRTI graph characteristics represent a candidate set for the next step
of our method.

Step 3: Identify the RTI graph characteristics. We take an experimental approach to identify the most
representative graph characteristics in the PRTI set. To this end, we evaluate the relationship between the
run time and different subsets of the PRTI set using the R-squared (R2) coefficient obtained through linear
regression [40]. For each subset we perform multiple experiments using different setups (e.g., policies, datasets,
and configurations) and we build a histogram which shows how many times the R2 value occurred in a given
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Table 4: The graph characteristics of a partition

Characteristic Symbol Definition

Number of vertices #V vertex count

Remote in-degree Dri the number of in-edges from other partitions

Remote out-degree Dro the number of out-edges to other partitions

Local in-degree Dli the number of in-edges in the partition

Local out-degree Dlo the number of out-edges in the partition, equals to local in-degree

Total in-degree Dti the sum of remote in-degree and local in-degree

Total out-degree Dto the sum of remote out-degree and local out-degree

Remote degree Dr the sum of remote in-degree and remote out-degree

Local degree Dl the sum of local in-degree and local out-degree

Total degree Dt the sum of remote degree and local degree

range (see Table 7). We select the RTI graph characteristics as the subset of PRTI with the most occurrences
in the highest range of R2 values.

4.2 Empirical results validating the method

In this section, we empirically validate our method on the PGX.D graph-processing system. First, we use
Table 3 to identify the corresponding run time model for PGX.D (step 1 in our method). As PGX.D is a
multi-threaded graph-processing system with two-phase abstraction and parallel I/O, its run time model is:

T i = max(max(T
g

i,l),max(T
s

i,q), T
x

i ). (5)

Next, we seek to understand the operation of PGX.D in order to select the PRTI characteristics (step 2
in our method). In PGX.D the threads assigned to the scatter phase and the gather phase are called worker
threads and copier threads, respectively. PGX.D balances the workload across its worker threads with the
edge-chunking technique and across its copier threads with the max-slot first strategy. Thus, max(T

g

i,l) and

max(T
s

i,q) are equal to the average run time of worker threads and copier threads, respectively. PGX.D uses the
continuation mechanism to buffer and combine messages between working machines to reduce communication.
A dedicated poller thread is maintained in each working machine for sending and receiving messages. PGX.D
implements a commonly used technique, called selective ghost node (SGN), to further reduce the network
traffic. SGN duplicates the high-degree vertices (ghosts) on each partition. If the sum of a vertex’s in-degree
and out-degree is greater than a pre-defined threshold, the vertex will be selected as a ghost. SGN is optional
for users.

The PRTI graph characteristics may vary for different graph-processing algorithms and also for different
components (e.g., computation and communication) within the same graph-processing algorithm. We apply
the step 2 in our method on different components of the PageRank algorithm. The scatter phase in PageRank
reads all vertices and prepares messages to remote neighbours through out-edges of each vertex. Therefore, the
PRTI graph characteristics of the scatter phase are the number of vertices, the remote-out degree, the local-out
degree, and the total-out degree. The gather phase in PageRank processes all incoming messages and updates
each vertex. In this case, the PRTI graph characteristics of the gather phase are the number of vertices and
the remote-in degree. The only PRTI graph characteristic of the communication component in the PageRank
algorithm is the remote out-degree.

We explain the experimental setup in terms of system configurations, datasets, and policies which we employ
in order to identify the RTI characteristics (step 3 in our method). In this section, we perform experiments with
PageRank (maximum 10 iterations) on PGX.D deployed on a 16-machine cluster in Oracle Labs. The detailed
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Table 5: The environment of our experiments

Category Item Detail

CPU

Type Intel Xeon E5-2660

Frequency 2.20 GHz

Parallelism 2 socket * 8 core * 2 HT

Network

Card Mellanox Connect-IB

Switch Mellanox SX6512

Raw BW 56 Gbit/s (per port)

Software
OS Linux 2.6.32 (OEL 6.5)

Compiler gcc 4.9.0

Table 6: Summary of datasets

Dataset V E Max D Type & Source

Twitter 41,652,230 1,468,365,182 3,081,112 Real-world, Public [42]

Scale 26 32,804,978 1,073,741,824 1,710,236 Synthetic, Graph500 [43]

Datagen p10m 9,749,927 687,174,631 648 Synthetic, LDBC [44]

V and E are the vertex count and edge count of the graphs. Max D is the largest total degree of a vertex.

configuration of the cluster is summarized in Table 5. We set four configurations of the worker and copier
threads: w24c2, w18c8, w12c14, and w6c20 [14]. The notation w24c2 means that for each working machine, we
set 24 worker threads and 2 copier threads. We conduct experiments with or without using the selective ghost
node technique.

Our experiments use three large-scale graphs: Twitter, Scale 26, and Datagen p10m (see Table 6). The
Twitter dataset is one of the largest publicly available real-world datasets and consists of a graph of its users
with the follower relationships between them. Scale 26 is a synthetic graph generated by the Graph500 generator,
with the scale factor of 26. Graph500 is the de-facto standard for comparing hardware infrastructures for graph
processing systems. Datagen p10m is created by the Linked Data Benchmark Council (LDBC) generator,
which aims to produce graphs with similar structures and properties to the real-world social networks, such as
Facebook. The LDBC generator is used by the Graphalytics project [41], which is an active big data benchmark
for graph-processing systems. The two generated graphs contain roughly 1 billion edges, and are comparable in
size to the Twitter dataset. We set the threshold of 50,000 for Twitter and Scale 26, and 600 for Datagen p10m.

We use three streaming graph-partitioning policies which are incorporated in PGX.D: the in-degree balanced
policy (I), and the out-degree balanced policy (O), and the total degree balanced policy (IO). All policies assign
vertices to different partitions by balancing the in-degree, the out-degree across partitions, or the total degree.
To this end, each policy determines the average (in-/out-/total) degree (Dp), which is the ration between the
(in-/out-/total) degree of the entire graph and the number of partitions M . Further, vertices are assigned to
partitions sequentially from partition 1 to partition M . When the (in-/out-/total) degree of partition i < M

exceeds the average (in-/out-/total) degree, we start to assign vertices to partition i+ 1.
We obtain 72 executions of PageRank by using different setups in terms of system configurations, datasets,

and policies. For each execution, we pick the working machines with the longest run times of the scatter
and gather phases and we calculate for each machine its graph partition characteristics. We use different
subsets of characteristics from the PRTI set, which we evaluate empirically in order to determine the RTI graph
characteristics.

We find that the run time of PageRank is dominated by either the scatter phase or the gather phase. In
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Figure 2: The run time of a thread, the longest worker thread, and the longest copier thread, using w12c14.

Figure 2, we show the run time of a single iteration, the run time of the longest worker thread, and the run
time of the longest copier thread when using the w12c14 configuration. We notice that for all policies the run
time of a single iteration is approximately 50 ms higher than the maximum run time of the longest worker
and copier threads. The 50 ms difference represents the overhead of the system. We have similar findings for
other system configurations. As PGX.D optimizes the network traffic and it is deployed on the high-speed
InfiniBand network, the communication time in PageRank is overlapped by both the scatter and gather phases.
In consequence, we focus on the run times of the scatter and gather phases.

We derive three subsets of characteristics from the PRTI set of each phase. Using the 72 experimental setups,
we build the histogram of R2 values for three subsets of characteristics in each phase. In Table 7 we show the
histogram for the scatter phase and we identify the subset of characteristics with the strongest relationship
to the algorithm run time as the number of vertices (#V ) and the total out-degree (Dto). Unlike previous
policies which focus on the communication component by minimizing edge-cuts (e.g., Dto), our results show
that the number of vertices is also an important factor. Thus, we consider the number of vertices (#V ) and
total out-degree (Dto) as the RTI graph characteristics of the scatter phase. Similarly, for the gather phase, we
identify the number of vertices (#V ) and remote in-degree (Dri) as the RTI graph characteristics. We combine
the results of both phases and we identify the complete set of RTI graph characteristics for PageRank: the
number of vertices (#V ), the total out-degree (Dto), and remote in-degree (Dri).

We also conduct the same set of experiments for the weakly connected component (WCC) algorithm, which
computes the groups of vertices connected by edges. The RTI graph characteristics of WCC are the number of
vertices (#V ), the total degree (Dt), and the remote degree (Dr).

4.3 Four new graph partitioning policies

In this section, we design four new graph-partitioning policies based on the findings from the experiments in
Section 4.2. The first of these, called the degree-balanced (DB) policy, is new, while the other three of these are
randomized versions of the I, IO, and O policies from Section 4.2.

Our target is to design a good partitioning for graph-processing systems in general, not for a specific algo-
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Table 7: The number of runs in R2 ranges for the scatter phase.

Range T
g

i with #V and Dto T
g

i with Dto T
g

i with Dlo

[0.9, 1] 39 28 10

[0.8, 0.9) 8 11 7

[0.7, 0.8) 9 9 1

[0.6, 0.7) 6 4 6

[0, 0.6) 11 19 47

rithm. Combining the RTI graph characteristics identified by running PageRank and WCC, we show that the
number of vertices is a common characteristic. For different algorithms, they may propagate messages through
in- or out-edges. It is difficult to determine which graph characteristics about degree we should balance. We
decide to select total in-degree and total out-degree, because of two main reasons. First, the remote or local
degree of a partition can only be calculated after the finish of partitioning. We cannot use them during the
execution of partitioning. Second, from the perspective of the system, balancing the total in-degree and total
out-degree is a generic way to cover different algorithms. Thus, the primary purpose of our DB policy is to bal-
ance the total in- and out-degree per partition, and its secondary purpose is to balance the sum of the in-degree
and out-degrees across the partitions by setting a constraint on the number of vertices of the partitions.

With DB, every next vertex is assigned to the degree-smallest of what we call the opposite partitions. For
a vertex with in-degree Vi and out-degree Vo, a partition with total current in-degree Dti and total current
out-degree Dto is called opposite if Vi > Vo and Dti ≤ Dto, or the other way around. The degree-smallest
partition is the partition with the smallest sum of its current total in-degree and total out-degree. We set a
constraint on the number of vertices per partition to ensure that they do not become too imbalanced. In the
DB policy, this constraint is flexible and can be set by the user. The process of assigning a vertex to a partition
by the DB policy is shown in Policy 1.

In order to show the balance of the partitions created by the DB policy, we apply it to the three datasets
(Twitter, Scale 26, and Datagen p10m) to create 16 partitions each. We set the constraint on the size of the
partitions to 1.5 times their average size (we assume the size of the graph to be known ahead of time). In order
to show the balance, we normalize the number of vertices, the total in-degree and the total out-degree of each
partition relative to their average values across all partitions. Figure 3 shows that the graph characteristics are
very well balanced for the Twitter partitions. For the Scale 26 and Datagen p10m graphs, we achieve similar
results. We have also partitioned the graphs into different numbers of partitions (2, 4, 8, and 32), and also then
we achieve balanced partitions. Our results even indicate that we can achieve balanced numbers of vertices
without setting a constraint.

From the experimental results in Section 4.2, we find that the run time of the machines varies even though
they have equal numbers of edges to process in the I, IO, and O policies. The reason is that the numbers of
vertices of the partitions, which are run-time-influencing, are not balanced. To address this issue, we change
the streaming order of the vertices in these policies, from the sequential ordering to a random ordering, which
accesses vertices randomly. There are also other stream orderings, such as the BFS ordering and the DFS
ordering. We select the random ordering for three main reasons. First, from the evaluation of Stanton and
Kliot [4], the random ordering has comparable performance to the BFS and DFS orderings in many cases.
Second, the BFS and DFS orderings need to pre-traverse the graphs, which is time consuming, in particular
for large graphs. The traverse time may be even longer than the partitioning time. Third, the BFS and DFS
orderings can be more complicated when a graph has multiple connected components. By using the random
ordering of each original policy in PGX.D, we create three new policies called RI, RIO, and RO, in which “R”
stands for the random ordering. Figure 6 shows a comparison of the O and RO policies. The RO policy achieves
more balanced numbers of vertices across partitions, while keeping the balance of the total degrees.
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Policy 1 The DB policy

Input: Vi, Vo, the constraint on the number of vertices C, a sorted queue of partitions P [M ] with ascending
Dti +Dto, the number of partitions M

Output: the index of the assigned partition Index, a sorted queue of partitions after the assignment
1: Flag ← 0 ⊲Flag indicates if there is an opposite partition of the vertex in the queue.

2: if Vi > Vo then
3: for j = 1→M do
4: if D

j
ti ≤ D

j
to then ⊲Dj

ti and D
j
to is the current total in-degree and the current total out-degree of the j-th

partition P j .

5: Assign the vertex to P j , update D
j
ti and D

j
to.

6: Flag ← 1, Index← j

7: break
8: end if
9: end for

10: if Flag = 0 then ⊲Cannot find an opposite partition for the vertex.

11: Assign the vertex to P 1, update D1

ti and D1

to. ⊲Assign the vertex to the smallest/first partition.

12: Index← 1
13: end if
14: else if Vi < Vo then
15: for j = 1→M do
16: if D

j
ti ≥ D

j
to of P j then

17: Assign the vertex to P j , update D
j
ti and D

j
to.

18: Flag ← 1, Index← j

19: break
20: end if
21: end for
22: if Flag = 0 then
23: Assign the vertex to P 1, update D1

ti and D1

to.
24: Index← 1
25: end if
26: else ⊲Vi = Vo

27: Assign the vertex to P 1, update D1

ti and D1

to. ⊲Assign the vertex to the smallest/first partition.

28: Index← 1
29: end if
30: if DIndex

to +DIndex
ti ≥ C then

31: Remove P Index from the queue.
32: M ←M − 1
33: end if
34: Ascending sort the partition queue P [M ] by Dti +Dto of each partition
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Figure 3: The normalized values of the graph characteristics achieved by the DB policy for Twitter.
Table 8: Experimental setup for each experiment in Section 5.

Section Algorithms Datasets Metrics Threads Network SGN technique

Section 5.2 PageRank Twitter Run time All InfiniBand No

Section 5.3 PageRank Twitter, Scale 26, Datagen p10m ECR, SD w12c14 InfiniBand No

Section 5.4 All Twitter, Scale 26, Datagen p10m Run time, scalability w12c14 InfiniBand No

Section 5.5 All Twitter, Scale 26, Datagen p10m Performance ratio w12c14 InfiniBand, Ethernet Yes

Section 5.6 - Twitter, from Scale 22 to Scale 26 Partitioning time - - -

5 Experimental Results

In this section we conduct comprehensive experiments with different graph partitioning policies, applictions,
and system configurations. We first introduce the experimental setup as far as it has not been mentioned in
Section 4.2. A summary of the experiments, and of the remaining sections, is in Table 8.

5.1 Experimental Setup

Experimental environment: We keep using the same cluster as shown in Table 5. Besides using InfiniBand,
in Section 5.5 we also evaluate the performance on 1 Gbit/s Ethernet. We run all experiments on 16 working
machines, except for the scalability test in Section 5.4, in which we use four different numbers of machines (2,
4, 8, and 32).

Datasets: We will only present the results of executing graph-processing algorithms on large-scale graphs.
In fact, we have also run experiments on a smaller graph, Livejournal [45] (with 4,847,571 vertices and 68,993,773
edges). However, the performance differences of the graph-partitioning policies are quite small in that case. In
Section 5.6, we include four more Graph500 graphs, with the scale factor running from 22 to 25. For these
graphs, the numbers of vertices and edges are doubled with every step of the scale factor.

Algorithms: We select three algorithms based on our survey of graph-processing algorithms [46]: PageR-
ank, Weakly Connected Components (WCC), and Breadth-First Search (BFS). PageRank and BFS propagate
updates through out-edges. WCC propagates updates through both in- and out-edges, and does not need any
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Table 9: Twelve partitioning policies in our experiments.

Policy Streaming Mechanism

R Yes Randomly assign a vertex to a partition.

H [1] Yes Hash partitioning.

LDG [4] Yes Assign a vertex to the partition, which has most neighbours of the vertex.

CB [5] Yes Assign a vertex to a partition with the smallest workload or with the least incremental workload.

I [14] Yes Balance the in-degree of partitions, original policy in PGX.D.

IO [14] Yes Balance the total-degree of partitions original policy in PGX.D.

O [14] Yes Balance the in-degree of partitions, original policy in PGX.D.

RI Yes The I policy using random ordering, proposed in this work.

RIO Yes The IO policy using random ordering, proposed in this work.

RO Yes The O policy using random ordering, proposed in this work.

DB Yes The greedy degree-balanced policy, proposed in this work.

M [15] No METIS, multi-level graph partitioning

parameter. For PageRank, the termination condition is set to maximum 10 iterations. For BFS, we select the
same source vertex for each graph for all partitioning policies.

Partitioning policies: In total, we evaluate 12 graph-partitioning policies: 2 streaming policies (R and
H) commonly used by graph-processing systems, 2 streaming policies (LDG and CB) from the literature, the
3 original streaming policies (I, IO, and O) used in PGX.D, our 4 new streaming policies (RI, RIO, RO and
DB) presented in Section 4.3, and the state-of-the-art partitioner (M). Except for RI, RIO, and RO, all policies
use the sequential ordering of the graphs. We summarize the partitioning policies in Table 9. According to the
experimental results of the CB policy [5], we set its degree threshold percentage to 30 %.

The experiments we have conducted are as follows:

• In Section 5.2, we evaluate the impact of the configurations of worker threads and copier threads.

• In Section 5.3, we measure the workload imbalance of partitions by using the edge cut ratio and the
standard deviation of normalized run-time-influencing graph characteristics.

• In Section 5.4, we show the run time of graph-processing algorithms with different datasets. We also
present the scalability of each partitioning policy.

• In Section 5.5 we report the performance of using Ethernet and the impact of using the selective ghost
node technique.

• In Section 5.6 we investigate the time spent on graph partitioning, considering different numbers of
partitions and graph sizes.

5.2 The impact of the configuration of worker and copier threads

There are many possible configurations with different numbers of worker threads and copier threads. The
configuration of worker threads and copiers threads can significantly influence the performance of PGX.D [14].
In this section, we explore the impact of the thread configuration on 12 partitioning policies.

Key findings:

• The configuration of worker and copier threads has a significant impact on the run time of PGX.D for all
partitioning policies.

• In most experimental runs, the thread configuration w12c14 shows the best performance.

We use four configurations, w24c2, w18c8, w12c14, and w6c20, which give a reasonable coverage of the
possible configurations. Figure 4 shows the run time of PageRank for the Twitter dataset. In general, the best
performance is obtained from either w12c14 or w18c8 for different partitioning policies. We also conduct other
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Figure 4: The run time of PageRank for Twitter with four thread configurations.

groups of experiments, with different algorithms, datasets and machines. In most cases, the configuration of
w12c14 achieves the best performance, and so we empirically use this as our default thread configuration for
the following experiments.

5.3 Workload distribution

In this section we discuss the workload distribution among working machines. The workload includes two parts,
the communication workload between working machines and the computation workload on each machine.

Key findings:

• the edge cut ratio is not a good indicator for the quality of partitioning for real graph-processing systems,
at least when communication is not the performance bottleneck of the system.

• The standard deviation of the normalized run-time-influencing graph characteristics can be used to mea-
sure the imbalance of the computation workload.

• The design of partitioning policies should not only focus on minimizing the communication, but also on
balancing the communication between pairs of machines.

The edge cut ratio (ECR) is defined as the ratio of the number of edges that connect vertices that are placed
in two partitions over the total number of edges in the graph. ECR is used by many previous studies to measure
the total communication workload. We show the ECR of the 12 partitioning policies on Twitter, Scale 26, and
Datagen p10m in Figure 5. Because CB, LDG, and M consider the neighborhoods of the vertex to be assigned
and of the already assigned vertices in each partition, they are the top 3 policies that achieve the lowest ECR
for all three datasets (except that LDG ranks sixth for Datagen p10m). In contrast, the ECR of other policies
is very high, because they assign vertices without considering their neighborhoods.

We use the standard deviation (SD) of the normalized (see Section 4.3 for the normalization) run-time-
influencing (RTI) graph characteristics (i.e., the number of vertices, total out-degree, and total in-degree) to
understand the computation workload across working machines. Figure 6 shows the results for Twitter, which
is partitioned into 16 splits. As shown in Figure 3, the Twitter partitions under the DB policy have balanced

Wp 18 http://www.pds.ewi.tudelft.nl/yong/



Guo et al. Wp

Streaming Graph-Partitioning PoliciesWp

PDS

Wp

Wp5.4 The impact of the partitioning policies on application performance

 0

 20

 40

 60

 80

 100

Twitter Scale_26 Datagen_p10m

E
dg

e 
cu

t r
at

io
 [%

]

Datasets

R
H

LDG

CB
I

IO

O
RI

RIO

RO
DB
M

Figure 5: The Edge Cut Ratio of all partitioning policies for 3 datasets.

RTI graph characteristics, so the SD of all normalized RTI graph characteristics is small. We also find that the
SDs for the CB and LDG policies are significantly higher than for the other policies. The reason is that vertices
are accumulated to very large partitions to reduce edge cuts in CB and LDG. For the M policy, although the
SD of the normalized number of vertices is small, the SDs of the normalized total in-degree and out-degree
are relatively large, which indicates that communication is not balanced between pairs of working machines.
Surprisingly, the random-based policies (R and H) also obtain small SD (we have repeated the R partitioning
5 times with different random seeds and obtained consistent results).

In Figure 7 we show the runtime of PageRank on all 3 datasets for all graph partitioning policies. The
LDG, CB, and M policies result in the longest runtimes, even though they achieve a low ECR. The reason
is that communication is not the dominant workload in PGX.D when using the high-speed InfiniBand, as we
have discussed in Section 4.2. This means that ECR is not a good metric when the communication is not the
dominant part of the workload. We find that in general, the partitioning policy with smaller SD of the RTI
graph characteristics leads to shorter run time, and so SD can be used as a metric to evaluate the quality of
partitioning for computation-dominated processing. Except for the CB, LDG, M, and O policies, the SD of the
other policies is less than 0.5 and their run times are very close to each other. In practice, it is useful to find
a threshold for SD beyond which the run time of graph processing may significantly increase. This threshold
may be determined by analyzing the statistics obtained from many more experiments with various algorithms
and datasets.

5.4 The impact of the partitioning policies on application performance

In this section we present the performance impact of the partitioning policies on the performance of graph
algorithms for different algorithms, datasets, and number of working machines.

Key findings:

• The Degree-Balanced policy achieves good performance, while previous streaming policies from the liter-
ature (LDG and CB) perform the worst.

• the graph structure has an impact on the performance of graph partitioning.
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Figure 6: The standard deviation of the normalized RTI graph characteristics for Twitter for all partitioning
policies (the values of missing bars are too small to display).
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Figure 7: The run time of PageRank for 3 datasets with all partitioning policies.

• Most partitioning policies show reasonable scalability with the increase of the number of working machines
(partitions).

The run time of PageRank for 3 datasets with all partitioning policies is depicted in Figure 7. There is no
overall winner among the partitioning policies, but LDG and CB have the worst performance as the computation
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Figure 8: The scalability of the BFS algorithm for Twitter.
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Figure 9: The scalability of the PageRank algorithm for Scale 26.

workload of for these policies is highly skewed between working machines (see Figure 6). DB achieves good
performance for all graphs. For the Twitter graph, the run time of PageRank is the shortest. Random ordering
cannot always help to achieve good performances evidenced by the O and RO policies for partitioning Scale 26.
The impact of graph partitioning is more significant in highly skewed graphs, such as Twitter and Scale 26.
For Datagen p10m, we see that only CB has obvious performance impact. Both LDG and M yield results
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Figure 10: The scalability of the WCC algorithm for Datagen p10m.

comparative to those other partitioning policies. Simple partitioning policies, such as the commonly used H
policy, perform well for most algorithms and graphs. The reason is that computation is the dominant workload
in our experiments and the H policy balances normalized RTI graph characteristics as shown in Figure 6.

In Figures 8, 9, and 10 we show that most partitioning policies exhibit good scalability when increasing the
number of worker machines up to 16—the benefit of increasing the number of machines from 16 to 32 is not
significant. An important reason is that the workload is not heavy enough when processing the graphs with
more than 16 machines (i.e., the hardware resource is redundant). For LDG and CB, the scalability is not
obvious. To reduce edge-cuts, no matter how many number of partitions, LDG and CB may place vertices to
a small subset of partitions, which dominates the run time of the algorithms. We also find that the random
ordering results in poor scalability, such as the RO policy shown in Figure 9.

5.5 The impact of network and the selective ghost node technique

In this section, we compare the performance impact of using 56 Gbit/s InfiniBand versus 1 Gbit/s Ethernet,
and of using selective ghost node (SGN), which is a commonly used technique in graph-processing systems for
reducing network traffic.

Key findings:

• The run time of graph-processing algorithms on high-speed InfiniBand is orders of magnitude smaller than
on low-speed Ethernet.

• Using the selective ghost node technique may not always have a positive impact on the performance.

We report the performance of InfiniBand relative to Network when running 3 algorithms with Twitter in
Figure 11. In all experiments, using InfiniBand leads to much better performance, from 10 times to nearly 900
times faster than the Ethernet. It is very interesting that the performance ratio can be as much as hundreds
times, while the bandwidth of the InfiniBand is only about 50 times larger than that of the Ethernet. It may
because that the communication is not balanced between pairs of machines. For example, one machine may
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Figure 11: The performance ratio of 3 algorithms for Twitter on InfiniBand relative to Ethernet (vertical axis
has logarithmic scale).

have heavy communication with multiple other machines. Other machines may have to wait that machine to
finish their communication, which makes the data transfer and message processing extremely slow.

We show the performance improvement for PageRank of 3 datasets by using SGN on InfiniBand and on
Ethernet in Figures 12 and 13, respectively. Not all values are positive, indicating that using SGN cannot always
help to achieve good performance, because the time synchronizing ghost nodes can be longer than the run time
reduced by using SGN. Overall, the performance change on Ethernet is larger than that on InfiniBand, because
Ethernet is more sensitive to the change of network traffic.

5.6 The time spent on partitioning graphs

The complexity of the partitioning policies and the time spent on partitioning graphs are also important for us to
determine the choice of policies. Because the M policy is implemented in an offline single-machine partitioner,
and the LDG and CB policies need to acquire the global information to assign vertices, it is non-trivial to
implement these policies in a distributed manner. In this section, we compare the time spent on partitioning
graphs on a single machine.

Key findings:

• The LDG, CB, and M policies need much more time for partitioning graphs than the other streaming
policies.

• The number of partitions has a significant impact on the partitioning time of LDG and CB.

• The partitioning time of all policies increases linearly with the size of the graph.

We first explore the time spent on partitioning the same graph into different numbers of partitions. In
Figure 14, we show the time of each policy for partitioning Twitter into 2, 4, 8, 16, and 32 partitions, respectively.
For the M policy, we use another machine (equipped with two Intel Xeon CPU E5-2699 2.30 GHz processors
and 384 GB memory), because the M policy runs out of memory when using the working machine in Table 5.
LDG, CB, and M are the policies with the longest partitioning time. The M policy applies a multi-level scheme,
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Figure 12: The performance change of PageRank for 3 datasets when using SGN on InfiniBand.
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Figure 13: The performance change of PageRank for 3 datasets when using SGN on Ethernet.

in which the coarsening phase is complex and time consuming. This long partitioning time of M matches a
previous experiment [6], where more than 8.5 hours is needed to partition the Twitter graph using a less powerful
machine. For the assignment of a vertex, the LDG and CB policies need to traverse all partitions to calculate
the number of its neighbors in each partition. To assign some low-degree vertices in CB, counting the edges
between each pair of partitions is also required. The traversal of partitions is very expensive. With the increase
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Figure 14: The time spent on partitioning the Twitter graph into different numbers of partitions for all policies
(vertical axis has logarithmic scale).

of the number of partitions, the LDG and CB policies need to spend significantly more time on partitioning,
because of the complexity of the traversal process. Except for LDG and CB, we observe time increase of DB,
which is incurred by sorting the partition queue, the size of which is equal to the number of working machines.
In practice, the size of clusters are limited, many of which have less than thousands of machines. Thus, the
impact of increasing the number of partitions is limited for the DB policy.

We also investigate the partitioning time on different sizes of graphs. Figure 15 shows the time spent on
partitioning Graph500 graphs with 5 different scales (from Scale 22 to Scale 26). We partition each graph to
16 splits. Similarly to Twitter, we use the same machine with 384 GB memory only for executing the M policy
with Scale 26, because out of memory. LDG, CB, and M are the slowest policies. All partitioning policies
exhibit good scalability with increasing the size of graphs.

6 Discussion

In this section, we discuss how to extend the use of our model and method to more graph-processing systems
and what are the potential directions for the design of future graph-partitioning policies.

6.1 The coverage of our model and method

We discuss in this section the steps to be taken in the future for applying our model and method to other
types of systems. We specifically consider the other two types of multi-phase graph-processing systems, and the
emerging class of accelerator-based graph-processing systems.

In Section 3, we propose a run time model of two-phase graph processing systems, which also encompasses
one-phase systems. In our experiments, we use PGX.D (a real-world production system based on the two-
phase abstraction) as the real graph-processing system. Because we have tested our work on production-quality
code, and because of the simplicity of the conversion between the one-phase abstraction and the two-phase
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Figure 15: The time spent on partitioning Graph500 graphs into 16 partitions for all policies (vertical axis has
logarithmic scale).

abstraction [21], our work also indicates that our method could be applied with trivial adaptations to systems
using the one-phase abstraction.

We now discuss the extensions needed to apply our work to systems based on the three-phase abstraction.
A typical three-phase abstraction is the Gather-Apply-Scatter (GAS) model, which is first implemented in
PowerGraph [24]. Vertex-cut partitioning is often implemented in GAS systems: a vertex can have multiple
copies, each of which is distributed to a working machine. One copy is selected as the master, and others are
mirrors. In GAS, the gather phase collects the local incoming information for vertices, then calculates their
partial vertex values. The apply phase collects all partial values and computes final vertex values. Last, the
scatter phase distribute the update to corresponding edges. There are two periods of communication in the
GAS model, with one period between the gather and apply phases for sending partial vertex values to the
master, and another between the apply and scatter phases for distributing final vertex values to all mirrors. We
extend our run time model to GAS systems, for example, by observing that the run time becomes the sum of
the time spend on each of the three computation phases and the two communication periods in the blocking
I/O mode. Next, we can use our method to pick out run-time-influencing graph characteristics for vertex-cut
partitioning, and proceed design new policies. (Using these steps, we have already completed a preliminary
model for three-phase systems, but we do not report the outcome in this work, as have not proceeded with the
design of new policies and have not conducted meaningful experiments with them.)

An emerging branch of graph-processing systems focus on the use of accelerators (such as GPUs). Currently,
the most well-known GPU-enabled graph-processing systems are single-machine [25, 47, 48]. In the future,
distributed graph-processing systems using hybrid CPU and GPU(s) as computing resources may be designed
and made publicly available. Our method combining modeling and design should be applicable for accelerator-
based systems. To this end, we would first model the run time of the systems, including components, such
as the computation time of the CPU and the GPU(s), the communication time of inter- and intra- working
machines, etc. Then, similarly to what we did in this work, we would need to identify how graph characteristics
relate to performance, and design corresponding partitioning policies for GPU-enabled systems.
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6.2 The design of future partitioning policies

Policies when considering the heterogeneity of clusters. A well-designed and fast graph-processing system may
be selected and used by many graph analysts. The graph-processing system will be deployed on clusters with
different hardware, such as machines with different processors and amount of memory, and different type and
topology of networks. From our analysis and previous knowledge [11, 12], both the computation and the com-
munication processes are important to the run time of graph-processing systems. However, when considering
heterogeneous clusters, the computation or the communication may become the dominant bottleneck of the
system, and thus requiring more in-depth analysis. For example, by using high-speed networks, such as In-
finiBand, the stress from communication can be reduced (see Section 4). Thus, the requirement of minimizing
communication could become less significant, and new policies and system designs on balancing the computa-
tion would lead to performance improvements. In contrast, we may need to give high priority to optimizing
the communication for systems with relatively fast processors and large memory, or with relatively low-speed
networks. The practical techniques used by graph-processing systems (for example, message aggregation, and
other traditional techniques derived from telecommunications and parallel computing) can also affect the rel-
ative priority of balancing computation and of minimizing communication. For heterogeneous clusters with
multiple types of machines and uneven network, it may be necessary to consider modeling the capability of the
entire hardware infrastructure [5].

Policies that balance communication. Minimizing communication is an important target of graph partition-
ing. Metrics, such as the edge cut ratio, have been proposed to depict the amount of communication. However,
minimizing communication is only about the total amount of network traffic. We identify two important sit-
uations when partitioning can lead to lower network traffic yet incur a longer processing run time. The first
situation occurs when most edge-cuts are made between a pair or a small subset of working machines, which
means that the processing run time is determined by the communication between these machines. The second
situation occurs when the speed of creating messages by working machines varies significantly over time. As
we have learned from decades of parallel and distributed computing, message bursts can significantly reduce
performance, and can even lead to system crashes. We envision that for graph partitioning the design of poli-
cies that can balance the communication between machines, and can still lead to acceptable communication
volume, is a very interesting and important direction for future research. The balance of communication should
consider both, inter-machine and intra-machine optimizations. The inter-machine optimization requires a bal-
anced amount of messages between pairs of machines. The intra-machine optimization has to find a sequence
of processing vertices that can distribute the creation of messages evenly.

Policies addressing algorithmic variety in real-world graph processing. Many graph-processing algorithms
consist of a number of iterations, but a few algorithms can still be completed in a single iteration (for example,
local clustering coefficient). The iterative algorithms can be further categorized, by the status and count of active
vertices in each iteration, into stationary and non-stationary [10]. In each iteration of stationary algorithms,
all the vertices are active and they receive and generate the same amount of messages. Typical stationary
algorithms are PageRank, and Semi-clustering [1]. In contrast, only a part of vertices are active in one iteration
for non-stationary algorithms. The amount of messages received and generated are various in different iterations.
Non-stationary algorithms can be further divided into Traversal-Style and Multi-Phase-Style [34], according to
whether a vertex can be re-activated. Traversal-Style algorithms access each vertex only once, for example,
BFS, Single Source Shortest Path [1], and Random Walk [49]. Multi-Phase-Style algorithms can re-activate
vertex to update information, for example, WCC, Maximal Matching [50], and Minimum Spanning Tree [51].

It is challenging to predict and balance the workload of non-stationary algorithms in each iteration, because
we do not know what are the active vertices and developing good predictors has so far proven challenging
and algorithm-specific. Dynamic repartitioning may help solve this balancing problem. However, existing
repartitioning approaches are unable to do so, because they repartition graphs based on information regarding
the current iteration [10] or (in the few cases that have tried this approach so far) the previous iterations [34].
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7 Conclusion

Graph partitioning is an important aspect of achieving high performance when designing and using distributed
graph-processing systems. Many graph partitioning policies have been proposed so far, aiming to minimize com-
munication, balance the number of vertices on each working machine, and reduce the time spent on partitioning,
etc. However, most of the partitioning policies are not designed from the perspective of real-world distributed
graph-processing systems. In addition, the performance of existing partitioning policies has not been evaluated
in-depth on real systems. In this work, we address this situation by proposing models, partitioning policies, and
an experimental evaluation of different partitioning policies in graph processing.

We model the run time of different types of graph-processing systems. We set minimizing the run time
as the objective function of partitioning policies. The models we proposed cover the one-phase and two-phase
systems, using the blocking I/O and parallel I/O modes, in machine-level and thread-level.

We propose a method to identify run-time-influencing graph characteristics by analyzing the run-time model
and by understanding the relationship between different graph characteristics and the run time. Based on
the run-time-influencing graph characteristics, we design new graph partitioning policies to obtain balanced
partitions.

We use many metrics to evaluate the performance of twelve partitioning policies. We select in our experiments
three popular graph-processing algorithms and three large-scale graphs from both real world and synthetic
graph generators. We also evaluate the impact of real-world networks and a commonly used technique in
graph-processing systems. Our results indicate that the newly-designed DB partitioning policy shows good
performance, while existing streaming policies, such as LDG and CB, do not perform well.

We also discuss our preliminary work and ideas regarding the coverage of our model and method, and the
design of future partitioning policies. In the future, we plan to implement a distributed graph-processing system
that can use both the CPU and the GPU(s), and to design corresponding streaming graph-partitioning policies
for this hybrid system.
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