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1
Introduction

Attracted by the dual promise of infrastructure efficiency [43] and widespread uptake [30], large enterprises
and governmental organizations are increasingly using public- and/or private-cloud resources to run their
large-scale business-critical workloads. Although the promises are enticing, hosting business-critical work-
loads is relatively new, and raises many resource management and scheduling challenges. Particularly chal-
lenging is enforcing for such workloads risk-aware service-level agreements (SLAs) that express not only strict
customer demands for high performance and reliability, but also the aversion of enterprises and governments
to the risk of their performance and reliability demands not being met. Traditional datacenters focus on best-
effort execution of workloads, which serves well customer demands in traditional datacenters, but may not be
suitable for risk-aware SLAs and thus may lead to high financial penalties for cloud operators. In contrast to
traditional work in resource management and scheduling in datacenters, in this work we address the research
question of How to manage the risk of not meeting SLAs for datacenters hosting business-critical workloads?

Business-critical workloads are comprised of diverse applications and services needed in daily organiza-
tional life, from common email to custom simulation software [68]. There is strong financial incentive to host
business-critical workloads in datacenters: the cloud-based application market, which includes business-
critical workload hosting, is growing rapidly at over 30% Compound annual growth rate (CAGR) [30], already
exceeds $100 billion/year world-wide [19], and will likely contribute as much to the GDP of the European
Union, by 2020 [30].

Managing business-critical workloads means adapting to new workload characteristics. According to
Shen et al. [68], business-critical workloads are significantly different from the workloads previously ad-
dressed by the datacenter research community, and in particular from parallel production workloads [33],
grid workloads [44], desktop grid workloads [51], and the analytics workloads common at large web-scale
companies (e.g., Facebook [17], Google [61], and Taobao [63]). One major difference is that business-critical
workloads are typically expressed as streams of requests for (non-transparent) VMs, instead of explicit queries
or requests to execute a specific application, mainly because for datacenter customers details about their
software are too sensitive to reveal.

The operational model emerging in datacenters hosting business-critical workloads focuses on long-running
virtual machines (VMs)—instead of submitting traditional jobs or user-requests to the cloud operator, orga-
nizations lease VMs from clouds offering Infrastructure-as-a-Service, such as Amazon AWS, and run their
workloads on these VMs; in turn, VMs run on powerful physical machines residing in large-scale datacenters.
This means a shift from the traditional focus on job runtime, to a renewed focus on reliability and availability
of resources (a form of resource utilization). We discuss this operational model in Section 3.

There are many types of risks in hosting business-critical workloads in datacenters: operational risks of
customer requests not being responded to in time, reliability risks of requests failing, etc. These risks affect
many datacenter stakeholders: DevOps engineers, reliability engineers, infrastructure engineers, business
and legal representatives, capacity planners and business managers, etc.

Datacenters already span a large number of powerful computers, high-performance networks, and large-
capacity storage systems [9]. Meeting complex SLAs in such datacenters requires monitoring and reasoning
about diverse operational metrics, to an extent that exceeds since at least the early 2010s the capabilities of
unassisted engineers [8]. Although many automated scheduling approaches exist, over the past two decades
numerous studies [32, 50, 72] have shown that datacenter schedulers are brittle—different schedulers will ex-
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2 1. Introduction

hibit different periods of poor performance that in turn lead to unexpected performance issues, unnecessary
resource overload, and even to (cascading) failures. Instead of trying to develop scheduling policies capable
to address all possible workloads, which is error-prone and ephemeral [74], it may be possible to dynamically
select active scheduling policies from a pool of available schedulers.

Selecting the active scheduler, while meeting the SLAs of business-critical workloads, in particular ad-
dressing risk, is the focus of this work. Current approaches to select schedulers dynamically either combine
the use of simple scheduling policies with human expertise [50], or rely on a dynamic meta-scheduler, such as
a portfolio scheduler [23, 66, 74]. Addressing the research question, in this work we extend the state-of-the-art
in portfolio scheduling for datacenters with explicit risk management. Our main contribution is five-fold:

1. Significantly extending the state-of-the-art in portfolio scheduling with two types of risk (Section 4).

2. Three risk-aware utility functions which are used by the portfolio scheduler to activate one scheduler
over another (Section 4.3).

3. Two heuristics-based risk-aware scheduling policies to address the new risk-aware utility functions
(Section 4.4).

4. A method for selecting schedulers based on a novel CPU-contention predictor, which we use to esti-
mate the risk of SLA-violations (Section 5).

5. New insight into the operation of portfolio scheduling in datacenters, through trace-based simulation
using traces collected from real datacenters (Sections 5.5 and 6).



2
Background

In this chapter we provide background information about the workload type we investigate on this work,
the business-critical workloads. We refer to the state of the art in risk management in clouds and in the two
main topics in this work, the quantification of resource contention and portfolio scheduling as a concept in
computer science.

2.1. Business-Critical Workloads
Business-critical workloads [68] are comprised of applications that have to be available for the business to
not suffer significant loss. The applications span a broad range of user-facing and back-end services, often
including email, database, CRM and collaborative, and management services. When these services experi-
ence downtime or even just low performance, they often lead to loss of revenue, of productivity, etc., and may
incur financial loss, legal action, and even customer departure.

Business-critical workloads are different conceptually from other workloads common in datacenters, for
example, from mission-critical workloads, which are for instance software that operate production lines, and
from incidental workloads, which represent jobs of relatively short duration that are sent to the datacenter
infrequently.

In this work, we use business-critical workloads as our testing workloads because of their importance
in enterprise reliability and growth. Another reason to investigate this type of workload is the diversity of the
constituent application types providing a real challenge to schedule them under multi-objective optimization
goals.

A representative trace of business-critical workloads can be in found in Grid Workloads Archive [44] (trace
GW-T-12).

2.1.1. Characterization of Business-Critical workloads
Business-Critical workloads differ from other workload types not only on conceptual level as mentioned, but
also on their characteristics on resource-utilization level. Technical report [67] presents a comprehensive
statistical characterization of BCW trace found in Grid Workloads Archive [44].

The analysis presents results by investigating basic statistics, correlations between different resources and
time-patterns of resource utilizations. The applications of BCW have strong correlations for the provisioned
resources of CPU and memory but weak correlations for the used resources of the same resource types. In
addition, provisioned and used resources are weakly correlated for all the investigated resource types. Finally,
network and storage utilizations are regularly on low levels but show extreme bursts during time periods
under daily patterns.

The main findings of the business-critical workload characterization and their differences with other
workload types are:

• More than 60% of the VMs use less than 4 cores and 8 GB of memory which is a relative to parallel
workload jobs.

• Resource usage is low, under 10% of the provisioned resources, compared to the (high) utilization of
scientific workload jobs. This gives opportunities for consolidation, subject to SLAs and risk tolerance.
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4 2. Background

• Peak workloads can be 10–10,000 times higher than mean workloads, depending on resource type. This
is a challenge for guaranteeing SLAs as scheduling should consider these peak times and the severity of
risky time periods that peak times induce.

2.1.2. SLAs
The main reason of companies moving their infrastructures from private to public clouds is the maintenance
costs of a private datacenter and the upgrade costs of the continuously changing hardware. Using public
clouds though, may have some implications for the job performances. The same resources are used by several
jobs and schedulers try to evenly share the resources in terms of time. In addition, the resource management
of public clouds are not managed by the cloud customers, thus customers cannot control the infrastructure
operations. For these reasons, cloud providers offer agreements to customers assuring job performances.

A Service-Level-Agreement (SLA) is a contract between cloud providers and customers describing the
requirements of customer jobs. These requirements refer to performance levels that job execution should
meet according to customers. The required performance levels mainly refer to the availability of the public
resources for usage as well as job execution times. The customers periodically receive reports by the cloud op-
erators presenting the performance of customer jobs and possible SLA-violations of them. In case providers
do not meet the agreed SLAs, there are financial penalties paid to customers.

For Businness-Critical workloads, SLAs extend to consolidation limits of virtual machines on physical ma-
chines as runtimes of mission-critical jobs cannot afford high latencies. In addition, there are SLAs requiring
full recoverability of customer workloads in case of datacenter failures (e.g., power outage).

2.2. Risk Management in Clouds
Risk management in clouds includes an increasing body of work on SLAs between cloud customers and op-
erators. Following more than a decade of evolution in the context of grids [22, 79], the state-of-the-art focuses
on defining various system properties and SLA types [78], on negotiating and brokering SLAs [10, 25, 49], on
monitoring for [20] and assessing SLA-violations [24, 54], and on selecting clouds who minimize them [35]
and other aspects of SLA-lifecycle management [55]. Our work extends risk definition and management with
two new types of SLA elements—operational risk of performance degradation due to consolidation and the
reliability risk of datacenter disaster.

2.3. State-of-the-Art in Quantifying Resource Contention due to Virtual-
ization in Datacenters

Resource contention is a major issue in clouds as resource sharing is the common technique to co-host cloud
services. Research on the filed of predicting resource contention focuses on estimating the performance
degradation of cloud services by co-hosting particular types of workloads and on using this knowledge to
scheduling workloads.

The current research approaches the resource contention problem by estimating the contention of a spe-
cific resource type at a time. There are many components in a machine that contribute to the resource utiliza-
tion of every resource type, thus addressing contention even of one resource type is a challenge. In [57], [13],
authors estimate the performance degradation of applications due to memory contention derived from the
related components as memory controller, memory bus and cache. In [48], predictions of execution times of
storage commands are used towards a fair scheduling in terms of storage contention and in [82], a host-level
scheduler considering network contention achieves performance improvement with better VM placement.
In [62], the CPU utilization is predicted resulting to scheduling the applications concerning CPU contention
levels.

Another approach of quantifying resource contention is by measuring the response times of applications
running in co-hosted environments. In [28], the authors predict the contention level that an application
experiences by comparing the response times of the application when is co-hosted with other applications
and when runs alone in the system. In [81], an automated method is used to identify the resource type of the
application which suffers the most from contention and estimates how the contention affects the application
response-times.

Our work on quantifying resource contention focuses on CPU contention as one of the major perfor-
mance factors in business-critical workloads. Our work differs from the state-of-the-art in quantifying re-
source contention as it estimates the contention levels of VM by a straightforward prediction of a contention
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metric and not by inferring it from deviations of performance levels. In addition, we do not investigate ex-
ternal application metrics such as the response time, but we focus on metrics of internal VM states such as
resource-level metrics.

The aforementioned features of our predictor estimating resource-level metrics declare also the reason
why we investigate a new CPU contention predictor. Business-critical workloads, as mentioned in Section 1,
comprise opaque VMs and it is not possible to measure the performance levels of the applications running
in the VMs. Furthermore, the levels of response times of applications in business-critical workloads are not
relevant, therefore a predictor estimating such metric cannot be used.

Our method on selecting the best CPU-contention predictor for business-critical workloads is described
in Chapter 5.

2.4. State-of-the-Art in Portfolio Scheduling
Portfolio scheduling originates from the field of finance and has been added several stages throughout the
years towards its creation. The concept of computational portfolio design which adapts portfolio scheduling
to work on hard computational problems is introduced in [42]. The application of the concept to scheduling
in datacenters is presented in [23] and further studied in [73], [74] and [65].

In contrast to works in [23], [65] and [73], our work adds the focus on risk management which is a new
problem greatly extending the scope of portfolio scheduling. This much larger focus leads to the design of
new families of risk-related utility functions and of new scheduling policies (risk-aware portfolio scheduling).
In contrast to [74], we provide much more comprehensive work in experimental analysis by investigating
when transitions between selected scheduling policies occur and how the portfolio selections affect the utility
functions over time.

Figure 2.1: Portfolio Scheduling Stages.

Stages in portfolio scheduling Figure 2.1 presents the stages of portfolio scheduler creation. Stage 1 is
designed to provide a set (portfolio) of meaningful scheduling policies that will be considered by portfolio
scheduler and Stage 2 focuses on the process of scheduler selecting the policies. Stage 3 applies the policy
selected in the previous stage and integrate the new system status to the current datacenter infrastructure. In
addition, monitoring of portfolio scheduler’s operations take place in Stage 3. The Stage 4, the Self-Reflection
stage, addresses the concept of eliminating scheduling policies from the selection process to make faster
decisions with the same quality. In this work we added stage 0, in which we perform the work of creating
utility functions based on datacenter operator requirements.





Figure 3.1: Topology and operation of virtualized datacenters hosting business-critical workloads.

3
System Model for Virtualized Datacenters

Hosting Business-Critical Workloads

We use in this work the system model for virtualized datacenters hosting business-critical workloads intro-
duced by van Beek et al. [74]. We describe the datacenter and the workload models, in turn.

3.1. Virtualized Datacenters Architecture
The architecture consists of a collection of inter-connected datacenters that use of the shelf virtualization
technology, such as hypervisors on each node and the system-wide VM Manager, to host the VMs of business-
critical workloads. Each datacenter consists of one or several clusters of physical machines that can host VMs,
and a cluster-wide parallel storage system. A high-speed network operates inside each datacenter; we use in

7



8 3. System Model for Virtualized Datacenters Hosting Business-Critical Workloads

this work an all-to-all Infiniband model, but a Clos topology [69] could also be used in our model without
changes.

The typical operation of this architecture is depicted in Figure 3.1. In the top row (the section labeled “Re-
quests” in Figure 3.1), workload arrives in the system as requests for hosting, one or several VMs, grouped as
vClusters. Datacenter customers define their own vClusters, including detailed resource specifications (e.g.,
memory in GB, amount of CPU cores, storage space in TB), affinities between VMs (e.g., that one VM is not
allowed to be in the same datacenter as another). In the middle row, core resource management and schedul-
ing components respond to requests. The VM manager orchestrates the placement of VMs on the physical
machines. The System monitor collects the status of each customer request and system component, at run-
time. A non-traditional component is the system meta-scheduler—the new Portfolio Scheduler component.
The main intuition for using a portfolio scheduler is that, instead of using the elusive single scheduler that
can always work well in the changing datacenter, a portfolio scheduler [23, 74] uses a set of schedulers from
which it dynamically selects the scheduler which promises to deliver the best performance until the next
selection. Unlike previous dynamic schedulers [72], portfolio scheduling relies on a rigorous configuration-
selection-application-reflection cycle. In the bottom row we show the physical infrastructure that hosts the
vClusters (collections of VMs).

3.2. Business-Critical Workloads
We focus in this work on large-scale business-critical workloads, which have the following reported charac-
teristics [68]:

1. Requests arrive in the system not as specifications of jobs, but as specifications of VMs that will run
jobs (the vClusters introduced in Section 3.1).

2. Long run-times—VMs often run for months or years. In contrast, scientific workloads consist mainly
out of shorter-lived jobs that run for only hours or days.

3. Consequence of point 2, reducing VM-runtime is not a performance goal here, unlike traditional work-
loads.

4. Most VMs are small relative to parallel workload jobs, that is, over 60% of the VMs use less than 4 cores
and 8 GB of memory.

5. Most VMs have very low resource utilization compared to scientific workload jobs, that is, over 50% of
the VMs have an average utilization of under 10%. This gives opportunities for consolidation, subject
to SLAs and risk tolerance (see following).

Industry partners have indicated to us that business-critical workloads have additional important prop-
erties:

1. VMs of business-critical workloads can be consolidated on the same physical resource, which contrasts
with many parallel and grid jobs. Datacenter operators have to limit the consolidation rate such that
VMs can perform according to SLAs. For example, rarely more than 10 VMs can be consolidated on
the same physical machine, and for reliability purposes the VMs of a vCluster may request to run in
different datacenters.

2. The operational risk tolerance is low. A small fraction of under-performing VMs quickly leads to an
escalated request for engineering time, until it is resolved, which is unscalable and costly.

3. The risk tolerance for VM failure is high for single-VM failures, but the risk tolerance for disaster-recovery
for (near-)full-datacenter outages is very low. An hour of downtime cascading across many VMs will
incur high financial penalties and damage datacenter reputation; instead, the cloud operator should
recover from disasters quickly, by having other datacenters absorb the workload of the failed datacen-
ter.



4
Portfolio Scheduling for Managing

Operational and Disaster-Recovery Risks

To manage (reduce) operational and disaster-recover risks in datacenters, in this section we design a risk-
aware portfolio scheduling to select dynamically the schedulers that guide the placement of VMs in a (multi-
)datacenter environment.

4.1. Requirements When Hosting Business-Critical Workloads
(R1) Mitigate Operational Risk: The placement of VMs must take into account SLAs regarding service perfo-
mance. The Operational Risk is the risk of not achieving service-perfomance SLAs. In this work, we use the
VM CPU-performance as the service-performance indicator.

(R2) Guarantee Disaster Recovery: The placement of VMs must ensure that workload from a failed datacen-
ter can be absorbed by remaining datacenters. The Disaster-Recovery Risk is the risk of not achieving this type
of SLA.

(R3) Balance Multiple Optimization Objectives: the scheduler must be able to balance multiple SLAs with
cloud operator’s cost-related goals. In this work, we consider the cost-related goal of high utilization of re-
sources through consolidation, balanced with the SLA objectives identified in R1 and R2.

(R4) Adapt Dynamically to New Workloads: The scheduler must adapt dynamically to new or changing
workloads, which are common in datacenters that host business-critical workloads. The scheduler should
additionally have the functionality to handle changing requirements of the datacenter operators (e.g., new
optimization goals).

(R5) Explain decisions to human operators: The scheduler must explain scheduling decisions to datacenter
operators, so that they can understand why specific policies were selected.

4.2. Overview of the Portfolio Scheduling Architecture
We propose in this section an architecture for risk-aware portfolio scheduling. Portfolio scheduling is the
cyclic, multi-stage process of configuration, selection, application, and reflection that promises the dynamic
use of the best scheduling policy for each decision. We extend the state-of-the-art in portfolio scheduling
for datacenters [23, 74] to an architecture for risk-aware portfolio scheduling, where each stage of the cyclic
process takes into account notions of risk. Specifically, our new architecture uses new risk-aware utility func-
tions, new risk-aware scheduling policies, and a new method to simulate the datacenter that considers CPU-
contention accurately.

Our architecture for risk-aware portfolio scheduling, depicted in Figure 4.1, receives as input requests for
vClusters (see Section 3.1), which are queued (box labeled “Workload” at the top of the figure). We describe
in turn the other components in the figure that implement the multi-stage cycle of the portfolio scheduler.

Utility Functions represent the optimization requirements given by datacenter stakeholders (see Section 1).
New in this work, we allow for risk-aware utility functions, such as operational risk (R1) and disaster-recovery
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10 4. Portfolio Scheduling for Managing Operational and Disaster-Recovery Risks

Figure 4.1: Architecture for risk-aware portfolio scheduling.

risk (R2). We introduce in Section 4.3 three risk-aware utility functions (“OR”, “DRR”, and “DOR” in Figure 4.1)
and discuss how they capture requirements (R1) and (R2).

Similarly to the creation of utility functions, new in this work we allow the Portfolio of Policies to consider
not only traditional but also risk-aware scheduling policies. We introduce in Section 4.4 two new scheduling
policies that respond to requirement (R3).

Addressing (R4), the Datacenter Simulator, the CPU-Contention Predictor, and the Policy Selection compo-
nents all focus on selecting policies from the portfolio. The Datacenter Simulator uses simulation to estimate,
independently for each policy in the portfolio, the performance and risk score of each policy according to the
utility function in use. Each simulation receives as input live performance data from the datacenter Perfor-
mance Monitor component. A key issue is the ability of the simulator to cope with virtualized environments,
in particular to estimate performance degradation due to consolidation; we address this issue with a CPU-
Contention predictor, in Section 5. (We have investigated methods that successfully limit the time given to the
simulator without significant performance degradation for the portfolio scheduler in our previous work [23].)
Finally, Policy Selection includes the creation of metrics and mechanisms to select a policy, based on utility
functions and on the output of the simulation process. Additionally, this component also provides data used
later to explain the decisions (R5).

The VM manager [for] Policy Application applies the policy selected in the previous stage, and integrates
our scheduler with existing datacenter infrastructure management tooling. The Report (on Operational and
Disaster Recovery Risk) component is used by datacenter stakeholders, in particular engineers, for observing
the operation of the portfolio scheduler, understand it (R5), and perhaps tune it. In Section 6, we use real-
world workload traces to show the effects of using Reporting over time.

4.3. Risk-aware Utility Functions
To address requirements R1, R2, and R3 (Section 4.1) we design three new risk-aware utility functions. Our
Operational Risk utility function addresses the risk of resource contention due to resource oversubscription.
Our Disaster-Recovery Risk utility function expresses the risk of not being able to recover from a complete
datacenter failure. The SLAs with regard to availability dictate that the non-failed datacenters should be able
to absorbe the workloads from the failed datacenter. Finally we design DOR, a utility function that combines
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the Operational Risk and Disaster Recovery Risk, responding to the requirement for managing multiple risks
at the same time. We describe each utility function in detail in the following sub-sections.

4.3.1. Operational Risk (OR)
Responding to R1, we define OR as the risk that VMs will not receive the requested amount of resources. In
this work, we consider explicitly CPU resources; more resources can also be considered [41]. In Equation 4.1,
we define OR (ro) as the proportion of resource demands (D t ) that can be met by the used resources (Ut ),
over a period time (T ). The values give an intuition of the severity of performance degradation that VMs may
experience, with lower values interpreted as better.

ro = 1

T

∫
T

D t −Ut

D t
d t ∈ (0,1] (4.1)

4.3.2. Disaster Recovery Risk (DRR)
Requirement R2 describes the need for guaranteeing the ability to absorb full-datacenter failures when mul-
tiple (n) datacenters are present. DRR presents the risk for not meeting this requirement, by expressing to
what extend the remaining datacenters can absorb the workload of the failed datacenter. In Equation 4.2, we
define DRR of a datacenter in a multi-datacenter infrastructure as rdi , where the workload in datacenter i is

Wi , and EÙ
i is the complement empty-space (that is, the empty space in all datacenters excluding datacenter

i ). In Equation 4.3, we use the geometric mean to combine the normalized score of individual datacenters
into a single value of DRR for an entire multi-datacenter system (rd ).

rdi =


Wi−EÙ

i

EÙ
i

, Wi ≤ EÙ
i

Wi−EÙ
i

Wi
, Wi > EÙ

i

∈ [−1,1] i ∈ [1, . . . ,n] (4.2)

rd = n

√∏
i

rdi +1

2
∈ [0,1] i ∈ [1, . . . ,n] (4.3)

In this work, we consider memory as the most prominent resource when computing Wi and Ei . When
hosting business-critical workloads, it is common to guarantee the reservation of memory resources, which
means that this resource is not over-provisioned but it needs to be guaranteed on a per VM basis. Thus,
memory demands cannot be absorbed, if the empty space is insufficient.

4.3.3. Disaster–Operational Risk (DOR)
Requirement R3 emphasizes the need for complex utility functions, that can be used to construct practical
SLAs. Meaning that datacenter operators need to reduce multiple risks and other datacenter optimization
goals such as operational cost. In addition, when discussing system status and performance, datacenter
stakeholders often need a few or even a single (utility) value that represents the current risk level of the dat-
acenters. For DevOps engineers and site reliability engineers, a single value simplifies an already complex
monitoring process, especially useful when immediate action is required to improve risk levels.

Addressing R3, in this work we design the DOR risk, which combines the utility functions for both OR
and DRR. In Equation 4.4, we define the combined utility function, rod , as a weighted average of the two risk
metrics, where wo and wd are the weights, respectively. We analyze the impact of these weights on the risk
exhibited by the system, in Section 6.2.

rod = wo · ro +wd · rd

wo +wd
∈ [0,1] (4.4)

4.4. Portfolio Creation
In this section, we design two new scheduling policies for placing the VMs of vClusters to physical datacenter
clusters. As customary for this level of scheduling, we assume that a cluster-level scheduler (e.g., VMware’s
DRS, Condor, and Mesos) will take the placement request and actually run the VM on the physical machines
of the cluster. Besides these policies, the portfolio scheduler can be equipped with many other policies; as
described in Section 5.5.2, we include seven more policies in our experiments.

The two policies we design aim to balance the contention on CPU resources, and to maximize the consol-
idation of VMs on physical hosts, respectively. Reflecting R3, these policies align with the SLAs (e.g., service
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Algorithm 1 Mean Contention Duration (MCD)

Input: V a new Virtual Machine, C all the Clusters;
1: P = [] (contention per cluster)
2: for c ∈C (all clusters) do
3: ε= 0 (the contention)
4: for v ∈ c (all VMs in cluster c) do
5: p = (ΣDv )/|Dv | (mean contention duration for v)
6: ε= ε+p
7: end for
8: P [c] = ε/|c| (normalize for the number of VMs)
9: end for

10: sort P (in increasing order of mean contention)
11: for c ∈ P do
12: Break if V fits
13: end for
14: if the V fits in no cluster escalate to Engineer
15: return Cluster mapping for VM placement

performance) and business goals (e.g., minimizing the physical footprint and cost) that datacenter operators
face when hosting business-critical workloads.

For simplicity, we present in this section single-VM versions of our policies. We have implemented and
used in Section 6 vCluster (multi-VM) versions, which derive trivially from the single-VM versions presented
here.

4.4.1. Mean Contention Duration (MCD)
Intuitively, VMs should suffer equally from performance degradation due to co-hosting. This contrasts to the
possibility of having most VMs not suffer at all, while a few VMs suffer greatly. VMs that suffer greatly lead to
SLA violations, e.g., performance-related, and to financial and other penalties.

Addressing the intuition, we design the MCD heuristic policy listed in Algorithm 1. MCD aims to balance
long-term contention, and thus VM suffering, across all clusters. First, MCD computes the mean duration of
the period for which VMs suffer of contention, per cluster (lines 2–9). In the simulator, instead of a real-world
measurement, contention (line 5) is estimated using the predictor from Section 5. Second, MCD sorts the
clusters by mean contention, lowest first (line 10). Finally, MCD places each VM in the cluster with the lowest
contention that can fit the VM (line 11).

4.4.2. Maximum Consolidation Load (MCL)
Intuitively, increasing consolidation, that is, the number of VMs sharing the resources of a set of physical
machines, leads to higher profit for the datacenter operator, because physical machines that are not occupied
by any VM can be selectively powered off [34]. For operators, this is one of the important ways of reducing
datacenter cost.

We design the MCL heuristic policy listed in Algorithm 2 to maximize the consolidation of VMs on physical
clusters. the sum of resources used by all the running VMs in the cluster. Per cluster, MCL calculates (lines
2–5) the gap over time between requested and actually used resources. Because VMs for business-critical
workloads are often over-provisioned, as indicated in Section 3.2, the cumulative gap is often large. Then,
MCL sorts the clusters by gap, largest-gap first (line 6). Finally, MCL places a new VM in the cluster with the
biggest gap where it fits (lines 7–9).
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Algorithm 2 Maximum Consolidation Load (MCL)

Input: V a new Virtual Machine, C all the Clusters;
1: U = [] (unused resources per cluster)
2: for c ∈C do
3: uv (unused resources for VM v)
4: U [c] =Σuv , v ∈ c (unused resources in cluster c)
5: end for
6: sort U (in decreasing order of unused space)
7: for c ∈U do
8: Break if V fits
9: end for

10: if the V fits in no cluster escalate to Engineer
11: return Cluster mapping for VM placement





5
Scheduler Selection With a novel

CPU-Contention Predictor

To address requirement R1, any portfolio scheduler must address a special problem of service performance
in virtualized datacenters: when multiple VMs are co-hosted on the same physical machine, any of the VMs
may experience transient performance degradation, caused by the contention for resources between multiple
VMs.

To address this problem during scheduling, the portfolio scheduler must be able to anticipate contention
in the simulations conducted during the “Scheduler Selection” stage. In this section, we design a new compo-
nent of the simulator that is used to estimate contention. Additionally we propose a method to select policies
from the portfolio based on the level of predicted contention.

We focus in this work on CPU contention, which is likely to occur because SLAs business-critical work-
loads allow for CPU resources to be over-committed (unlike, for example, memory resources, for which SLAs
require it to be guaranteed as non-shared). Because a fraction of business-critical workloads do require full
access to the CPU (e.g., HPC-like applications) predicting contention is vital to making good scheduling de-
cisions.

In this work we design a CPU-contention predictor that can use data available in simulation. Ours is the
first predictor able to address CPU-contention in VMs hosted in clouds.

5.1. Overview
Following the conceptual map of portfolio-scheduler description in Figure 2.1, we set the requirements to
address issues of stage 2 on the portfolio scheduler to cope with virtualized environments, and in particular
to estimate performance degradation in the system in order to quantify the corresponding risks (see Sec-
tion 4.3). The requirements we identify are the following:

(R1) Measuring Performance Degradation in Simulation Process: Cloud applications may suffer from per-
formance degradation when the consolidated VMs contend constantly for the same resources. To investigate
the risks of SLA violations due to the decrease of VM performance, we need to measure the performance
levels. Because of the different VM placements portfolio scheduling investigates, monitored contention data
cannot be used since it reflects the contention in a specific setup. Therefore, measuring the potential perfor-
mance degradations of VMs in different system setups needs a predictor.

(R2) Representative Predictor depicting contention in real environments running business-critical work-
loads: After investigation, there might be many good predictors estimating CPU contention in clouds. We
have to define a screening process to identify the best among them in terms of accuracy and speed, two key
elements for the quality of simulator.

5.2. CPU-Contention
There are many types of resouce contention that occur in cloud systems. Cloud applications run together
with different workloads resulting in non-synchronized accesses to the shared resources. This leads to cases

15



16 5. Scheduler Selection With a novel CPU-Contention Predictor

where co-hosted applications contending for the common resources and not receiving the demanded re-
source amounts.

Research in the field of identifying the reasons of resource contention [62],[13] focus on CPU and memory
unavailability when the applications demand such resource types. In this work, we investigate the contention
in CPU resources as CPU is allowed to be over-committed by typical SLAs unlike, for example, memory re-
source which is guaranteed to be non-shared. Furthermore, application types of business-critical workloads
such as HPC-applications require full access to the CPU to run efficiently.

CPU-Contention Metrics There are a couple of contention metrics engineers use to monitor contention in
systems [75]. All of these can be directly retrieved by the Performance Monitor even for short time durations.
Such metrics are the CPU-Ready (ms and %), the CPU Contention (%) and the CPU co-stop (ms). There are
also other metrics which can be used indirectly for measuring contention in the system by exploiting the
relations between the metrics. One example of this is the relation of CPU-run and CPU I/O wait indicating
the time durations a CPU core spends on running and on waiting for I/O calls respectively.

CPU-Ready Metric In this work, we use the CPU-Ready as our contention indicator which measures the
time a VM is ready to run but waits to be scheduled to run on the physical CPU [75]. The ready time increases
when the scheduler is busy handling many waiting VMs which in turn have different provisions of cpu-cores
and diverse resouce demands. The CPU-Ready metric has become the de facto standard for engineers to
measure contention problems, thus we consider it as good indicator to the problem.

In Figure 5.1 we depict the contention durations of VMs retrieved from a subset of an operational trace
of business-critical workloads running in three datacenters. To the best of our knowledge, it is the first work
presenting contention periods of a production workload. The contention durations are calculated by mea-
suring the consecutive timestamps of VMs that CPU Ready metric is above 10%. We observe a heavy-tailed
distribution with few VMs having max contention durations of at least 1 hour (13%) while the mean duration
of at least 1 hour is attributed to even fewer VMs (4.2%). The outliers of the figure depict a small number of
VMs whose contention durations reach up to more than 2 weeks.

Figure 5.1: CCDF of contention Durations (min) in business-critical workloads.
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5.3. Selection Method
We follow the modeling process described in [81] which can select a suitable model among various regres-
sions models. The process is split into three steps as shown in Figure 5.2. More about the Regression Analysis
process and relative terms can be found in Appendix A.2.

Firstly, we find correlated metrics to CPU-Ready metric from a set of monitored metrics (raw metrics - Step
1). The correlated metrics are candidates for independent variables of the predictor (regressors-predictor in-
put) and the CPU Ready is the dependent variable of the predictor (predictor’s output). Secondly, we select
the correlated metrics from the first step and try out combinations of the selected metrics with different re-
gression models to evaluate their accuracy (Step 2). In the end, we choose the regression model and the
combination of regressors that together give the best accuracy of predicted values considering also the pre-
dictor runtime (Step 3). The values which the model predicts are the CPU-Ready values of VM v at time t
since every VM experiences the contention according to individual characteristics.

Figure 5.2: Selection Process. The Ellipses indicate sets of elements while the rectangles indicate a process.

5.3.1. Correlation-based Selection (Step 1 in Selection Method)
Addressing the first research sub-question, we collect multiple operational metrics and find their correlation
with the CPU-Ready metric (Step 1 in in Figure 5.2). The metrics that have the highest correlations according
to some boundaries are selected for the second step of the process.

There are hundreds of operational metrics that can be monitored and be candidates of our selection. The
monitored metrics represent different levels of operations in VMs and in clusters starting from hardware per-
formance counters of cpu cores up to cluster resource utilizations. The research in [13] and in [81] investigates
many metrics for their purposes but we focus only on metrics showing the resource utilizations of VMs and
of clusters preserving the concept of opaque VMs. As a result (see Results for Predictor Selection - Section 6),
we end up with a high accurate predictor even if we start with only a few raw metrics (25 metrics).

We monitor the set M (see Figure 5.2) of metrics which consists of 25 performance metrics of VMs and of
clusters. The performance metrics monitor all the four resource types we investigate in this work (CPU, mem-
ory, storage,network) and include metrics showing the resource utilizations (e.g. read/write KBs in network,
used MBs in memory) and latencies of VMs (e.g.,read/write latency in storage, cpuWait in CPU).

Correlation in time-series We collect VM traces in Solvinity for almost three months (see Section 5.5 - Ex-
perimental Setup). The VM traces comprise of all the traces of the M metrics including the time-series of
CPU-Ready. For each VM, we evaluate the correlations between the VM’s CPU-Ready and the VM’s metrics in
the M set. The VM correlations regarding metric M j and CPU-Ready are aggregated first by cluster (a VM is
hosted by one cluster) and then by all the clusters reported in traces. In the end, for each metric M j ∈ M , we
have an aggregated correlation value depicting the correlation of the metric with CPU-Ready as well as the
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p-value of the correlation. The p-value presents the validity of the correlation whether the correlation value
is wrongly as high as it is calculated. The mean correlation coefficient of the correlation values of VMs and
clusters is calculated using z-transformation [21] since the correlation coefficients are not additive quanti-
ties (ordinal scale type) to compute their average directly. To aggregating the p-values, we double the mean
of the individual p-values [76].

Different correlation coefficients To calculate the correlations, we use two correlation coefficients and we
present the result of both correlations in Section 6. The two coefficients, Pearson and Spearman, reflect dif-
ferent behaviors of data. Pearson’s correlation (r ) measures the linear relationship of data but it is susceptible
to outliers. On the other hand, Spearman’s correlation (ρ) measures a monotonic relationship of the variables
because it applies ranks to data values and is more robust to outliers.

We use two different correlation types because, in Step 2 in the Selection Method, we investigate multiple
regression models some of whom work better with linear data and other regress data accurately even with
non-linear relationships among regressors.

In the end of the correlation step, we choose set M ′ ⊆ M which includes the metrics with the highest
correlation(r /ρ) with CPU-Ready and the lowest p-values (p < 0.05).

5.3.2. Model Accuracy (Step 2 in Selection Method)
Addressing the second research sub-question, we investigate multiple regression models to end up with the
best model in predicting the CPU-Contention in the system. Step 2 in Figure 5.2 shows the process we follow
to measure the accuracy of regression models given a set of input metrics (regressors).

As set of possible regressors for a regression model, we have the output of step 1 in Selection Method (set
M ′) and it contains the most highly-correlated metrics with CPU-Ready among the raw metrics of set M . For
each regression model in set G of regression models, we try out every combination of metrics in M ′. The
combination of metrics may comprise of one up to the total number of available metrics |M ′|, therefore we
define the power set P = P (M ′) containing all the possible subsets of set M ′ as the input in Step 2.

Every regression model Gi (P j ), where Gi is a regression model in G using as regressors the subset P j ∈ P , is
tested with cross-validation to measure the accuracy of the regression model. After calculating the accuracies
of every possible Gi (P j ), we select the best model (Step 3) under conditions explained in Section 5.3.3.

Cross-validation Cross-validation is a technique for model validation and is used to estimate how accu-
rately a predictive model will perform in practice [60]. A predictor may work well with specific input datasets
but may not generalize the same to an independent dataset. Therefore, by changing the input multiple times
cross-validation achieves to reduce this uncertainty of a falsely good predictor. The technique splits the in-
put dataset of the predictor into k folds of which some are used as the training dataset while the rest folds
are used as the testing dataset. Due to the fact that we work with time-series predictions, we use a special
version of cross-validation (time-series cross-validation) in which the folds are ordered by time, thus a fold
used in training dataset must not include future data compared to data in the testing dataset. The accuracy
of the predictor after cross-validating the model is the mean of k accuracies calculated by the k rounds of the
technique.

Regression Models We investigate multiple regression models coming from both machine learning tech-
niques, the Supervised and the Unsupervised learning methods. In supervised learning, we feed the predic-
tor with desired output values to adjust the model’s internal states while in the unsupervised method, the
model tries to identify the desired output without any exterior information. Additionally, we try to investi-
gate regression models working well either with linearly or with non-linearly correlated data as mentioned
in Section 5.3.1. In the end, we conclude in different types of Linear Regression (LR), Curvlinear Regression,
k-Nearest Neighbors regression (k-NN) and Gradient Boosting regression (GB).

The regression models along with some descriptions about the regression approach of the models are
presented in Table 5.1. Linear Regression is the typical approach to model relationships on data by minimizing
the error between the training data and the produced line. Lasso ,Ridge and Elastic Net work in a similar way
with Linear Regression but they penaltize the errors with cost functions derived from the norms of L1,L2
and both norms respectively. To differentiate more the models, we use multiple solvers in Ridge to find the
best fitting line in order to investigate the runtimes of finding a solution. Lars is an approach which adds
available regressors to the model only if there is a significant improvement in the accuracy, thus resulting in
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a model with a few meaningful regressors. Polynomial Regression, or curvlinear regression, fits the data using
polynomial functions which can explain nonlinear relations of data while k-NN clusters the training data
according to the regressors values and reveals trends of the values of the independent variable (CPU Ready
in our case). Finally, Gradient Boosting regression uses cost functions l such as least-squares or quantiles (Q)
and builds (iteratively) decision trees sized n that indicate which output values reduce the costs. This method
is a multi-parametric method but we use some of the possible settings.

Regression Model Description

Linear Regression (LR) Fit data points to a line by minimizing least squares distance
Lasso Least squares Model with regularization 1 using L1 norm
Ridge Least squares Model with regularization using L2 norm

Elastic Net Least squares Model with regularization using L1,L2 norm
Lars Stepwise regression using forward selection

Polynomial Regression n-th degree of polynomial regression
k-NN Prediction according to the properties of k nearest neighbors

Gradient Boosting (GB) Regression using decision trees with n estimators by applying loss function

Table 5.1: Description of regression models.

R2 - Coefficient of determination The coefficient of determination (R2) [26] is a metric used to assess the
accuracy of a predictor model. It evaluates the proportion of the variance in the predictor output (indepen-
dent variable) that is predictable from the input (regressors). The range of the metric is [0,1], the higher the
better, although it can have negative values if the selected regressors are meaningless (our interest is in the
non-negative range). We can use this metric to measure each predictor’s accuracy (see Gi (P j ) before) in Step
2. The metric limitation is that R2 is monotone increasing, meaning that always increases when we add extra
regressors to the model. We address this issue in Section 5.3.3.

In the end of Step 2, we have a list of all models Gi (P j ) (see Figure 5.2) with their respective R2 scores. This
list is the input of the final step of our selection process.

5.3.3. Predictor Selection (Step 3 in Selection Method)
In the final step, Step 3 in Figure 5.2, we select the most promising predictor for estimating CPU contention.
We make our selection among the list of models Gi (P j ) considering three factors: a) The accuracy of the
model depicted by the R2 score, b) the runtime of the regression model and c) the number of regressors in
the model. The first factor indicates better performance of the regression model in terms of the proportion of
the variance of the real values being estimated by the predictor while the second factor is needed to limit the
computation runtime of the prediction process since some regression models run for long time. The third
factor applies for having as few regressors as possible given the first two factors. The many regressors in the
model do not add significant accuracy to the model (inflation of R2) as well as they impose extra overhead to
the computations.

The first two factors (a) and (b) are easily to be addressed by sorting the results in an increasing order for
the R2 scores of the models and in a decreasing order for the runtime of the models. As for the third factor, we
leverage the method in [81] where we add a new regressor in the model only if it improves the R2 score more
than a given threshold (R2

i mpr ). A metric contributing to the predictor’s accuracy less than R2
i mpr will not be

considered as an additional regressor.
The results of our selection method are presented in Section 6 where we show the best accuracies for ev-

ery type of regression model we use. As a result of the selection process we present in this chapter, we choose
as our predictor for CPU-contention in business-critical workloads the model in Equation 5.1. Table 5.2 sum-
marizes the terminology used in the predictor model. The selected regression model is Linear Regression
.

Gi (P j )t
v = LR(d t

v ,d t
c ,nt

v ,r t−1
v ,r t−1

c ) (5.1)

1Penaltizing bad fitting of data, mitigating data overfitting
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Term Description

d t
v Demanded CPU of VM v at time t

d t
c Demanded CPU of cluster c hosting VM v at time t

nt
v Number of virtual CPU cores of VM v at time t

r t
v CPU Ready of VM v at time t

r t−1
v CPU Ready of VM v at time t −1

r t−2
v CPU Ready of VM v at time t −2

r t−1
c Mean CPU Ready of VMs in cluster c hosting VM v at time t −1

Table 5.2: Terminology in Selection Method for CPU-contention predictor.
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Figure 5.3: Sequence of vCluster arrivals in the real multi-datacenter workload, over a period of 3 months.

5.4. Summary
In this chapter, we address our research question on selecting an efficient predictor for CPU contention
among VMs running business-critical workloads. We present a method through which we pick metrics cor-
related to CPU contention and we use combinations of those metrics to investigate the accuracy of multiple
regression models. The method we propose may be used for selecting a predictor of a different contention
metric than CPU Ready or even of a performance metric with different purpose.

Selecting an efficient predictor does not only require accuracy measurements since the prediction pro-
cess might be time-inefficient. Thus, we also consider the computation overhead of the predictions in our
selection process. The CPU Contention predictor will be incorporated to portfolio scheduler’s architecture
presented in the following chapter.

5.5. Experimental Setup
A major contribution of this work is the experimental analysis of the portfolio scheduler and the impact of
the presented utility functions on the scheduler’s decisions. In this section, we present the setup of our ex-
periments.

5.5.1. Representative Environment and Workload
We use one representative trace of real-world commercial workloads hosted in a multi-datacenter multi-
cluster infrastructure. The workload trace follows for about 3 months the real operation of the cloud operator,
recording business-critical workload and the datacenter performance metrics. We use the former as input
workload for our simulations, and the latter as baseline for comparison (REPLAY in Figures 6.2b and 6.3b).

Typically for business-critical workloads, the recorded requests combine HPC, web, and many other types
of applications; this leads to various anti-/affinities expressed in the request, e.g., HPC VMs have a strict re-
quirement to run on HPC compute nodes in the multi-datacenter environment, a vCluster running a repli-
cated database requesting to run its VMs on separate clusters or datacenters, etc. Due to NDAs, we cannot
reveal more details about the features of the current datacenter infrastructure.

The trace includes a diverse stream of over 160 vC luster s, depicted in Figure 7.1, to be placed in 12
clusters having about 200 physical hosts in total.
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5.5.2. Portfolio Setup: 2 New and 7 Common Scheduling Policies
For our experiments, we equip the portfolio scheduler with the 2 new policies we design in this work (Sec-
tion 4.4), plus 7 common policies. This allows us to see how both our new policies and the complete portfolio
scheduler perform; if our policies are not useful, they will simply not be selected by the (automated) portfolio
scheduler. The 7 common policies are:

1. First-Fit (FF) is a commonly-used policy, simple but applicable in many domains of workload scheduling
and VM placement. To place a request, FF chooses the first available cluster in which the request fits.

2. Type Priority (TP) extends FF to also consider request types (e.g., HPC), which are then matched against
cluster capabilities. This enables specialized clusters to execute efficiently demanding workloads, such as
HPC. TP may be a competitive policy for matching complex SLAs. In contrast to FF, TP will try to not place
non HPC workloads on HPC clusters.

3. Memory Datacenter Balance (MDB) is a policy that uses memory utilization to evenly distribute the VMs
over datacenters. MDB is a possible competitor to our new policies in lowering the DRR in the system.

4-7. Lowest Resource Load (L*) is a family of policies that attempt to balance over all clusters the loads of a
specific resource, e.g., memory. We consider in this work all four common resource types, with the specific
L* policies: Lowest CPU Load (LCL), Lowest Memory Load (LML), Lowest Storage Load (LSL), and Lowest
Network Load (LNL).
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Figure 6.1: How many times is each scheduling policy selected by the portfolio scheduler, per utility function (e.g., OR).

6
Experimental Results

In this section, we analyze our portfolio scheduling architecture for managing Operational and Disaster Re-
covery Risks in virtualized datacenters hosting business-critical workloads. Through trace-based simulations
based on real-world multi-datacenter workloads, we evaluate our portfolio scheduler when equipped with 9
scheduling policies (see Section 5.5.2), and compare it with the state-of-the-art and with a relevant real-world
baseline (see Section 7.2.1). We follow two main aspects: whether selection of different policies actually oc-
curs, and analyzing the evolution of risk over the studied period (lower is better!).

In section 6.0.1, we show how much different scheduling policies are selected. In Section 6.1, we investi-
gate the performance of portfolio scheduler for the different utility functions, and compare the results with
the real-world baseline. Finally, in Section 6.2, we show the performance of the portfolio scheduler when
used to balance multiple objectives (the realistic situation in datacenters).

6.0.1. Is each Policy Useful?
The intuition of portfolio scheduling is that under changing workloads or changing datacenter optimiza-
tion goals (utility functions) different scheduling policies are selected. Figure 6.1 depicts the distribution of
selected policies, for our new utility functions (OR, DRR, and DOR), and for the utility function Cluster Load
(CL). CL is included to compare this work with our previous state-of-the-art work on portfolio scheduling [74].
The main findings are:

1. All policies are selected for all utility functions.

2. Using different utility functions results in widely different distributions of selected policies.

3. MCL and MCD are selected 16-30% of the time.

Figure 6.1 breaks down in each of its horizontal bars the distribution of selected scheduling policies for
each utility function. Each horizontal bar includes boxes, each corresponding to one scheduling policy,
whose width indicates the fraction of times the scheduling policy was selected, from the total set of decisions
taken by the portfolio scheduler. In Figure 6.1, each complete horizontal bar is highly segmented, except for
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(a) Selected scheduling policies for the OR utility function.
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Figure 6.2: Results for Operational Risk.

DRR. When DRR is tha active utility function the FF policy is selected about 60% of the time. This explains
why, despite not being designed to address complex performance and risk metrics, it is still much used by
datacenter engineers. However in next Section we will show that solely selecting FF will result in much higher
DRR risk than our portfolio scheduling approach can achieve.

Across all utility functions, we see a wide diversity of distributions. FF, LSL, LNL, TP, and our two policies
MCL and MCD all account for over 10% of the selections for at least one utility metric.

6.1. Does Portfolio Scheduling Improve System Utility?
Is the portfolio scheduler improving the utility provided by the system? The main findings are that the port-
folio scheduler:

1. Decreases OR by up to 2x, vs. individual policies.

2. Decreases OR by up to 1.5x, vs. the real-world baseline (REPLAY).

3. Improve DRR significantly compared to just using FF up to 35%.

4. Improve DRR significantly up to 40%, even for a well-managed commercial datacenter (REPLAY).

6.1.1. Operational Risk
Figure 6.2a depicts the selected scheduling policies when the OR utility function is active, meaning that the
portfolio scheduler is set to optimize for OR. We create a new type of graph for this depiction, which the
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portfolio scheduler can also use to explain its decisions to datacenter stakeholders. The vertical axis is divided
into parallel rows, each representing the progress (that is, non-/selection) of a different scheduling policy.
For example, the new policies MCL and MCD occupy the two bottom-most rows. The horizontal axis depicts
the progress through the workload: large dots placed on the rows indicate that a policy has been selected,
whereas the thick horizontal bars emerging from the dots indicate the portion of the workload that is to be
scheduled by the selected policy (wider bars indicate a higher portion). The last element of this graph is the
set of vertical gray lines, which indicate transitions between consecutively selected policies. A deeper analysis
of this type of graph is outside the scope of this work.

Figure 6.2a includes many transitions, and in particular each scheduling policy is selected at least once
(each row corresponding to each policy has at least one large dot). In some cases, policies are selected multi-
ple times in succession.

Figure 6.2b depicts the evolution of the OR utility-function value (score), for different scenarios (lower
score is better). The curves depicted for the portfolio scheduler are for the actually selected policy (“Best Pol-
icy”), and for a worst-case scenario of selecting the worst possible policy in that particular decision moment
(“Worst Policy”). The figure also shows comparisons with the use of a single policy (FF, and our policies MCL
and MCD) and with the decisions taken in the real-world by datacenter engineers in the baseline for com-
parison (“REPLAY”). The portfolio scheduler results in much lower Operational Risk compared to selecting
individual policies (up to 2x better) and to the REPLAY baseline (up to 1.5x better). Thus, using a portfolio
scheduler leads to much lower risk of violating OR SLAs.

To explain why this happens, observe in Figure 6.2b that, at around 50% through the workload, the worst
scoring policy shows a big spike—one of the policies performs significantly worse than the best policy. This
shows that portfolio scheduling can effectively alleviate the risk of scheduling policies performing badly spo-
radically.

6.1.2. Disaster Recovery Risk, Operational Risk, and Cluster Load
Similarly to OR, for the DRR utility function we depict the results in Figures 6.3a and 6.3b. Overall, we observe
that the approach results in lower risks of violating SLAs with regards to Disaster Recovery guarantees. What
is interesting to notice is that even for a multi-datacenter setup (operated by highly trained engineers, they
hire only top-10% engineers in the market) evaluated in this study we see good opportunities for significant
improvements. Figure 6.3b shows that using the portfolio scheduler can lead to a 40% improvement over the
real-world baseline (REPLAY).

Similarly, for both DOR and CL we also investigate the policy selection and utility function scores. The
portfolio scheduler results are positive, in-between the results for OR and DRR (for complete results, see the
extended results section: Section 7).

6.2. Does Addressing One Risk Influence the Other Risks?
Datacenter operators often use multiple utility functions (UFs) at the same time to optimize for multiple
objetives at the same time. We evaluate in turn each UF and analyze how this affects the maximum scores for
all the other UFs; Table 7.2 summarizes the results and shows that:

1. DOR can be used to effectively balance DRR and OR.

2. If DOR 3-1 is used, both DOR and OR are very close to their (minimum) best.

3. Activating CL worsens all the other utility functions.

The results in Table 7.2, when considered column-wise, indicate the influence that selecting an UF (e.g.,
OR) has on the other UFs. When considered row-wise, the results allow comparing for an UF its scores when
it is active and when other UFs are active. If we optimize for the Disaster-Recovery Risk (column “DRR” in
Table 7.2), the OR score will increase up to 2x (risk nearly 2x worse), compared to the case when OR is active.
Conversely, activating OR increases DRR. Thus, DOR explores an important risk-management trade-off.

The results for DOR wo −wb for the 1-1, 3-1, and 1-3 settings, show that the OR and DRR utility functions
can be combined and, depending on the datacenter SLAs and optimization target, can be balanced. When
more emphasis is put on OR, by increasing wo to 3, column “DOR 3-1” values show that the OR score is very
close to its achievable minimum (the OR score when OR is activated).

We also compare with the state-of-the-art UF CL [74], which balances load distribution for one or more
resource types (e.g., CPU, Memory, IO). Activating OR actually leads to the best outcome we have observed
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Figure 6.3: Results for Disaster Recovery Risk.
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Table 6.1: Maximum utility function (UF) scores for all UFs, for each activated UF. For DOR, we report results for three different settings
(columns DOR wo −wd ). Column R presents the Replay scores.

Active UF −> OR DRR DOR
1-1

DOR
1-3

DOR
3-1

CL R

OR score ×10−2 5 10 5 7 5 7 6
DRR score ×10−2 12 8 11 9 11 12 12
DOR score ×10−3 8 9 8 9 6 9 9
CL score ×10−5 4 16 3 13 10 4 5

for CL. This means that our new OR utility function has a better long term effect then directly optimizing for
CL. Conversely, activating CL worsens all the other utility function scores, so the state-of-the-art CL is a bad
predictor for the optimization goals considered in this work.





7
Extended Evaluation of Portfolio Scheduler

Managing Risks in Business-Critical
Workloads

In this chapter, we evaluate our portfolio scheduler by conducting experiments to investigate the risks in
business-critical workloads. Moreover, we present the results of our method described in chapter 5 on select-
ing a CPU-contention predictor for business-critical workloads.

7.1. Overview
For the evaluation of portfolio scheduler, we first describe the high-level architecture of the environment
(Solvinity infrastructure) we record our traces. We then describe the workload traces and the characteristics
of VMs comprising the traces. The workloads are: the real-world workload and the synthetic workload. Fur-
ther, our experimental setup is presented for the two experimental groups, the experiments for the predictor
selection and the experiments for the portfolio scheduler evaluation. We finish the chapter by presenting the
results of our experiments.

The main goals of this chapter is to provide insights into risk-aware portfolio scheduling and into the po-
tential of portfolio scheduling for business-critical workloads towards a production ready scheduling system.

7.2. Experimental setup
A major contribution of this work is the experimental analysis of the portfolio scheduler and the impact of
the presented utility functions on the scheduler’s decisions. In this section, we present the setup of our ex-
periments.

7.2.1. Representative Environment
For the evaluation of the portfolio scheduler for business-critical workloads in a multi-cluster, multi-datacenter
setting, we use the infrastructure of Solvinity. Solvinity has 3 datacenters , each one comprising a multi-
cluster topology. The datacenters are connected through a fiberoptic ring network while compute servers
in clusters are connected through a low latency InfiniBand network. Evach cluster houses 6 Storage Area
Network (SAN) devices, 10TB each.

In Solvinity, there are two types of clusters, the standard cluster and the bigmem cluster. The servers in
a bigmem cluster have a higher memory to CPU ratio than the servers of a standard cluster. This is the only
difference between the two cluster types. The standard servers have two 8-core CPUs and 128GB of memory.
In constrast, the bigmem servers have four 8-core CPUs and 768GB of memory.

The VM placement in clusters is handled by cloud engineers considering the SLAs agreed for every cus-
tomer application. For the experiments, we follow the portfolio scheduler’s decisions to place the VMs in
clusters. The scheduling of VMs in the compute servers is handled by VMWare product, the DRS. The auto-
migration of VMs for any scheduling reason among servers in the same cluster is enabled while the VM auto-
migration across clusters is disabled.

29
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7.2.2. Representative Workloads
We evaluate our concepts by using two workloads: a production workload recorded in Solvinity infrastruc-
ture (Real-world workload) and a synthetic workload which we generate comprising of VM traces of the real-
world trace but with different characteristics. The two workload sets will provide different insights for our
portfolio scheduler since we use the real-world workload to evaluate a real world case and the synthetic work-
load to stress the system to identify corner cases of portfolio scheduler.

Real-world workload
We use one representative subset of real-world workload trace recorded in Solvinity infrastructure and span-
ning an almost 3-month period from 1 August 2015 until 22 October 2015. The trace includes a diverse
stream of over 160 vC luster s with 1800 VMs, depicted in Figure 7.1, to be placed in 12 clusters having about
200 physical hosts in total. The clusters reside on the subset of three datacenters of the total infrastruc-
ture. We present the system load in terms of memory because the workloads are in line with restrictions of
non-overcommitted memory. Therefore, the provisioned memory by the workload represents the allocated
capacity of the total system memory capacity. The system load by the real-world workoad reaches up to 32%
of the total memory capacity in the system. This is because the system must be able to absorb the workload
resulting from a full-datacenter crash into the other (two) datacenters.
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Figure 7.1: Workload Distribution - Real-workload trace (RT).

The VMs in the trace belong to different subtypes of business-critical applications such as multi-tier web
applications, firewall applications and HPC workloads. For every subtype of business-critical workloads,
there are guarantees about the consolidation levels inside the hosts. For HPC compute nodes, the consolida-
tion should be low (around 10 VMs/host) as many contention problems occur due to CPU-intensive utiliza-
tion while web applications can be packed more due to different utilization patterns (around 50 VMs/host).

In simulation, we follow for each vC luster every anti-/affinity rule, as in the real-world situation. For
every placed vC luster , the portfolio scheduler decides on the most promising policy for the overall system
performance.

Synthetic workload
We generate a synthetic workload to evaluate our portfolio scheduler when the system is under stress. The
total workload fully provisions the memory capacity in the system, thus the total load of the workload co-
incides with the total system load. We select vClusters from the real-world trace and populate each one of
them with more identical VMs of the same vCluster. The result is representative business-critical vClusters
produced from the production workload and provisioning more resources in line with the characteristics of
business-critical workloads, e.g., CPU-memory ratio, resource utilizations. For the generation of the work-
load, we focus on vClusters comprising web-application and HPC workloads since these types cover most
of the application spectrum of enterprise customers. We do not follow anti-/affinity rules of the VMs in the
synthetic workload because we want to evaluate the general case on which every VM can be scheduled in any
place.

In Figure 7.2 we present the profile of the synthetic workload comprising 57 vClusters with 3500 VMs in
total. The vClusters include more VMs now ranging from 10 up to more than 300. We see that the system
memory load of the synthetic workload reaches the full capacity when all the workload will be placed in
the system. We expect that vCluster placements will stop before the full system load since loading fully the
system is a hard optimization problem. In the remainder of the chapter, we refer to the workload point where
the system cannot host more workload as system breaking point.
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Figure 7.2: Workload Distribution - Synthetic trace (ST).

7.2.3. Configuration for Predictor Selection results
We present the experimental setup describing the decisions we make about conducting the experiments for
our selection method. Due to the long-running process of the method presented in chapter 5, we choose a
subset of the trace described in Section 7.2 to correlate the different metrics with the CPU Ready metric and
also to train and to test the regression models. The subset of the real-world trace we experiment on Predictor
Selection comprises traces of VMs running at most 1 month (the total trace has duration of 3 months).

We decide on having separate predictors for every cluster in the infrastructure and not one general pre-
dictor for the whole system. The reason behind this is that clusters may have different system architectures
in a multi-cluster multi-datacenter system and VMs experience resource contention because of their "local"
environment which includes the co-hosted VMs in the cluster. In addition, in the current trace we collect
from Solvinity, the VMWare schedulers are allowed to schedule VMs only inside clusters (scheduling between
servers in a cluster), thus the produced contention of VMs is more related to the cluster environment of a VM.

At step 1 in Selection Method (see Section 5.3.1), we choose the metrics having high correlation with the
CPU Ready metric which is the contention indicator for our evaluation. To begin the investigation of the
correlated metrics with CPU Ready, we select 25 metrics (set M in Figure 5.2) whose traces are included in
the real-trace workload described in Section 7.2.2. This set of metrics comprise metrics from all available
resource types (CPU,memory,storage I/0, network I/O). Most of these metrics refer to VM utilizations while
the rest indicate resource utilization on cluster level. In addition, we investigate the auto-correlation of CPU-
Ready in VMs to identify possible relations of current CPU-Ready levels with those in the past.

We set the correlation value between a raw metric and the CPU Ready metric to be higher than r /ρ >= 0.4
and the p-value less than p < 0.05 to select a raw metric as a candidate regressor of the predictor.

At step 2 in Selection Method, we form the set of regression models (set G in Figure 5.2) to combine them
with every combination of the correlated metrics found at step 1. The regression models are tested with
several parameters to identify the most suitable estimating CPU contention. The selected parameters in our
experiments are presented in Table 7.1.

At step 3 in Selection Method, we use metric R2 and the runtime of the regression models to select the
predictor with high accuracy and low computation overhead as explained in Section 5.3.3. For the value
R2

i mpr limiting the selection of many regressors in the prediction model, we set it to R2
i mpr = 0.005.

Regression Model Parameters

Linear Regression (LR) with/without intercept
Lasso weight l1 ∈ [1,4]
Ridge weight l2 ∈ [1,4], multiple solvers 1

Elastic Net weights l1, l2 ∈ [1,4]
Lars -

Polynomial Regression n ∈ {2,5,8}
k-NN k ∈ [2,10],nei g hbor choi ce = eucl i dean

Gradient Boosting (GB) l = LR,Q2 n = 400,800 lear ni ngr ati o = 0.01

Table 7.1: Parameters in regression models in Step 2 in Selection Method.

1We use different techniques to test the speed of converging to a solution
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7.2.4. Configuration for Portfolio Scheduling results
We present here the experimental setup describing the configurations we make about about the evaluation
of portfolio scheduler.

As mentioned in Section 1 in the System model, it is essential to monitor system performance, thus load
balance of the workloads, despite of our risk objectives. Therefore, in addition to the three utility functions
OR, DRR, DOR presented in Section 4, we experiment with a fourth metric, the Cluster Load score (CL),
evaluating how balanced the workloads are across the available clusters [74]. The score calculates the system
mean utilization (Ui ) and compares it with the mean cluster utilization over time. The bigger the deviation
of the mentioned utilizations for a cluster, the more imbalanced the load in that cluster is. This metric gives
an insight on system-performance level since severe load imbalances affect the performance of applications
and impose high risk on performance degradation of VMs.

The CL score evaluates the cluster load imbalances regarding the four resource types of CPU, memory,
storage and network I/O. Firstly, we calculate the deviations of cluster loads for each resource type and then
we aggregate the results having in the end one score value for the policy selection step of portfolio scheduling.
Equation 7.1 presents CL score of a cluster in terms of resource type i and Equation 7.2 presents the aggre-
gated score (system CL) used in our experiments. Lower CL values indicate low imbalance on the workload
distribution across clusters.

rcli =
(

Wcli
Ccli

·100−Ui )2

1002 ∈ [0,1] (7.1)

with i be the resource type.

rcl =

m∑
j=1

n∑
i=1

rcli j

n ·m
∈ [0,1] (7.2)

with n be the number of resource types and m be the number of clusters.

For the portfolio of scheduling policies, we use the 9 scheduling policies presented in Section 4. The
policies consider different resource types to place VMs and 5 of them focus on either CPU or memory. We
decide on having more policies about these two resource types as in business-critical workloads CPU and
memory are the dominant resource types considered by engineers when placing VMs.

In addition to the scheduling policies, we also evaluate the real datacenter decisions made by the engi-
neers in the same workload trace. We use the real placements of VMs in the datacenters, REPLAY, as baseline
for comparison in the results of portfolio scheduler evaluating the performance of utility functions (see Sec-
tion 7.4.2).

We activate one utility function per experiment to test both portfolio scheduler’s behavior on the selected
policies and the performance of the activated utility function. In every experiment, we use the 9 scheduling
policies+REPLAY to fairly compare the performances in the end. For training the CPU-contention predic-
tor, we collect data related to contention for a time window of 5h. This time window is also used for the
experiments of predictor selection as it is explained in Section 7.3. For the utility function DOR, which is
a combination of OR and DRR, we use different weight values to identify the most suitable combination of
them when comparing the performance of different utility functions (see Section 7.4.3).

7.3. Results for Predictor Selection
In this section, we present the results of the selection method for a CPU-contention predictor described in
chapter 5. The selected predictor is incorporated into our portfolio scheduler to estimate the performance
degradation in the system in terms of the delivered CPU resources to the hosted VMs. The predictor estimates
the CPU Ready levels of every running VM in the system at time t (r t

v ). This section addresses the first research
sub-question of this chapter.

7.3.1. Results of Step 1 in Selection Method
As a result of this step, we have a set of 6 selected metrics (set M ′ in Figure 5.2) having correlation with the CPU
Ready metric. The correlation coefficients of these selected metrics are higher than our limits mentioned in
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the experimental setup for either the Pearson’s (r ) or the Spearman’s (ρ) correlation. Table 5.2 summarizes
the terminology used for the metrics of set M ′.

The six selected metrics are: a) the demanded CPU of a VM at time t (d t
v ), b) the demanded CPU of the

cluster hosting a VM at time t (d t
c ), c) the number of provisioned virtual cores of a VM at time t (nt

v ), d) the
CPU Ready of a VM at time t −1 (r t−1

v ), e) the CPU Ready of a VM at time t −2 (r t−2
v ) and f) the mean CPU

Ready of VMs in the cluster hosting a VM at time t −1 (r t−1
c ). .

In Figure 7.3, we present the results for the selected metrics. We show the correlation coefficients between
each selected metric and the CPU Ready r t

v . Besides from the correlation values for every cluster, we show the
mean correlation coefficient which is used to select a metric for the step 2 in selection method. The other raw
metrics that are not selected through step’s 1 process have either lower correlations than our boundaries or
higher p-values than the respective p-boundary. In Figure 7.3a we present the auto-correlation of CPU Ready
having been calculated by aggregating the autocorrelations of all the VMs in the trace subset. The trace has
a monitoring period of 5 minutes and we present the lags in hour units. We see that for a very short time
period in the recent past, there is a significant correlation between the current CPU Ready r t

v and its value at
a previous timestamp. For this reason, we select the two last entries, r t−1

v (cor r = 0.85) and r t−2
v (cor r = 0.79),

as our candidate regressors in step 2.
In Figures 7.3b-7.3e we show the correlations of the other selected metrics which will be the input of the

process in step 2. We present the Pearson’s and the Spearman’s correlation coefficients for every cluster as
well as the mean correlation values. The differences of the correlation values among the values of the same
correlation type are small implying stable correlation levels between the metrics. The only exception to the
similarity of the correlations of the clusters is the correlations of the provisioned virtual cores of a VM and
its CPU Ready values (Figure 7.3d). The CPU Ready metric counts the time until the first vCPU of a VM is
scheduled on a physical core, thus the relation between this metric and the total number of vCPUs of a VM is
not concrete. However, we observe that even though the correlations of clusters differentiate a lot, the mean
correlation is high enough to select the number of vCPUs nt

v as a possible regressor.

7.3.2. Results of Steps 2 and 3 in Selection Method
At step 2, we try every combination of the six selected metrics described in Section 7.3.1 with each regression
model in Table 5.1. We test every pair of regression model and set of metrics with every (sliding) time window
of 5 hours in the trace and we calculate the accuracy of the pair by aggregating the accuracies of the time
windows. The reason we split the trace into time windows is that the CPU contention levels for VMs is a
temporary effect (we also see it in Figure 7.3a where the values are related to values of the recent past-5h
data) and a predictor should be trained only by recent contention levels.

Step 2 In Figure 7.4 we present the best (highest) accuracies that every regression model achieved in step 2.
Every regression model ends up in these accuracies with the same or different set of metrics (the sets always
comprise more than 3 metrics).

Figure 7.4 depicts for each regression model the average of R2 accuracies of the time windows along with
the standard deviation of those accuracies. We see that Gradient Boosting (GB) achieves the best accu-
racy (0.89) from all the other regression models while we have three models in the second place (LR =Lars
=Ridge =0.86). The Polynomial model achieves impractical accuracy (negative R2) with high standard devia-
tion thus we exclude it from the selection process of Step 2. We also observe that all the presented accuracies
are fairly good for our purposes but this mainly happens because we begin our search with a small number
of metrics (|M | = 25) and of models (|G| = 8).

Step 3 In step 3, we take the results shown in Figure 7.4 and we select the most suitable pair of model and set
of metrics for our case as described in Section 5.3.3. In Figure 7.5, we present the runtimes of the models-set
of metrics that are depicted in Figure 7.4.

The runtime values are the averages of the runtimes of all time windows explained in the previous sec-
tion. The runtime of Gradient Boosting is significantly higher than of the second-best models with difference
larger than 800%. This increase of runtime is crucial for our simulations as the predictor is used at every
monitoring event to estimate the current contention for each running VM. Therefore, we choose Linear Re-
gression as our regression model which is the simplest among the other second-best models and introduces
a lower computation overhead for the predictor runtime than that of Gradient Boosting . As for the number
of metrics/regressors of the linear regression model, we end up with the 5 out of 6 selected metrics because
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(a) CPU Ready auto-correlation.
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Figure 7.3: Correlations of the selected metrics in Step 1.
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Figure 7.4: Accuracy of seven regression models.

Figure 7.5: Runtimes of the seven regression models.

the remaining metric increases the model accuracy less than R2
i mpr (LR5 = 0.862,LR6 = 0.865). In the end we

choose as CPU contention predictor the model presented in Equation 5.1 in Section 5.

Verification of the model accuracy
To verify our chosen regression model, we run the simulator using the CPU-Contention predictor and com-
pare the results with the real-world values collected by the system monitor. Figure 7.6 depicts this comparison
by presenting the R2 score for the percentage of data being tested (#d at a > 19 million values). The results
indicate a high accurate predictor of CPU-Contention for 99% of the values (0.93), albeit a lower accuracy for
the total number of values (0.61).
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Figure 7.6: Accuracy of the tuned predictor.

7.4. Results for Portfolio Scheduling
In this section we present the results for portfolio scheduling. We present firstly the results using the real-
world workload followed by the results using the synthetic workload. We conduct three sets of experiments
for each workload. This section addresses the remaining research sub-questions presented in the beginning
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Figure 7.7: Policy Distribution for all utility functions - Read-world workload.

of this chapter.

Real-world workload
7.4.1. Distribution of Scheduling Policies for Real-world Workload
This subsection addresses the second research sub-question of this chapter about the scheduling policies
selected by the portfolio scheduler. The scheduler decides on a new policy for every new vCluster need to be
placed in the system. The scheduler keeps track of the decision taken for every vCluster and in the end eval-
uates these decisions. The intuition is that the portfolio scheduler under changing workloads and different
performance goals (utility functions) will select different scheduling policies to place the input workload. We
present the results of the different decisions taken by portfolio scheduler in Figure 7.7.

The vertical axis in Figure 7.7 indicates the utility function that is activated and the widths of boxes in a
horizontal bar depict the fraction of times each scheduling policy was selected from the total set of decisions
taken by the portfolio scheduler. The main findings are:

1. All policies are selected for all utility functions we investigate.

2. Using different utility functions results in widely different distributions of selected policies.

3. Our new policies, MCL and MCD, are selected often for all the tested utility functions.

4. Simple policies, such as FF and TP, are surprisingly selected many times for all utility functions.

The variability of the selected policies for every utility function not only validates our intuition of a sched-
uler that has to change decision plannings to different workload patterns but strongly points out the necessity
of an adaptive and reactive resource management in cloud systems. For each optimization goal, we observe
the different distribution of the selected policies implying that, given a specific vCluster, portfolio scheduler
decides on placing the constituent VMs of the vCluster with different policy.

For the scheduling policies used the most, we observe that MCL and MCD belong to the top 3 of the
selected policies occupying 18−30% of the selections for all utility functions. FF is surprisingly good and it is
the most-selected policy for the DRR, DOR and CL utility functions, ranging from 25−60% of the selections.
This explains why, despite not being designed to address complex performance and risk metrics, it is still
much used by datacenter engineers.

To investigate more the distribution of the policy selections we measure the number of occurrences where
the best-two policies of a selection have equal risk scores. At these cases, engineers can use either of the two
policies for the current placement. We find that occurrences of the best-two policies of selections having
even risk severity in the system range from 20-40% for the utility functions in Figure 7.7. Cloud engineers can
leverage this finding in order to schedule by optimizing many goals at the same time. If portfolio scheduler
is used as an advisor for VM-placement by cloud engineers, it will provide different suggestions on placing
VMs subject to the defined goals; thus engineers, by combining and matching the scheduling suggestions
of the best-two policies of every utility function, might select a placement which satisfies more than one
optimization goal in the system. The satisfiability of multiple optimization goals by portfolio scheduler is left
for future work.

For all utility functions though, we conclude that no scheduling policy is good enough to dominate the
policy selection in portfolio scheduling due to the multi-dimensional scheduling problem.
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Figure 7.8: Selected Policies for Operational Risk - Real-world workload.

Appendix B presents the policy distribution of all utility functions we conduct experiments on portfolio
scheduling using the real-world workload.

7.4.2. Utility functions for Real-world Workload
In this section, we investigate the performance of utility functions and we give some insights on the perfor-
mance levels of the system while placing VMs with and without portfolio scheduling. This section addresses
the third research subquestion of this chapter. We show and explain representative figures in this section
while the rest of the results can be found in Appendices C-F.

Operational Risk
In Figure 7.8 we create a new type of figure for depicting the selected scheduling policies when a utility
function is activated. This figure type visualizes the portfolio-scheduler decisions throughout the workload
progress and can also be used to explain portfolio scheduler’s decisions to datacenter stakeholders. The ver-
tical axis is divided into parallel rows, each representing the progress (that is, non-/selection) of a different
scheduling policy. For example, the new policies MCL and MCD occupy the two bottom-most rows. The hori-
zontal axis depicts the progress through the workload: large dots placed on the rows indicate that a policy has
been selected, whereas the thick horizontal bars emerging from the dots indicate the portion of the workload
that is to be scheduled by the selected policy (wider bars indicate a higher portion). The last element of this
graph is the set of vertical grey lines, which indicate transitions between consecutively selected policies. The
main finding is:

Portfolio scheduler adapts to different workloads by switching scheduling policies.

Same policies are rarely selected consecutively pointing out the different workloads in the system and
the scheduler’s adaptability to work with them. In addition, this figure can provide an overview not only of
portfolio scheduler but also workload-related features such as the preferred scheduling policies for a specific
workload type.

Figure 7.9 depicts the evolution of the OR-utility-function value (score) for different scenarios (lower score
is better). The curves indicating the portfolio-scheduler’s OR scores represent the scheduler performance of
the best selected policy (Best policy) and of the worst-performance policy (Worst policy). The remaining
curves indicate the performance of individual policies when running solo and the system OR performance in
read world (REPLAY). We observe that:

1. Portfolio scheduler achieves the lowest risk of all scenarios.

2. Portfolio scheduling results in more than two times (2x) lower risk levels than individual policies.

3. Individual policies do not perform well in risk-aware scheduling.

4. Portfolio scheduler achieves 1.5x lower risk than the system risk in real-world.

We observe that the performance of the portfolio when selecting the best policy achieves the lowest risk
of all the other presented scenarios. We also show the risk performance of the worst-scenarios of portfolio
to depict the fact that portfolio succeeds in avoiding bad performance and effectively alleviating the risk of
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Figure 7.9: Evolution of OR over the entire workload - Real-world workload.
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Figure 7.10: Selected Policies for Disaster Recovery Risk - Real-world workload.

scheduling policies performing badly. Although the differences in the performances between best and worst
scenarios are not much, one should consider the following: Every new entry of vCluster in the system uses
the previous VM placements of the best scenario as we try to optimize system performance, thus worst scores
are evaluated given the previously optimized setting of the best scenario. In addition, the performance of
utility functions is subject to the performance of the available policies in the portfolio. Therefore, by adding
more policies will definitely show different performance levels. With this set of experiments, we verify that
achieving lower risk bounds by using portfolio scheduling is possible.

To answer the third subquestion on the performance of constituent policies of portfolio when acting in-
dividually, we present OR scores of few policies and by comparison we result in more than two times (2x)
risk levels when policies running alone. Therefore, even if the presented constituent policies in Figure 7.9 are
selected often by the portfolio scheduler (see Figure 7.7), these individual policies do not perform well when
running alone unless portfolio scheduler incorporates them to the portfolio set.

The curve of REPLAY in Figure 7.9 depicts the OR performance of the decisions taken in the real-world
by datacenter engineers. This curve may be used by engineers to understand the risk improvement of the
system when OR is the active utility function. We see that portfolio scheduler achieves 1.5x lower risk than
the system risk in real-world.

Disaster Recoverability Risk
In Figures 7.10, 7.11 we present the performance of DRR metric using the same type of figures for OR perfor-
mance. Figure 7.10 depicts the transitions of scheduling decisions by portfolio scheduler trying to optimize
system performance considering the risk of workloads remaining unrecoverable after datacenter failure. We
see that even though FF is selected many times (also mentioned in Section 7.4.1), portfolio scheduler must
switch to other policies throughout workload to achieve low risk levels. In comparison to Figure 7.8, it is obvi-
ous that portfolio scheduler results in different selection patterns according to the activated utility function.

Figure 7.11 shows the evolution of DRR-utility function value for different scenarios. As a reminder, DRR
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Figure 7.11: Evolution of DRR over the entire workload - Real-world workload.

values below 0.5 show that any workload is at risk of not be recovered while values above 0.5 indicate that
part of workload cannot be absorbed when the host datacenter fails. The higher the DRR value above 0.5
is, the more workload is in jeopardy. Naturally, due to the fact that the real-world workload is recorded in a
commercial datacenter system in which cloud operators focus on this particular risk, the DRR levels of the
workload should be below the critical 0.5. We verify this in Figure 7.11 where DRR is much lower than 0.5.
The main findings for DRR-utility function are:

1. Portfolio scheduler achieves the lowest risk of all scenarios.

2. Portfolio scheduler can improve DRR levels up to 35% compared to risk levels of individual policies.

3. Portfolio scheduler achieves 40% lower risk levels than a well-managed commercial datacenter.

We see that portfolio scheduler (Best policy) achieves the lowest risk scores than all the other depicted
scenarios. Similarly to OR, the approach results in lower risks of violating SLAs with regards to Disaster Re-
covery guarantees. Furthermore, we see that individual policies achieve at least 35% worse risk levels than
portfolio scheduler. This verifies the suitability of portfolio scheduler to place diverse workloads in the system
by switching scheduling strategies.

Comparing DRR levels between portfolio scheduler’s and real-world scenario’s, we find that DRR can im-
prove 40%. Thus, there is much room for improvement of real-world placements even the already existing
focus of the operator on this risk.

Similarly, for both DOR and CL we also investigate the policy selection and utility function scores. The
portfolio scheduler results are positive. Appendices C-F present the respective figures of these utility func-
tions.

7.4.3. Performance of Optimization Policies for Real-world Workload
In this subsection, we present the performance of the selected policies for multiple utility functions (UFs).
Table 7.2 summarizes the impact of activating one utility function on the scores of other useful utility func-
tions. The results, when considered column-wise, indicate the influence that selecting a utility function (e.g.,
OR) has on the other utility functions. When considered row-wise, the results allow comparing for a util-
ity function its scores when it is active and when other utility functions are active. If we optimize for the
Disaster-Recovery-Risk (column "DRR" in Table 7.2), the OR score will increase up to 2x (risk 2x worse), com-
pared to the case when OR is active. Conversely, activating OR increases DRR 1.5x. The main findings from
this experiment are:

1. DOR can combine successfully OR and DRR and achieves performance with tradeoffs.

2. Activating CL worsens all risk utility functions and DOR achieves lower CL levels than when CL is
activated.

3. All utility functions have improved the risk levels in the real system (REPLAY).
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Active UF OR DRR DOR
1-1

DOR
1-3

DOR
3-1

CL REPLAY

OR score ×10−2 5 10 5 7 5 7 6
DRR score ×10−2 12 8 11 9 11 12 12
DOR score ×10−3 8 9 8 9 6 9 9
CL score ×10−5 4 16 3 13 10 4 5

Table 7.2: Maximum utility function (UF) scores for all UFs, for each activated UF. For DOR, we report results for three different settings
(columns DOR wo −wd ).
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Figure 7.12: Policy Distribution for all utility functions - Synthetic workload.

DOR explores an important risk-management trade-off by combining our proposed utility functions OR
and DRR. Thus, this metric can be used successfully to evaluate the system performance risk-wise. The results
for DOR wo −wd for the 1-1, 1-3, 3-1 settings, show cases in which different weights to risk scores can be set
depending on the optimization targets and on the datacenter SLAs of a cloud provider. The risk levels are
tuned according to the weights of the constituent risk types.

For CL which optimizes the system performance in terms of load balancing, we see that worsens all the
risk scores. Therefore, portfolio scheduler should utilize the risk utility functions such as DOR to mitigate
risks in the system and not try to reduce risks implicitly by activating CL. The load balancing of the real-
world workload can be effectively achieved also by DOR which achieves CL performance even better than by
activating CL. We denote that this finding applies to the real-world workload as we observe different behavior
for the synthetic workload (see Section 7.4.6).

In Table 7.2 we also present the scores of the real placements in the system by the operator (REPLAY). As
for the risk scores, we see that by using portfolio scheduling and optimizing the proposed risk utility func-
tions, the risk levels have improved from those of the real placement (1.2x for OR and 1.3x for DRR). Similarly
the load balancing in the system, CL score, is also improved when activating CL. These results point out that
there is still much room for improvement on VM placement in a real production system.

Synthetic workload
In the remaining subsections, we present the results of the experiments using the synthetic workload de-
scribed in Section 7.2.2. We conduct the same sets of experiments as with the real-world workload to have
insights on how portfolio scheduling performs when system is under stress.

In all the experiments using the synthetic workload portfolio scheduler stops placing vClusters when the
workload utilizes the 86% of the total memory capacity in the system. We call this point system breaking
point. The system breaking point indicates the proportion of the workload deployed in the system as well as
the proportion of the total system capacity that is provisioned to the workload. We consider that the system
breaking point is the load at which the current virtualized infrastructure cannot host additional workload
given our portfolio set of policies. In case new policies are introduced to portfolio scheduler, there might be
different system breaking point.
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Figure 7.13: Selected Policies for Operational Risk - Synthetic workload. The symbol X shows the system breaking point.

7.4.4. Distribution of Scheduling Policies for Synthetic Workload
In Figure 7.12 we present the policy distribution of all the investigated utility functions when portfolio schedul-
ing optimizing the placement of the synthetic workload. This figure address the second research subquestion.
The main findings are:

1. FF is widely used from 10% up to 60% of the total selections.

2. All utility functions except DRR need the diversity of the policies to achieve their optimizations.

We see that the simple policy FF is surprisingly good and is selected mainly by DRR (60%). We point
out again, as in Section 7.4.1, that even if this policy has no optimization goals yet achieves good system
performance and that is why datacenter engineers still use it. For OR and CL, we see more dispersion on the
policy selections. This implies that the corresponding risks of those utility functions need more the diversity
of policies to achieve their goals. The number of occurrences where the best-two policies of a selection have
equal risk scores is less than that in real-world experiments and ranges from 7%-14% of the total selections.
Thus, the performance of different scheduling policies deviates when stressful workload arrives at the system.

Finally, all utility functions use all the available scheduling policies to reduce the most their respective
risks, a fact that justifies the necessity of portfolio scheduling in business-critical workloads.

Appendix G presents the policy distribution of all utility functions we conduct experiments on portfolio
scheduling using the synthetic workload.

7.4.5. Utility functions for Synthetic Workload
In this subsection we present the performance of the utility functions using portfolio scheduling while opti-
mizing their goals. In this way we address the third research subquestion of this chapter. We present some
figures in this subsection, the rest of the results can be found in Appendices H-K.

Operational Risk
In Figures 7.13 and 7.14 we depict the history of the policy selection for OR and its evolution respectively over
the synthetic workload. In these figures we denote with an X the system breaking point at which the system
stops placing vClusters in the infrastructure. The findings for the Operational Risk utility function are:

1. Portfolio scheduler needs to incorporate policies related to contention and load balancing to mini-
mize OR.

2. Portfolio scheduler achieves 10% lower risk levels than individual policies.

In Figure 7.13 we see that the policies MCD and L*L are selected very often indicating that Operational
Risk is strongly related to contention experienced by VMs and to load balancing in the system. We recom-
mend then, that many scheduling policies considering contention and load balancing in the system should
be included in the portfolio set when optimizing OR.

In Figure 7.14 we show that risk performance of individual policies might be 2x worse than portfolio
scheduler, thus they are not recommended for running alone and scheduling heavy workloads. In contrary,
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Figure 7.14: Evolution of OR over the entire workload - Synthetic workload. The symbol X shows the system breaking point.
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Figure 7.15: Selected Policies for Disaster Recovery Risk - Synthetic workload. The symbol X shows the system breaking point.

portfolio scheduler is always the best (lowest) and achieves more than 10% lower OR risks than individual
policies at the system breaking point. We also compare the workload distribution presented in Figure 7.2
with the scores of the worst-scenarios of portfolio scheduler. We observe that when beefy vClusters including
hundreds of VMs arrive at the system, there are big deviations between scores of worst and best policies. This
relation points out that massive arrivals can harm (increase) more the OR risk levels in the system if the right
policy is not used. Thus, by examining many policies to scheduling, a.k.a., portfolio scheduling, can provide
engineers with valid suggestions on VM placement.

Disaster Recoverability Risk
In Figures 7.15 and 7.16 we present the results with respect to DRR utility function when scheduling the syn-
thetic workload. The main findings are:

1. FF is widely used by portfolio scheduler but cannot achieve the same performance alone.

2. When system load is high, individual policies achieve risk levels closer to portfolio scheduler.

In Figure 7.15 we see that the selection of FF as the most promising policy by portfolio scheduler in terms
of DRR is not only frequent but also consecutive. This result indicates the importance of incorporating simple
policies to portfolio of policies since the contribution of such policies to risk-aware scheduling is confirmed
to be significant. However, in the same figure, we see that portfolio scheduler needs also other policies to
interrupt the consecutive scheduling of FF and refine bad decisions.

In Figure 7.16 we observe that the risk levels between the individual policies and portfolio scheduler are
closer together when the system is lightly (<20%) and heavily loaded (>60%). In the former case, there is
much free capacity to absorb the light workload regardless of the different placements by the policies while
in the latter case, the scheduling policies have limited options to place VMs in the loaded system and thus, the
risk levels are relatively close despite of the underlying scheduling strategy. Nonetheless, portfolio scheduler
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Figure 7.16: Evolution of DRR over the entire workload - Synthetic workload. The symbol X shows the system breaking point.
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Figure 7.17: Evolution of CL over the entire workload - Synthetic workload. The symbol X shows the system breaking point.

achieves 10% lower DRR score than individual policies at the system breaking point. In the remaining load
range (20%-60%), we see portfolio scheduler fully exploiting the advantage of policy selection and keeping
risk levels much lower than individual policies.

Cluster Load score
In Figure 7.17 we present different behavior of portfolio scheduler compared to individual policies when
optimizing CL for the synthetic workload.

1. Portfolio scheduler achives 3.5x lower CL levels than individual policies.

2. Individual policies show good CL performance only when the system is not loaded enough.

In contrast to the results about OR and DRR, portfolio scheduler achieves significantly better CL perfor-
mance (3.5x) than the performance of individual policies when the system is highly loaded. The load bal-
ancing of clusters is a different optimization goal with respect to the other utility functions focusing on SLA
risks. We see that portfolio scheduling results in better load balancing even if the policies considering the
load balancing (L*L policies) are not mainly selected (<30% of total selections).

Furthermore, individual policies are good enough in terms of CL levels (yet worse than portfolio sched-
uler) only when the system load is low. When the workload occupies more than 30% of the system capacity,
only portfolio scheduler maintains low CL levels.

In conclusion, portfolio scheduler achieves better performance than individual policies despite the op-
timization goal and can provide insights on system potentials when benchmarking the system risk levels.
However, the performance of portfolio scheduler is always subject to the performance of the policies in-
corporated in the portfolio set. Therefore, if more policies are included and evaluated by the portfolio sched-
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uler, it will consequently result in performance improvement since portfolio scheduler always favors the best
out of the available policies. In the following section, we present our conclusions about the examined utility
functions when used by portfolio scheduler to place the synthetic workload.

7.4.6. Performance of Optimization Policies for Synthetic Workload
Similarly to Table 7.2 for the real-world workload, we present the results for the synthetic workload in Ta-
ble 7.3. The columns indicate the influence of selecting a utility function on the other utility functions. If we
activate for the Disaster-Recovery-Risk (column ’DRR’ in Table), then OR score will increase 1.3x, compared
to the case when OR is active. Likewise, activating the combined score DOR with weights 3-1 of OR and DRR
respectively decreases OR score 10% and keeps stable DRR.

Active UF OR DRR DOR
1-1

DOR
1-3

DOR
3-1

CL

OR score ×10−2 9 12 11 12 8 12
DRR score ×10−2 89 83 82 81 83 90
DOR score ×10−3 49 47 46 64 26 51
CL score ×10−4 37 44 30 39 32 4

Table 7.3: Maximum utility function (UF) scores for all UFs, for each activated UF. For DOR, we report results for three different settings
(columns DOR wo −wd ).

An important result from this Table is the performance of CL score when CL is activated in portfolio sched-
uler. When CL is activated, the CL score is reduced at least 7.5x than the CL scores of all the other utility
functions when activated. However, the corresponding OR and DRR scores when CL is active are increased.

The insights we have about the utility functions and their importance on datacenter scheduling and op-
eration are:

1. Combined utility functions can achieve lower risk levels than utility functions focusing on a specific
risk type.

2. Portfolio scheduler should select placements by activating UFs on SLA violation risks regarding the
system performance levels (load balancing).

3. DOR and CL scores can be used to benchmark system performance and reveal performance trade-
offs.

A surprising finding of this work is that utility functions optimizing more than one goal might achieve bet-
ter performance levels than utility functions specialized for one goal. In Table 7.3, we see that utility function
DOR achieves lower risk levels of OR and of DRR when activating DOR 3-1 and DOR 1-3 respectively. The
same weighted DOR functions also result in better CL levels than the levels of OR and DRR. Therefore, single
optimization goals for portfolio scheduling might not achieve the best possible scores given a portfolio set.
Due to the fact that performance in datacenter scheduling depends on multiple factors, if portfolio scheduler
considers the optimization of many risk types at the same time, it might improve the overall system perfor-
mance. The possible improvement is affected by the importance we give to risk types assigning them suitable
weights.

Load balancing is a primary goal for datacenter engineers in order the system to be operational. For this
reason, load balancing is a baseline standard to achieve further goals such as our focus on mitigating SLA
violations. From the experimental results , we see that the two objectives , load balancing levels and system
risk levels, can be achieved separately but they can be met together with some tradeoffs. Therefore, we can
use portfolio scheduling to select policies with respect to risk performance levels in the system and then
sorting the selections with similar risk performance according to the load balancing levels they achieve. As
we see from the results, there are often a few policies with similar performance for every utility function (best
and worst scores are close), thus we could use those policies to implement our proposal.

Utility functions can also be used separately from portfolio scheduler as performance indicators in system
performance. CL and DOR scores can be utilized to benchmarking the systems with different workloads and
have insights which workload types impose more risk on SLA violations. As a result, datacenter engineers can
plan scheduling strategies which in turn will lead to the design of new scheduling policies addressing risks.
Furthermore, datacenter stakeholders can agree on capacity plannings if future risk levels in the system are
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inappropriate. Finally, the metrics (e.g., DOR 3-1, CL) can be used to daily monitoring the system and alarm
engineers for irregular system behavior which may lead to SLA violations.

7.5. Summary
In this chapter, we present the results of the predictor selection and of the evaluation of portfolio scheduler
managing risks in a multi-cluster multi-datacenter setting running business-critical workloads.

Through the prediction selection, we choose a linear regression model with metrics having been correlated
with the CPU contention in business-critical workloads. The selected predictor is then used to estimate the
contention of the workloads in the experimental evaluation of portfolio scheduler. The predictor has high
accuracy for the business-critical workloads. The accuracy results of some of the regression models show no
big differences. We explain this by the fact that we include many models related to linear regression (but with
different constraints). We could have enriched the regression model set with more models but we already
have a satisfying result for our problem.

We also present the results of the evaluation of portfolio scheduling. We use a real-world and a synthetic
workload for the experiments. The evaluation validates our intuition that portfolio scheduler will deliver
good (low) risk results since it evaluates the risk results of many scheduling policies. In addition, we show that
the performance of portfolio scheduler is always better than the performance of individual policies running
solo. It is also interesting to observe that the risk performance of placements by the engineers decisions taken
in the real system is worse than the performance of portfolio scheduler. This points out the importance of the
concept being used to large scale complex systems.

The implemented simulator shows that it is possible to implement a scalable model. This means that
for business-critical workloads similar to the tested workloads of Solvinity, a.k.a. low arrival rate of customer
applications, we can implement an online version of portfolio scheduler. For higher ingest rates and larger
infrastructures, the implementation of the scheduler should be redesigned to be time-efficient. The imple-
mentation leaves room for code optimization that can reduce the runtime of the scheduler to be an effective
online version.





8
Related Work

In this section, we survey related research from two main areas: portfolio scheduling and risk management
in clouds. Overall, our study extends this entire body of work conceptually and technically, by proposing
conceptual advances in the definition of risk and of policies to manage risk, by addressing the new prob-
lem of managing the combined operational and disaster-recovery risks, and by conducting experiments that
are more comprehensive and reveal significantly more about portfolio scheduling operation than previous
studies.

Portfolio scheduling originates from the field of finance [56]. In computational portfolio design [42],
extensive work in the field of artificial intelligence has focused on the selection and application stages of the
portfolio [39, 71].

Closest to our work, portfolio scheduling has been applied to academic [23] and commercial [65, 74] dat-
acenters. In contrast to earlier work [23, 65], our work adds the focus on risk management, which as a new
problem greatly extends the scope of portfolio scheduling in datacenters, and on long-running VMs, vs. the
much shorter jobs considered by the others. In contrast to van Beek et al. [74], our work greatly extends the
problem scope to combined risks, leads to many new advancements in scheduling, and is much more com-
prehensive in experimental analysis. Specifically, our work focuses not only on the resource overcommitment
risk, but on a much larger family of risk problems (resource contention in general for operational risks, and
also disaster-recovery and combined operational-disaster-recovery risks). This leads us to design new families
of risk-related utility functions, new scheduling policies, and a new resource-contention predictor. Finally,
our experimental work greatly extends the insights into the operation of portfolio scheduling offered by re-
lated work, in particular through the first analysis of when transitions between selected scheduling policies
occur and of how the portfolio selections affect the utility functions over time.

Risk management in clouds includes an increasing body of work on SLAs between cloud customers and
operators. Following more than a decade of evolution in the context of grids [22, 79], the state-of-the-art
focuses on defining various system properties and SLA types [78], on negotiating and brokering SLAs [10,
25, 49], on monitoring for [20] and on assessing [24, 54] SLA-violations, and on selecting clouds to minimize
them [35] and other aspects of SLA-lifecycle management [55]. Eyraud-Dubois et al. [31] present the notion
of SLAs and consolidation and show that with dynamic bin-packing a theoretical global CPU utilization of
66% can be achieved. Our work also considers resource consolidation and the associated operational risk,
but we additionally investigate the reliability risk of datacenter disaster and also combined risks. Moreover,
we evaluate our schedulers with real-world datacenter workloads.
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9
Conclusion and Future Work

For large enterprises and governments to host their business-critical workloads in virtualized datacenters,
risk management needs to become a first-class citizen of datacenter-level resource management and schedul-
ing. Toward this end, in this work we propose a new risk-aware portfolio-based scheduling architecture,
which repeatedly and dynamically selects the scheduler that is estimated to minimize risk, among a set of
schedulers considered in the portfolio.

Our is the first work to address scheduling that is aware of the following two types of risks: Operational
Risk, which is the risk of not meeting the SLA performance requirements, and on Disaster Recovery Risk,
which is the risk of not being able to absorbe the failure of an entire datacenter in a multi-datacenter op-
eration. We further extend the state-of-the-art in portfolio scheduling through the following contributions:
three new utility functions that respond to various concepts of risk, two new risk-aware scheduling policies,
and a new method for selecting at runtime the risk-minimizing scheduling policy while taking into account
the important but difficult to predict CPU-contention arising from multiple VMs sharing the same physical
machine.

We show through trace-based simulations that use traces collected from a commercial multi-datacenter
cloud operator and synthetic traces that our risk-aware portfolio scheduling compares favourably with all
its constituent policies, and also with the real baseline of manually optimized operations as recorded by the
cloud operator. We also show why each decision is taken.

In future work, we will extend our contention predictor and DRR to more resource types. We will also
work on adoption, about which we know from previous studies [50], but also from our industry partners, that
is a difficult process. We have created for this work graphs that explain scheduling decisions in detail, over
time. For the future, we plan to use these and similar results as explanations given to datacenter engineers–
understanding is believing.
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Cloud refers to both the applications delivered as services over the Internet and the hardware and systems
software in the datacenters that provide those services. M.Armbrust et al. [7] mention the new aspects that
Cloud Computing offers to the public: the illusion of infinite resources available on demand, the elimination
of an up-front commitment by Cloud users and the ability to pay for use of computing resources on a short-
term basis as needed.

B.P.Rimal et al. [64] present a taxonomy of cloud computing systems and survey existing cloud services
developed by various projects world-wide (Google, Amazon AWS). Cloud architecture is the first categoriza-
tion of cloud systems classifying the infrastructures on their ownership and in turn the accessibility of the re-
sources (Public Cloud, Private Cloud, Hybrid Cloud). The Virtualization Management abstracts the coupling
between the hardware and operating system , thus providing important advantages in sharing, manageabil-
ity and isolation of resources. Cloud services is another categorization in the proposed taxonomy further split
the services according to the level of service to cloud users. The services are classified to Infrastructure-as-a-
Service (IaaS),Platform-as-a-Service (PaaS), Service-as-a-Service (SaaS) and Hardware-as-a-Service (HaaS).
Cloud systems can also be categorized according to the Fault Tolerance and Security features they provide to
cloud users. Further classes of identification depict the provided Load balancing techniques and Interoper-
ability issues to allow applications to be ported between clouds.

The resource management in clouds refers to the management of the available resources. B.Jennings et
al. [47] mention the constituent fields of resource management such as the resource utilization(demand) es-
timation(profiling) and resource pricing and profit maximization. An essential part of resource management,
however, is the workload management and the scheduling of the resources.

In the remainder of this survey, we provide latest developments on different topics related to scheduling
in clouds. Metrics are widely used for evaluating and monitoring cloud systems, predictor models are used
for profiling and estimating various cloud issues, schedulers are used for the main part of scheduling and
simulation tools explore different cloud techniques to be applied to real systems.

A.1. Metrics
System behavior must be monitored in order engineers to supervise the system and take actions when needed.
Metrics measure the non-functional system requirements which depict the way system operates. Examples
of such non-functional requirements in cloud is the performance of cloud services and the elasticity of cloud
system.

Most metrics can be categorized according to the resource type they measure. Thus, there are metrics
measuring utilization of CPU, memory, network and storage. Those metrics can further be classified by the
entity whose the resource type is measured. For example, different CPU metrics may depict the CPU utiliza-
tion of server and of cluster. There are metrics measuring the performance on host-level, on cluster-level
and on system-level. In total, hundreds of metrics can be used to monitor cloud systems according to needs.
Cloud providers should selectively choose the monitored metrics for the system since the retrieval of abun-
dant metrics in short time periods causes overhead and possible performance bottleneck in the system.

Contemporary commercial monitoring tools support the collection of metrics and are able to produce
further metric values with statistical techniques, i.e., CPU workload in near future. VMWare’s [4] , Citrix’s [2],
Microsoft’s [3] and Amazon-AWS’s [1] cloud monitors are widely used currently in the market. There are also
enterprise-class monitoring tools which are open-source such as Zabbix [5].

In the remainder of this section, we present some references of the state-of-the-art metrics being used by
monitoring tools to supervising systems.

Z.Li et.al [53] present a survey on cloud metrics after Systematic Literature Review. They collect the de-facto
metrics adopted in the existing cloud services evaluation works and categorize them. They identify three
categories according to cloud service features and these categories in turn are divided into more. The first
category is "Performance metrics" encompassing metrics referring to performance evaluation of the system.
Each performance metric is divided into parts: the physical property part and the capacity part, for example
Communication Latency or Storage reliability. As a consequence of this partition, we may have numerous
metrics if we match a physical property and a capacity part. The authors present metrics for every common
resource type in clouds and for every capacity part they identify in their survey.

The second category of metrics is "Economics". This part comprise cost-related metrics used in clouds
measuring cost effectiveness and cost efficiency.

The last category encompasses "Security" metrics. According to the authors, this category is relatively
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new and there is a research gap on quantifying security issues in cloud.

Ang Li et. al [52] introduce CloudCmp, a systematic comparator of the performance and cost of cloud providers.
The framework utilizes cloud metrics which are claimed to be suitable for using them in cloud benchmarks.
The authors provide results of benchmarks when running in systems of public cloud providers.

The metrics are classified according to features common in cloud services. Elastic computing set en-
compasses metrics about the scaling latency and the costs of scaling up or down applications. This set also
includes the benchmark runtime as a metric since the completion time of a benchmark is related to the avail-
able resources being scaled through workload.

The second set of metrics, the set for persistent storage, measures the ability of application instances to
access and share application data. Metrics such as the consistency time to synchronize data and response
times of storage operations are included in the mentioned set.

Finally, the metrics set about network is further divided into metrics measuring the communication among
instances and the communication of instances with end-users.

The authors conclude that there are performance and cost variations across providers, thus customers
are advised to outsource their application instances according to their needs.

V.C. Emeakaroha et al. [29] present the LoM2HiS framework which bridges the gap between the monitored
metrics and SLA parameters. Since SLA metrics depict high-level performance of applications, the authors
attempt an automatic approach to translate those metrics to low-level resource metrics which are directly
monitored. The mapping between the two domains is sometimes straightforward, e.g., disk space metric
represents SLA metrics of storage, or more complex such as in case of response time (SLA) and the related
resource metrics of bandwidth and data transfers. The proposed framework using the automatic mapping
monitors high-level info, i.e., SLA objectives and violations, by collecting low-level monitored values.

In the work of N.Herbst et.al [41], the authors propose new metrics together with measurement approaches
about non-functional properties of cloud systems. They argue that traditional performance metrics, such as
throughput and response time, are not sufficient alone to benchmark current systems and inform cloud users
about complex cloud properties affecting QoS.

Elasticity is a cloud system property about accommodation of large variations in the amounts of services
requested in a system. In this work, many elasticity-related metrics are proposed to test systems under widely
varying workloads.

Performance Isolation is a system property about the interference between tenants of shared cloud sys-
tems. This work introduces related metrics focusing on the level of interference that tenants might have in a
system leading to performance issues.

Availability is also addressed in this work which proposes metrics measuring the un-/availability of the
resources, an issue having high impact on th reputation of cloud providers.

Finally, the authors propose Operational Risk-related metrics measuring the compliance of the perfor-
mance of running applications against their agreed performance described in SLAs.

A.2. Predictor Models

In statistical modeling, Regression Analysis is a statistical process for estimating the relationships among vari-
ables. More specifically, to investigate the relationship between a dependent variable and one or more in-
dependent variables. Regression analysis is widely used for prediction and forecasting. In this case, the in-
dependent variables are also called regressors and the dependent variable response. In Figure A.1 we see the
aforementioned parts of the process.

The analysis is used firstly to understand which among independent variables are related to the response
and secondly to explore the forms of these relationships. The former part of the process identifies the regres-
sors and the second part selects the regression model as depicted in Figure A.1.

The regressors are independent variables which are related to the response. The relationship is commonly
evaluated by correlation metrics, each one of them presents different type of relationship. After identifying
the regressors set, a regression model should be selected which will "predict better" the response according to
regressors values. The regression model fits the regressors data into functions whose output is the response.
The goodness of fitness can be measured by metrics such as the coefficient of determination (R2). The coef-
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ficient of determination indicates the proportion of the variance of the response that is predictable from the
regressors.

Regression Analysis:
Regression Model 

to fit data

Input: regressors

Related metrics
with predicted              
metric

Output: response

 Predicted                     
 metric values

Figure A.1: Regression Analysis elements.

S.Islam et al. [46] present empirical prediction models to estimate the resource utilizations of applications.
They focus on estimating the needs of CPU resources for an application. The input as well as the output of the
predictor is the CPU utilization for an application. The former derives from historical data of CPU utilization
while the latter is the estimated value from the prediction model. They investigate two different learning
methods for predictors, the neural networks and the linear regression approach.

By evaluating the accuracy of the predictors with many metrics (R2, RMSE, PRED), they conclude that the
neural network model using sliding window for the input of the predictor can be really effective on forecasting
the resource utilization in the cloud.

T.Vinh at al. [27] propose a predictor estimating power consumption of cloud applications in order to be used
in energy-aware scheduling in clouds. Green scheduling is relatively new in cloud research and addresses the
energy problem of cloud systems since power consumption of servers is significant even when running idle.
The proposed energy predictor is feasible to run in dynamic real-time settings.

The predictor uses neural network techniques to forecast the CPU workload demand of applications and
along with their power consumption profiles, it estimates how much energy an application will consume. Us-
ing this knowledge, the power consumption estimations can further be used at hosting applications together
and saving up energy by turning on and off servers.

J.Mars et al. [57] introduce a method named Bubble-up which uses predictions of performance degradations
of applications. They focus on the degradations resulting from contention for shared resources in the memory
subsystem.

The predictor process is built on two steps. Firstly, they profile an application in terms of memory load
and by using a secondary co-hosted application, the bubble, they identify the impact on the performance
of the former application when sharing resources with the latter. Thus, using the bubble memory loads as
standard for the profiling, they record the loss of QoS of the applications when sharing memory. They further
quantify the recorded degradations from the contention for memory resources and match applications to be
co-hosted that have the least impact on memory contention.

T.Dwyer et al. [28] present a method of creating predictors of performance degradations of applications. They
focus on the degradation resulting from contention for sharing resources in multicore chips. The input of the
predictor is a set of hardware counters whose values are recorded throughout the application runtime. The
input values are obtained by the applications co-hosted in the same multicore chip. The predicted value - the
output of the predictor - is the estimated runtime of the applications.

The authors investigate many regression models to identify the most accurate model for the problem. In
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the end, they select the model with the least average error.

P.Xiong et al. [81] introduce an automated model-driven framework which identifies the system metrics that
are most predictive of application performance. The predictive set of metrics might change during runtime,
thus framework is capable of potential shifts.

The framework monitors hundreds of metrics on host and application level and selects those which are
highly correlated to the response time of applications for a short time period. Then, the regression model
is selected which has the highest accuracy of predictions for a specified time window. In the end, the set
of correlated metrics and the regression model with the highest accuracy and low computation overhead is
chosen as the predictor.

The prediction model might change through runtime since the relationship between performance and
system resources is not always the same. The changing point is defined when the prediction errors between
two sliding windows are significantly different and do not come from the same distribution (result of null
hypothesis).

A.3. Schedulers

Scheduling is the process of provisioning resources and assigning jobs to these resources [73]. The resources
that are available to be provisioned for customer services in the cloud are commonly the CPU, the memory,
network and storage I/O. The jobs arriving in the cloud and have to be assigned to the physical resources in
order to be executed vary according to workload types. The workloads may comprise sequential, parallel jobs
or even mixtures. Every workload type has different characteristics on the requested resources need to be
provisioned. Scheduling considers these characteristics aiming at co-scheduling workload types efficiently.

Scheduling workloads can be mathematically formulated by the Vector Bin Packing [16] problem where
we consider multi-dimensional bins sized according to the resource amounts of CPU,memory, network and
storage. A solution to that problem depicts an assignment of jobs with specific requests to the bins they fit.
An optimal solution fits the jobs to bins, i.e., resources, in such way that is optimal under one or more utility
functions.

Scheduling workloads in clouds has also to consider the Quality of Service (QoS). QoS indicate some con-
straints of workloads that are related to the performance of the workload execution. Such constraints can be
deadline constraints of the execution times, availability of resources, latency of components of the physical
machines. The most required constraints of for the workloads to run in clouds are guaranteed through agree-
ments between cloud service providers and cloud customers. These agreements are defined as Service Level
Agreements (SLAs).

Solving the Vector Bin Packing problem proves to be very complex. Woeginger [80] shows that it is APX-
hard meaning that there is no polynomial-time approximation scheme (PTAS) for this problem. Therefore
different techniques are used to address the scheduling problem [70], [77], [59], [38]. Scheduling policies,
or scheduling algorithms, describe a process in which assignments of jobs take place under specific heuris-
tic. Later in this section, we present related work about scheduling policies. A meta-scheduling approach to
address the optimization of multi-objective scheduling is the portfolio scheduling.

Portfolio scheduling originates from the field of finance, started by the seminal work of H.Markowitz [56]
and later refined by R.Merton [58]. F.Black et al. [12] later added the reflection step in the process of portfolio
scheduler. The concept of computational portfolio design is introduced by B.A.Huberman [42] who adapts
portfolio scheduling as an economics approach to computation problems that involve variability in perfor-
mance. He claims that by constructing portfolios of heuristic algorithms, good solutions can be found in rea-
sonable time. C.Gomes et al. [40] present later that by creating portfolios with different instances of stochastic
algorithms, there is a significant improvement on hard satisfiability problems. In computational portfolio de-
sign, extensive work in the field of artificial intelligence has focused on the selection and application stages
of the portfolio [15, 39, 71]. Extensive work has also been conducted on speeding up the selection step of
portfolio scheduling [23, 36, 37]. Portfolio scheduling applied to datacenters is relatively new approach at the
multi-objective scheduling problem in datacenters.

K.Deng et al. [23] present a model for the exploration of portfolio scheduling. Portfolio set of policies in the
scheduler comprises tens of scheduling policies being evaluated to selecting the most promising policy for a
specific workload.
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The authors introduce an online algorithm for time- constrained policy selection, which aims at increas-
ing the change of selecting the best policy under time limits. This method addresses the reflection step in
portfolio scheduling. During the portfolio scheduler’s runtime, the policies are divided into best-performing
policies (Smart policies) and poor-performing policies (poor policies). The former include the policies that
are more possible to lead to good solutions on time and the latter the opposite. However, as the authors argue,
the poor policies are also needed to optimizing the utility functions.

O.Shai et al. [65] propose a portfolio scheduler approach for scheduling batch jobs in systems. The optimiza-
tion goal is the maximization of the total number of running jobs. The authors, after verifying that single
policies cannot improve performance by running alone, introduce a meta-heuristic approach in which many
policies are used for scheduling and the best policy in terms of balanced resource usage is selected. The result
is the improvement of resource-utilization levels in the servers by a significant factor.

V.van Beek et al. [74] present a self-expressive framework in resource manaagement of datacenters. The
framework incorporates portfolio scheduling approach in the placement decisions. The components of the
framework proactively gather system information that will increase their self-aware and self-expressive ca-
pabilities. The information is then used by portfolio scheduler to efficiently select the policy that best fits the
current workload. In this work, portfolio scheduler is also informed about required placements (anti-/affinity
rules) since some application types require their instances to be hosted or not together. The experimental re-
sults show different distributions of selected policies according to the activated utility function.

Scheduling policies

A.Beloglazov et al. [11] present resource allocation heuristics considering the energy efficiency in the system.
The proposed policies attempt to alleviate high CPU utilization of servers which in turn lead to increasing
power consumption. The policies estimate the power consumption of the servers and decide on migrating
VMs according to their utilization patterns. The result is less energy consumption which reduces the SLA
violations in terms of CPU utilization levels of the workload.

A.J.Ferrer et al. [35] present an approach to cloud service provisioning considering service as scheduling unit
described with lists of requested resources and agreed SLAs on service performance. They introduce elastic-
ity policies considering performance risks such as service costs, reliability of service and energy efficiency.
The policies decide on scaling up or down (reactively or proactively) the service resources according to gain
parameters. The parameters evaluate the periodic changes of system load, the future service load and the
system service rate over time.

Y.Chen et al. [18] propose scheduling strategies based on predictions of future resource demands and feed-
back control of system execution. The predictions of requested resources are used to a proactive algorithm
using the estimations to solve a given optimization problem on placement. The second proposed algorithm
is a reactive solution, which uses periodic feedback to achieve energy efficiency on servers. The authors argue
that a hybrid approach combining the mentioned strategies results in efficient server provisioning consider-
ing server configurations and workload behavior.

S.Blagodurov et al. [14] present a scheduling algorithm for multi-objective job placement. After categorizing
the application jobs according to the contention level, communication loads and their power consumption,
the algorithm finds the best placement to balance the degrees of collocation with other performance-related
factors. The algorithm works online, thus they propose strategies to limit the runtime of the algorithm by
reducing the search space of the solutions.

A.4. Simulation Tools

Cloud simulator helps to model various kinds of cloud application by creating Datacentre, Virtual Machine
and many Utilities which can be added to configure it, thus making it very easy to analyze.
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The system model of a simulator should be detailed depending on the goal of the simulator. A simulator
specific for energy savings should have a detailed energy model but might not have fully implemented all
the different state-of-the-art memory architectures. On the other hand, simulator specialized in resource
contention should have options for memory architectures in order to investigate concepts about contention
on different simulated systems. In the following paragraphs, we mention a survey on cloud simulators and
describe the initial simulator (DGSim) we refine later for our work.

A.Ahmed et al. [6] present a survey on cloud simulators and compare their features. The survey covers most
of the popular cloud simulators such as CloudSim and GreenCloud. The analysis discusses the underlying
platform the simulators operate which is important for the performance and the usability of the simulators.
The authors also describe for each simulator the available communication models and the energy models if
supported. Finally, they refer to the federation policy which considers the inter-networking of applications in
different geographical locations and is supported by only but a few simulators.

A.Iosup et al. [45] introduce the grid simulator DGSim which is used later by K.Deng et al. [23]. DGSim is a
simulation framework evaluating resource management solutions. It supports many workload models such
as individual jobs and workflows , and iter-/intra-operation models to depict possible architectural alter-
natives. The framework also supports workload generator to create synthetic workloads according to given
characteristics from the user or from a real workload.

The DGSim simulator is refined lated by V.van Beek [73] which in turn we use in our work and incorporate
the CPU contention predictor.
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Figure B.1: Policy Distribution for all utility functions including the weighted DORs - Real-world workload.
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Figure C.1: Selected Policies for DOR with weights (wo , wd ) = (1,1)- Real-world workload.
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Figure C.2: Evolution of DOR with weights (wo , wd ) = (1,1) over the entire workload - Real-world workload.
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D Utility Function: DOR-1-3 - RT
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Figure D.1: Selected Policies for DOR with weights (wo , wd ) = (1,3) - Real-world workload.
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Figure D.2: Evolution of DOR with weights (wo , wd ) = (1,3) over the entire workload - Real-world workload.
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Figure E.1: Selected Policies for DOR with weights (wo , wd ) = (3,1) - Real-world workload.
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Figure E.2: Evolution of DOR with weights (wo , wd ) = (3,1) over the entire workload - Real-world workload.
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Figure F.1: Selected Policies for CL - Real-world workload.
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Figure F.2: Evolution of CL over the entire workload - Real-world workload.
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Figure G.1: Policy Distribution for all utility functions including the weighted DORs - Synthetic workload.
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H Utility Function: DOR-1-1 - ST
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Figure H.1: Selected Policies for DOR with weights (wo , wd ) = (1,1)- Synthetic workload. The symbol X shows the system breaking point.
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Figure H.2: Evolution of DOR with weights (wo , wd ) = (1,1) over the entire workload - Synthetic workload. The symbol X shows the
system breaking point.
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I Utility Function: DOR-1-3 - ST
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Figure I.1: Selected Policies for DOR with weights (wo , wd ) = (1,3) - Synthetic workload. The symbol X shows the system breaking point.
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Figure I.2: Evolution of DOR with weights (wo , wd ) = (1,3) over the entire workload - Synthetic workload. The symbol X shows the system
breaking point.
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J Utility Function: DOR-3-1 - ST
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Figure J.1: Selected Policies for DOR with weights (wo , wd ) = (3,1) - Synthetic workload. The symbol X shows the system breaking point.
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Figure J.2: Evolution of DOR with weights (wo , wd ) = (3,1) over the entire workload - Synthetic workload. The symbol X shows the system
breaking point.
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K Utility Function: CL - ST
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Figure K.1: Selected Policies for CL - Synthetic workload. The symbol X shows the system breaking point.
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