
The λMAC framework: redefining MAC protocols for Wireless
Sensor Networks

Tom Parker Gertjan Halkes Maarten Bezemer Koen Langendoen
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
The Netherlands

{T.E.V.Parker, G.P.Halkes, K.G.Langendoen}@tudelft.nl mcb@robuust.nl

Abstract
Most current WSN MAC protocol implementations have
multiple tasks to perform - deciding on correct timing,
sending of packets, sending of acknowledgements, etc.
However, as much of this is common to all MAC pro-
tocols, there is duplication of functionality, which leads
to larger MAC protocol code size and therefore increas-
ing numbers of bugs. Additionally, extensions to the ba-
sic functionality must be separately implemented in each
MAC protocol.

In this paper, we look at a different way to design a
MAC protocol, focusing on the providing of interfaces
which can be used to implement the common function-
ality separately, and on the core MAC role of timing.
We also look at some examples of MAC extensions that
this approach enables. We demonstrate a working im-
plementation of these principles as an implementation
of B-MAC for TinyOS, and compare it with the stan-
dard TinyOS B-MAC implementation. We show a 35%
smaller code size, with the same overall functionality but
increased extensibility, and while maintaining similar per-
formance. We also present results and experiences from
using the same framework to implement T-MAC, LMAC,
and Crankshaft. All are demonstrated with data from real-
world experience using our 24 node testbed.

1 Introduction
Current Medium Access Control (MAC) protocol design
for Wireless Sensor Networks (WSNs) covers a wide va-
riety of different tasks. A MAC protocol is responsible
not only for deciding when to send packets, but also what
to send. For example, generating the standard Unicast se-
quence of RTS/CTS/DATA/ACK messages is usually the
responsibility of the MAC protocol after the application

has provided a data packet to be sent. The MAC must
maintain an internal state machine monitoring which one
of these packets it last sent or received, enabling it to de-
termine what packet should be sent/received next.

Unfortunately, the decision about whether a MAC’s im-
plementation of Unicast uses RTS/CTS messages (which
are seen by some designers as overhead, and by others
as required for reliability) tends to be a somewhat hap-
hazard affair. Often, whether they are required should be
an application-level decision, and so some MAC proto-
cols that implement RTS/CTS allow this functionality to
be switched off and on at run or compile time. However,
this is another example of a feature that may or may not
be in a given MAC protocol depending on the whims of
its designer.

Given that we have a set of functionality that should be
common to all MAC protocols, but certain implementa-
tions do or do not have particular features implemented,
we lose out on the advantage of common functionality:
the idea that we can ideally use any given MAC protocol
as a drop-in replacement. Additionally, because the dupli-
cation of effort results in both increased bug count due to
multiple implementations of the same ideas (e.g. Unicast),
and a system that is hard to extend, we conclude that the
current design brief for MAC protocols has a number of
significant problems, and so should be rethought.

In this paper we will set out an improved design brief
for MAC protocols, and show how these principles can
be implemented efficiently by demonstrating our exam-
ple λB-MAC protocol. The same principles will then be
shown to work for λ-layers implementations of T-MAC,
LMAC, and Crankshaft we will show more data gathered
from these protocols.

1

2 Rethinking MAC protocols
We wish to redesign the process for creating a MAC pro-
tocol such that the common functionality that does not
necessarily need to be in a MAC protocol itself can be
separated out. The first step to achieving this is to deter-
mine what is common functionality, and what are MAC-
specific requirements.

2.1 Existing concepts
Before we can start rethinking the design process for
MAC protocols, we need to look at the current state of the
art. Current WSN MAC protocols are usually grouped
in two different groups: TDMA protocols (LMAC [10],
TRAMA [18], PEDAMACS [2], etc) and CSMA-based
protocols (S-MAC [23], T-MAC [3], B-MAC [16], etc).
These two approaches are usually regarded as being very
different, and even within each approach we are shown
many different protocols that all do things in drastically
different ways. However, despite all the apparent differ-
ences, all of these protocols have one thing in common
- they are designed to manage the available time in the
radio medium in order to fulfil certain metrics while send-
ing/receiving messages (latency, energy usage, etc).

Specifically, they all do this by managing when a partic-
ular node can send messages - TDMA protocols do this by
separating the available time into slots and allowing nodes
only to send in their slot; CSMA protocols do this by mak-
ing nodes perform carrier sense before sending (and in the
case of protocols like S-MAC, also by waiting until the
beginning of the next “frame”). In total, a MAC proto-
col must do three things: given an application wishes to
send a packet, determine what time this node will be able
to send; perform a message exchange to send the packet
at that point; and transmit appropriate control packets so
that the application layer will be able to send packets in
the future.

2.2 Role separation
We then looked at separating the large existing MAC pro-
tocols into 3 parts: below the MAC, above the MAC and
a λMAC layer. This set of layers we refer to collectively
as the MAC stack, and together they should do everything
a traditional monolithic MAC layer would do on its own.

Our first task was looking at the modules required “be-
low” the λMAC layer. Working from the conclusions
of Section 2.1, we know that MAC protocols need to
send/receive packets, and to decide when to send/receive.
The former can be achieved with a “dumb” packet layer
(no queueing, minimal latency, switches radio on/off only

ApplicationApplication

Packet layerPacket layer

Multiplexer
Traditional

MAC Protocol

MACλ

Demultiplexer

Network time layer

Transmission

Figure 1: A traditional MAC protocol vs. the λMAC pro-
tocol stack.

when told to); the latter requires medium activity detec-
tion (as part of the “dumb” packet layer) and/or a time
synchronisation layer. Time synchronisation can also then
be used to generate “frames” (periodic timers, as used by
all TDMA protocols and S/T-MAC), but it would need
to be designed such that it will not interfere with pro-
tocols that do not require time synchronisation (e.g. B-
MAC [16]).

The biggest question regarding how much we can pull
out of a standard MAC layer was deciding what a λMAC
layer actually really needs to do. Or in other words, know-
ing what a complete MAC stack needs to do, what makes
one MAC protocol different from another? Our conclu-
sion was simple: time management. One of the standard
opinions about the role of WSN MACs is power manage-
ment, and time management can be considered an exten-
sion of this - one of the time management roles is de-
ciding when to switch the radio on/off, but the other is
deciding when to start sending a packet sequence. How-
ever, once a node has started a packet sequence (e.g. all
of Unicast after the RTS message), the code becomes re-
markably generic and MAC-portable, yet is currently still
embedded within the MAC. What if we could extract that
- let the MAC decide when to initiate packet sequences,
but then hand off to a generic module to perform the ac-
tual sequence itself? This new transmission layer module
could then be reused in other MAC protocols.

Now that basic packet sending/receiving, time synchro-
nisation, and the sending of particular packet sequences
have all been separated out, the λMAC layer only needs to

2

contain time management: that is, the maintenance of the
knowledge about what time is a good time to send packets;
allocating blocks of time as required by the transmission
layer modules in order to allow them to both send and re-
ceive data; and switching the radio on/off as appropriate
for the individual protocol. A block of time is simply an
interval during which the radio is exclusively handed over
to a particular transmission module which has previously
requested that the λMAC layer give it n milliseconds in or-
der to send a packet sequence; conversely time blocks are
also allocated when a packet comes in informing the local
node that another node will be performing a packet se-
quence for a short period from now and so the local node
should not give the radio over to other transmission-layer
requests for that time. Note that when we talk about a
good time to send a packet, we imply that this is a time
with a high probability that the destination node will be
able to receive the packet, which is information that the
λMAC layer needs to keep track of as part of its time man-
agement role.

2.3 Design conclusions
Given our new formulation of a MAC protocol stack, we
redefine the required modules and connections as follows
(see Figure 1 for an overview of how these interact):

• Packet layer - responsible for the actual send-
ing/receiving of a packet, radio state changes
(Rx/Tx/sleep) and for providing carrier sense func-
tions (for CSMA-based λMAC protocols). The send-
ing/receiving radio state here is “dumb” - it does
things right now, with no options for delay or smart
decisions considered. In the case of byte-based ra-
dios, we also provide a platform-specific byte inter-
face layer (which can only be talked to via the Packet
layer), and for packet-based radios the Packet layer is
a slim layer on top of the existing hardware capabili-
ties. This allows us to abstract away from the differ-
ences of these two paradigms, as only packet-level
information is required for the λMAC implementa-
tion.

• Network Time layer - responsible for storage and
generation of time-synchronisation information to
provide event synchronisation, e.g. frame timers.
This is not required by all λMAC layers and there-
fore optional. However, there are several reasons to
include the Network Time layer here. First, time-
synchronisation information is useful to a large quan-
tity of WSN MAC layers, due to the energy savings
that can be made if nodes are able to agree when

transmit/receive periods should be. Second, the in-
formation is potentially useful to other layers. Fi-
nally, doing accurate timing information above the
MAC layer, given the uncertainty of timing in at least
the 10-msec range above most WSN MAC protocols
is very difficult. For these reasons, we designed the
Network Time layer as a general service to the entire
application stack.

The Network Time layer can, through its placement
in the stack, override the λMAC layer’s decisions on
when to keep the radio in receive mode in order to
do neighbour discovery. The overrides will make the
radio be in receive mode more than it would be nor-
mally off, but will not switch the radio off when the
MAC wishes it to be on, or switch the radio from
transmit to receive mode (or vice versa).

The Network Time layer here provides the same in-
terfaces as the Packet layer in addition to the Net-
work Time interface in order to allow insertion of
time-synchronisation headers in packets on their way
to/from the Packet layer itself. For more information,
see Section 2.5.

• λMAC - responsible for time management. Allo-
cates time blocks in response to requests from the
Transmission layer, at times that are considered to
be “good”. Talks to the Packet/Network Time layer
in order to send its own control packets, as well as
for carrier-sense checking in order to determine if the
radio medium is free for sending (for CSMA-based
λMAC layers), and decides when to switch the ra-
dio on and off. Passes packet send requests/receive
events from/to the Transmission layer to/from the
Packet/Network Time layer, possibly adding and
removing headers on said packets along the way.
Given the roles now allocated to other layers, the
λMAC layer will be considerably smaller than a tra-
ditional MAC layer.

• Multiplexer - (de-)multiplexer to allow for the λMAC
to only provide a singular interface to the upper mod-
ules, yet talk to many Transmission layer modules.

• Transmission layer - contains the Unicast, Broadcast
and other application-level primitives of this nature.
Requests time blocks from the λMAC layer as re-
quired, and then sends packets during the allocated
time. The transmission layer is fully explored in Sec-
tion 3.

• Demultiplexer - provides the standard MAC inter-
face to the application and hands off the packets from

3

the application to the appropriate Transmission layer
module.

There is one limitation on the choice of MAC protocol for
the λMAC layer: packet exchanges should performed in
a contiguous block of time. To allow optimal flexibility,
this block of time should be usable for both sending and
receiving by a node. This is possible for all contention-
based MACs, and for some TDMA-based MACs, but this
may require some alterations to the protocols.

2.4 λ Interfaces
As we wish to define common connections between the
λMAC and Transmission layers to enable reuse of the
Transmission modules, we need to define some stan-
dard interfaces for these connections. We use here the
terminology of nesC [6] to provide common semantics,
and also because our reference implementation is imple-
mented on top of TinyOS [9]. There should however be
no obstructions to implementing this with any other WSN
software platform.

All modules in the λMAC stack use the standard
TinyOS Send and Receive interfaces for passing messages
up and down the stack. Furthermore, we define the Al-
locateTime interface, which defines the necessary func-
tionality for a Transmission module to allocate time from
the λMAC layer. In general, a Transmission level mod-
ule requires a single instance of the AllocateTime inter-
face, plus one instance of the Send and Receive inter-
faces per message type (e.g. the Broadcast module re-
quires a single Send/Receive interface set, and a stan-
dard Unicast requires 4 Send/Receive interface sets (RTS,
CTS, DATA and ACK)). The λMAC layer, however, only
needs to provide a single instance of each of AllocateTime
and Send/Receive to the Multiplexer module. The Mul-
tiplexer module provides generic multiplexing services
to create a parametrised interface to both AllocateTime
and Send/Receive, thus enabling the capability for multi-
ple Transmission layer modules to be enabled in a single
stack, without having to deal with the multiplexing com-
plexity in each λMAC layer.

Individual Transmission layer modules could be imple-
mented using a single Send/Receive interface set per mod-
ule. However for modules that require multiple message
types (e.g. Unicast), the implementers of the Transmis-
sion modules would have to both add their own type field
to the sent messages, and do de-multiplexing of the differ-
ent types at the receiver side. As the Multiplexer module
allows for multiple instances of Send/Receive already (in
order to allow multiple Transmission modules in a sin-
gle application), the Transmission layer protocol design

can be simplified by using multiple Send/Receive inter-
face sets, and this also removes the necessity for the over-
head of an additional type field.

The interface between the packet layer and the λMAC
layer is much simpler, and as this is more in keeping
with traditional WSN MAC design, we will not cover
it in detail here. The Packet layer must provide inter-
faces to change the radio state (Tx/Rx/sleep), and also
to send/receive packets using the commands and events
of the Send and Receive interfaces. For a CSMA-based
λMAC layer, the Packet layer will also require an inter-
face to carrier-sense operations. As we stated before, the
Packet layer is “dumb” in the sense that all of the smart
decisions regarding when to send, to listen and to sleep
are decided by the particular λMAC layer in use.

2.5 Network Time

In order for many MAC protocols to operate correctly,
they require a mechanism to synchronise nodes in order
so that differing nodes can agree on events happening at
the same time e.g. synchronised awake times. Addition-
ally, placing this between the packet layer and the λMAC
layer also allows us to integrate time synchronisation in-
formation into each outgoing packet, thus reducing the
need for additional control packets whenever we are send-
ing other data packets. However, as we wish the Network
Time layer to not override λMAC-layer decisions about
when to send packets, in the case where we do not have a
sufficient rate of outgoing packets to guarantee time syn-
chronisation the Network Time layer will send a packe-
tRequired event (Table 2) to the λMAC layer requesting
that it send a packet “soon” in order to maintain time syn-
chronisation.

In keeping with the idea of the Network Time layer as a
generic layer, and also because we wish to provide infor-
mation to modules other than the λMAC layer, we need
to define the timing information appropriately. We started
with the work of Li et al [13] on the global schedule al-
gorithm (GSA), but then expanded it one step further. In
GSA, nodes keep track of how much time has passed since
they were switched on, and add this information to their
outgoing packets. If a node sees an incoming packet with
a greater age than the local age, the local age is updated
to be the same as the incoming packet, thus allowing the
network to converge towards a shared timing value based
on the oldest (first switched-on) node’s age. Note that al-
though we chose to use a synchronisation algorithm which
results in a global network synchronisation, this is an im-
plementation decision, not a decision resulting from the
requirements of the design.

4

Name Type Arguments Return Function
requestBlock command uint16 t

msec,
am addr t

to

error t Request a period of msec milliseconds to send a message to to,
which can be the broadcast address. A return value of FAIL indi-
cates a persistent failure i.e. the requested period is too long.

requestSafeBlock command uint16 t
msec,

am addr t
to

error t As requestBlock, but asks the λMAC layer to trade off increased
latency for a better chance of success. Should only be called after
a previous block has run to completion, but has completely failed
i.e. no response has been received from any other nodes at all.

startBlock event void Called on the successful start of a period. Always corresponds to
the last call to requestBlock or requestSafeBlock.

cancelBlock command void Cancel a previous requestBlock or requestSafeBlock request.
Should only be called before the requested block has started.

endBlock event bool
myStart

void Called at the end of a period, where myStart indicates whether this
was a block started at this node or a block initiated by another
node’s packet.

sleepRemaining command void Switch the radio off for the remaining length of the AllocateTime
period. This is intended for periods when there will be packets in
the air, but none of them are destined for this node.

sendTime command uint16 t
length,
bool

firstPacket

uint16 t Query how long a packet of length bytes should take to be trans-
mitted with the relevant headers. firstPacket indicates if the packet
will be the first packet in the packet sequence, which can be used
by protocols using low-power listening techniques to determine
whether a long preamble will be used.

Table 1: AllocateTime interface

Name Type Arguments Return Function
packetRequired event void Notify the λMAC layer that it should send a packet soon to

maintain synchronisation.
sendDummySyncPacket command void Request the time synchronisation module to send an empty

packet for the purpose of time synchronisation, when the
λMAC layer has no useful data to send.

isSyncPacket event message t
msg

bool Ask the λMAC layer whether the message msg was useful to
maintain time synchronisation. Only packets that are likely
to be received by all neighbours should be indicated as such.

Table 2: TimeSync interface

In the original implementation of GSA, schedule infor-
mation (time since last frame timer) was also distributed
with the age value in order to calculate the correct current
frame timer for the MAC protocol. In the λMAC frame-
work, we have a separate TimeSync module, which is
used by the λMAC framework as a storage location for the
current local value of the age value, and a separate Fram-
eTimer module which derives frame-timer events from
this age value. The FrameTimer module provides peri-
odic frame timers (of variable length up to (232 − 1)ms)
to all application modules that require this capability (not
just λMAC layers that need it) - e.g. for experiments that
require an entire field of nodes to make a measurement
at the same time (a commonly wanted requirement for

many biological experiments being proposed for sensor
networks). We do this by taking the age value modulus
the frame length to provide a frame timer every time (lo-
calAge mod FrameTime) = 0. This allows the creation
of multiple frame timers for different application mod-
ules, while only requiring synchronisation on the single
age value.

All of the periodic frame timers also have an allowable
“fuzz” value: if because of updating the local clock, we
jump over the time when we should have fired a frame
timer, but we jump over by less than the “fuzz” value, then
we fire the timer anyways. This bounds the acceptable
jitter in the frame timer event. In the event we jump too
far over the event point, the safest approach is usually just

5

Name Type Arguments Return Function
setFrameTime command uint32 t

ms,
uint32 t

fuzz

void Set time between frame timers (msec milliseconds) as well as
allowable fuzz time (fuzz milliseconds)

clearFrame command void Stop this FrameTimer
frameStart command uint32 t Retrieve the local time at which the current frame started.
frameIndex command uint32 t Retrieve the time in milliseconds since the start of the current

frame.
globalTime command globaltime t Retrieve the current value of the network time.

frame event sanitystate t
sanity

void Indicates that the new frame has started. sanity indicates
whether the network time layer has fully synchronised or is
still in one of the start-up phases.

frameGuaranteed event sanitystate t
sanity

void Indicates that fuzz milliseconds have passed since the start of
the frame.

frameSkipped event void Indicates that one or more frame events have been skipped due
to network time re-synchronisation.

Table 3: FrameTimer interface

to skip the event entirely and wait for the next one (e.g.
not doing a TDMA frame that is out of sync with the other
nodes). This allows us to cope with small changes in the
network clock due to varying speeds of clocks on different
nodes.

3 Transmission layer modules
In this section we will look at how to implement Trans-
mission layer modules, with a focus towards the standard
set of WSN Transmission modules on top of the λMAC
layers i.e. the set of functions that would be expected from
a standard MAC protocol. An exploration of what can be
done with non-standard modules is in Section 6.

3.1 Notes on Transmission module design
Before we go into a more detailed look at how to build
basic Transmission modules, a number of features of the
AllocateTime interface should be noted:

• The point of an AllocateTime period is to grab time
in order to send packets, with a reasonable guarantee
about our neighbours being in a state where they are
able to receive our packets. A node does not need to
be in an AllocateTime period for any other purpose.

• The AllocateTime period (as marked by a start-
Block() event) is only started when a certain level of
guarantee can be given that the radio medium will be
at least relatively quiet. In CSMA-based protocols
this will be done via a carrier sense mechanism of

random length (to resolve contention issues between
multiple nodes wishing to start AllocateTime), and
in TDMA-based protocols this is guaranteed by the
time slot mechanism.

• The λMAC layer will piggyback information about
the remaining AllocateTime period on outgoing
packets, in order to place other nodes into the Al-
locateTime state as well. If the MAC protocol im-
plemented uses a slot structure, this may be avoided
as the allocation will always be for an entire slot.

• Once an AllocateTime period is started, it cannot be
stopped. This is because of the difficulty of telling
other (possibly asleep) nodes of this change of plans.
A node can be told to go to sleep for the rest of the
time period however (via sleepRemaining()).

3.2 Broadcast
Broadcast is simply implemented on top of a single set
of Send/Receive and AllocateTime interfaces. Sending is
implemented as follows:

1. Call requestBlock() for sendTime(packet length)
milliseconds.

2. On startBlock(), call send().

3. On sendDone(), call sleepRemaining().

4. On reception, call sleepRemaining() as no other
packets will be forthcoming in this period. The re-
ceiving node can determine the remaining length of
this period from the message it received.

6

3.3 Unicast

Unicast is somewhat more complicated than Broadcast,
partly because it can have variants both with and with-
out RTS/CTS. For the case with RTS/CTS, an example
implementation runs as follows. During the initialisa-
tion of this module, we set control length to the value of
sendTime(0), as this is the length of a control (RTS, CTS
or ACK) packet, because they contain no data, only MAC
headers.

To send a packet, we first calculate packet time as
sendTime(packet length) + 3*control length plus some
platform-dependant allowance for processing and radio
state transition delays. We need 3 control length intervals
for the RTS, CTS and ACK packets. We then call request-
Block() with packet time. On startBlock() (as we have a
reasonable guarantee about the time slot, so we can start
immediately), we start to cascade through the RTS-CTS-
DATA-ACK sequence i.e. we send an RTS packet using
send(), wait to receive a CTS, then send a DATA packet
with send(), then wait to receive the ACK. After receiving
the ACK packet, we tell the λMAC layer to sleep for any
remaining time in the block.

At the receiver node, we first see a receive() with an
RTS packet. If the RTS packet is destined for the receiv-
ing node it sends a CTS packet. Then, the receiver waits
for a DATA packet, sends an ACK packet and calls sleep-
Remaining() (in order to go to sleep for any remaining left
over processing time). Other nodes that are not the desti-
nation for this Unicast sequence will go to sleep by calling
sleepRemaining() after receiving the initial RTS packet.

This is a simplified description for an example Unicast
module, and our complete implementation includes retries
for lost/missed packets. However, it gives a flavour of how
Unicast can be implemented on top of the λMAC layer.

4 Integrating existing MAC types

Now that we have shown how we intend to split up ex-
isting monolithic MAC protocols into a more generic and
reusable stack (Section 2.3), and described how that stack
works (Sections 2.4, 2.5 and 3), we need to go back and
show that all of this can work with existing MAC proto-
cols.

We divide WSN MAC protocols into 3 groups; dividing
first into continual listening vs. scheduled, and then fur-
ther divide scheduled listening protocols into how they de-
cide when to send - carrier sense vs. scheduled (see Figure
2 for a diagrammatic view of this). We have implemented
a protocol for each of the groups to demonstrate the flexi-
bility of the λMAC framework. For the continual listening

Listen Timing

Continual

B−MAC Send Timing

Scheduled

ScheduledCarrier Sense

Crankshaft T−MAC LMAC

Figure 2: WSN MAC protocol division.

group we implemented B-MAC [16], the standard TinyOS
MAC protocol. For the scheduled listening with carrier-
sense based send timing group we implemented both T-
MAC [3] and Crankshaft [7]. In the scheduled listening
and sending group we implemented LMAC [10], a TDMA
protocol. We believe that by showing that these proto-
cols can be implemented with the λMAC framework, and
by providing data from experiments on our testbed us-
ing these protocols, we adequately demonstrate that the
λMAC framework is suitably generic to serve as a base for
implementing a large portion of currently proposed WSN
MAC protocols.

In the remainder of this section we describe how we
implemented the distinguishing features of the four im-
plemented protocols. We will also show how the concept
of time allocation maps to the scheduling mechanisms in
the selected MAC protocols.

4.1 λB-MAC

B-MAC is a prominent example of the continual listen-
ing group, which uses the Low Power Listening (LPL)
technique to save energy. The LPL technique requires pe-
riodic sampling of the medium, and long preambles on
the first message of a message sequence. The periodic
sampling of the medium is not directly supported by the
λMAC framework, but can be easily implemented using
timers and the carrier-sense primitives provided by the
packet layer. The packet layer also provides an interface
to change the preamble length at run-time, such that the
long preambles required by B-MAC can be generated.

λB-MAC should also provide the same contention res-
olution mechanism as B-MAC. This means it can start
sending at any time, provided it performs carrier-sense
and random back-off first. However, in the case of λB-
MAC, once a node determines that it has won the con-

7

TA TATA

CSMA

Active time

Sleep time
T−MAC

Active time

Sleep time
S−MAC

Figure 3: T-MAC.

tention it does not start sending itself, but instead sig-
nals the requesting transmission module that its block has
started through the startBlock() call. λB-MAC will then
wait for the block to end. The transmission module will in
the mean while ask the λB-MAC protocol to send a mes-
sage for it. λB-MAC appends its own header, after which
it will pass the message on to the packet layer immedi-
ately. When transmission modules are used that mimic the
packet sequences used by the B-MAC protocol for broad-
cast and unicast, the behaviour of the MAC stack with the
λB-MAC protocol will be as described for the B-MAC
protocol.

A final feature of the B-MAC protocol is that it allows
on-line tuning of the sampling interval by higher layers
in the protocol stack. Although we have not implemented
this feature it could easily be added as an additional inter-
face implemented by the λB-MAC protocol itself. This is
much like the monolithic implementation which also has
an additional interface, next to the standard MAC protocol
interface, which allows such tuning.

4.2 λT-MAC

T-MAC is a CSMA-based MAC protocol, derived from
S-MAC [23], but with adaptive duty cycling. The adap-
tive duty cycling is based on the idea of going to sleep
shortly (TA milliseconds, defined by the length of the con-
tention window, the time needed to receive a minimal
packet, process it, and send another minimal packet) af-
ter the last “interesting” event - which can be a message
going out, another message coming in or the periodic fir-
ing of a frame timer every so often (see Figure 3). The
frame timer length is a trade off between energy efficiency
(with longer sleep times between awake periods) and la-
tency (due to the length of sleep before the next time we
can send a packet).

We used the frame timers from the Network Time layer
to assume a lot of the complexity from T-MAC. A signif-
icant part of the code of an existing T-MAC implementa-

tion was dedicated to schedule synchronisation (including
discovery of new schedules); a role now subsumed by the
Network Time layer. On a requestBlock() call, λT-MAC
places the requested amount of time into a variable. When
T-MAC would normally check if it has a packet to send,
λT-MAC instead checks if a request was made, and if so
requests that the packet layer do a carrier sense check. If
the carrier sense returns an idle radio medium, then start-
Block() is called and λT-MAC waits until the end of the
AllocateTime period before doing anything else. Send
and receive calls pass almost uninhibited through the λT-
MAC layer. Notably, the send is not delayed waiting for
anything else to complete, but is passed through to the
packet layer as rapidly as possible.

If λT-MAC gets a packetRequired event (a request from
the Network Time layer for a packet to be sent), λT-MAC
sends out a Sync packet - a packet with no actual data
payload, and only containing timing information in order
to maintain the inter-node time synchronisation.

4.3 λLMAC

LMAC [10] is a TDMA-based MAC protocol, aimed
at giving WSN nodes the opportunity to communicate
collision-free, and at minimising the overhead of the phys-
ical layer by reducing the number of transceiver state
changes. The LMAC protocol is self-organising in terms
of time slot assignment and synchronisation, starting from
a sink node (specified by the application). Upon start-
up, the sink node sets a frame schedule and chooses the
first slot in the frame as its sending slot. Next, one-
hop neighbours receiving the sink’s transmissions, choose
their sending slots based on the frame schedule of the sink
node. This is then repeated for all next-hop neighbours.
When an application wants to send a message, LMAC
delays the transmission until the start of the node’s next
sending slot.

We created a TinyOS implementation of λLMAC based
on the protocol description and the OMNeT++ code avail-
able from the LMAC authors. For time synchronisation
between the nodes, we used the Network Time layer, and
so were able to use a frame timer to determine the start of
each slot. This way, all nodes agree on the exact start time
of all slots. When using a frame timer to determine only
the start of each LMAC frame, intermediate clock updates
during the frame may lead to inaccurate start times of slots
near the end of an LMAC frame.

Although λMAC supports sending multiple packets in
a single slot, in LMAC it is only possible for a node to
transmit a single message per frame. The authors sug-
gest gluing together multiple messages to the same desti-

8

nation to prevent high latency, but this suggestion is not
implemented in the available OMNeT++ program code.
To make our results comparable to the OMNeT++ imple-
mentation we had available, we did not implement this
feature.

On a requestBlock() call, λLMAC sets a flag indicat-
ing that there is a packet waiting to be sent at the node’s
next time slot. During its time slot, a node will always
transmit a packet. If a node has no data to send, an empty
Sync packet is sent to keep the network synchronised and
to keep a claim on the slot. Otherwise λLMAC signals
startBlock() and waits until the end of the time slot to call
endBlock().

Since a TDMA-based MAC-protocol does not need
the full Unicast RTS/CTS/DATA/ACK sequence to keep
other nodes from transmitting at the same time, we cre-
ated a Unicast module that only sends the DATA packet.
As the TinyOS message header already contains informa-
tion about destination node and packet length, this infor-
mation was removed from the LMAC-specific header.

4.4 λCrankshaft

The Crankshaft protocol [7] uses the frame and slot
structure of TDMA protocols like LMAC, but instead
of scheduling the senders to eliminate contention all to-
gether, it schedules receivers to limit contention. The
advantage of the receiver scheduling over the sender
scheduling is that it does not suffer from the over-
provisioning that is associated with TDMA protocols for
WSNs.

To achieve maximum energy efficiency, Crankshaft
combines techniques from several different protocols. For
example the synchronised channel polling mechanism
from SCP-MAC [24] is used to allow receiving nodes to
sleep most of their slots when no message is sent to them.
This requires preamble sampling and long preambles, just
like λB-MAC, but also the network synchronisation. The
synchronisation is provided by the Network Time layer.

As far as implementation using the λMAC framework is
concerned the most distinguishing feature is that the cor-
rect moment to contend and send depends on the desti-
nation (owing to the receiver scheduling). This feature
requires that when a block is allocated, the destination
is also made available to the λCrankshaft implementa-
tion. Crankshaft uses a simple DATA/ACK message se-
quence which is readily implemented using our stock Uni-
cast Transmission module.

Protocol Parameter Value
B-MAC Sleep time 85 msec
LMAC Number of slots 32

Slot length 50 msec
Crankshaft Number of unicast slots 8

Number of broadcast slots 2
Slot length 48 msec

Table 4: Protocol parameters as used during the experi-
ments. λMAC and non-λMAC versions use the same pa-
rameter values. Time values are in binary milliseconds.

5 Testing
We performed a series of tests comparing the λMAC ver-
sions of B-MAC, T-MAC, LMAC and Crankshaft to other
implementations. In the case of λB-MAC we compare
against the standard TinyOS B-MAC implementation. Al-
though we have a TinyOS 1 implementation of T-MAC, it
does not perform to an acceptable level to allow proper
comparison. Therefore, for T-MAC, as well as for LMAC
and Crankshaft we had to resort to comparing against
simulation results. We use an enhanced version of our
OMNeT++ based MAC protocol simulator used in earlier
work [12]. We do not compare against TOSSIM, as our
goal is to check against a different implementation of the
same protocol, so as to verify the correct operation of our
λMAC implementations.

All real-world experiments are performed on our 24
node testbed [8]. The nodes in our testbed are mica2 class
nodes, with Atmel ATMega128 processors and CC1000
radios. Table 4 show the parameters used for the differ-
ent protocols for all our tests. The simulator has been set
to match both the hardware and software characteristics
as closely as possible. Both simulations and real-world
experiments are performed five times.

5.1 Testbed Results
We tested the implementations of λB-MAC, λT-MAC,
λLMAC and λCrankshaft on our full testbed. At the de-
fault transmit power setting, our testbed is a single cell
network of 24 nodes. First of all we perform a benchmark
test, in which two nodes A and B communicate with each
other while the other nodes are sending broadcast pack-
ets. Nodes A and B send at a fixed rate of one message
per two seconds, while the message rate of the broadcast-
ing nodes is varied. We measure the packet success rate
as the success rate for packets between A and B, ignoring
all other packets. Figure 4 shows the result for the λB-
MAC and λT-MAC, as well as the results for the standard

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

D
el

iv
er

y
ra

tio

Broadcast node message rate (msg/node/sec)

B-MAC (standard)
λB-MAC

T-MAC (sim)
λT-MAC

Figure 4: Unicast communication test between two nodes
surrounded by broadcasting nodes.

TinyOS B-MAC protocol on our testbed and simulation
results for T-MAC. We have omitted the graph with the
results for λLMAC and λCrankshaft because, as expected,
they show (almost) 100% reception for all broadcast-node
message-rates.

As can be seen in the figure, the standard B-MAC im-
plementation outperforms the λB-MAC implementation
by a small margin for low contention. However, as the
contention increases, λB-MAC starts to outperform the
standard B-MAC approximately 17% percentage points.
In our original test runs the delivery ratio of the standard
B-MAC implementation dropped to almost zero due to a
bug in the dynamic noise-floor algorithm, which caused
B-MAC to consider all transmissions as background noise
when channel utilisation was high. The results shown in
this paper are the results with the bug fixed. The remain-
ing performance gap is likely due to a failing clear channel
assessment that causes collisions that λB-MAC avoids.

The results for the T-MAC protocol show that the
λT-MAC implementation shows a similar curve as the
simulation-based T-MAC implementation. As the simula-
tor uses a simple SNR based radio model with free-space
propagation, it is expected that the simulation results are
better than the real-world results. However, we do expect
that both curves show similar decay in delivery ratio, as
we see in the figure.

As a second test, we let all the nodes in the testbed send
to a single node. The results are plotted in Figure 5. The
top graph shows the same protocols as before. Again the
simulated T-MAC implementation outperforms the λT-
MAC implementation, but shows similar drop in delivery
ratio.

The λB-MAC implementation and the standard B-
MAC implementation show almost identical delivery ra-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

D
el

iv
er

y
ra

tio

Message rate (msg/node/sec)

B-MAC (standard)
λB-MAC

T-MAC (sim)
λT-MAC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

D
el

iv
er

y
ra

tio

Message rate (msg/node/sec)

LMAC (sim)
λLMAC

Crankshaft (sim)
λCrankshaft

Figure 5: Unicast test.

Sender A Preamble Data A

Preamble Data B

Data BPreamble Collision

Preamble

Sender B

Receiver

Figure 6: Two partially overlapping B-MAC packets
cause a single packet to be received.

tios. Even though the clear channel assessment in the
standard B-MAC implementation is not optimal, in this
scenario it is not so much of a problem. If two messages
partially overlap, the second message will still be received
(cf. Figure 6). For the unicast test this counts as one suc-
cessfully received message. In the previous test such col-
lisions cause problems if the first message is a unicast
message and the second message is a broadcast message,
as only the unicast messages count for the delivery ratio.
This explains why for the unicast test the standard B-MAC
implementation does not suffer a large performance hit at
high contention.

The bottom graph in Figure 5 shows the results for

10

S

Figure 7: Hidden-terminal setup.

λLMAC and λCrankshaft. For the LMAC protocol the
graphs for the simulated LMAC and λLMAC are virtually
the same. As the LMAC protocol does not use a con-
tention resolution algorithm, the only impact the channel
model has is in message detection and correct transmis-
sion. Because our testbed is a single cell network in the
default configuration, the chance of incorrect transmission
is minimal. The only factor determining the delivery ratio
of the LMAC protocol is therefore the maximum through-
put. As the simulator was set to match the the real nodes
as closely as possible, it is no surprise that there is hardly
any difference in delivery ratio between simulation and
real life.

In the Crankshaft protocol results we see a similar sud-
den drop in performance as we see in the LMAC pro-
tocol result. Again this is caused by bandwidth limita-
tions inherent in the protocol. The Crankshaft protocol
does use a contention resolution algorithm which relies
on a correct clear channel assessment and low contention
to get a 100% delivery ratio. Because the test is set up
in such a way that all nodes generate their messages at
the same time, there is always a limited contention. The
simulated version has a perfect clear channel assessment,
which explains the slightly better performance compared
to the λCrankshaft protocol.

Finally we performed a small hidden-terminal test with
five nodes. The setup is shown in Figure 7. Nodes on
opposite ends of the sink node (S) cannot directly com-
municate. For carrier-sense based protocols, this situa-
tion presents problems because the “hidden nodes” are
not aware of each others transmissions and thereby cause
collisions. We chose this simple setup because it can be
replicated in our simulator. Figure 8 shows the results for
the different protocols. The figure shows that the carrier-
sense based protocols λT-MAC and λCrankshaft perform
better than their simulated counterparts. This is most
likely due to the fact that even though the “hidden nodes”
in the testbed cannot successfully receive messages, they
can in some cases detect the ongoing transmission through
signal strength measurements. As in the first experiment,
λB-MAC outperforms the standard B-MAC due to better
clear-channel assessment. Because the LMAC protocol
does not depend on carrier sensing, the λLMAC protocol

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

D
el

iv
er

y
ra

tio

Message rate (msg/node/sec)

B-MAC (standard)
λB-MAC

T-MAC (sim)
λT-MAC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

D
el

iv
er

y
ra

tio

Message rate (msg/node/sec)

LMAC (sim)
λLMAC

Crankshaft (sim)
λCrankshaft

Figure 8: Hidden-terminal test results.

and the simulated LMAC protocol again show very simi-
lar performance.

From these experiments we conclude that the λMAC
implementations of the tested protocols perform as ex-
pected.

5.2 Power Test

To further demonstrate the correct working of the proto-
cols, we used the power tracing capability of our testbed.
As an example, we include a trace of a λT-MAC packet
exchange in Figure 9. The only difference with power
traces from previous implementations like for example
in [3] is that nodes briefly switch off the radio after the
exchange is complete. This is an artifact of our unicast
transmission module, which tells the MAC layer it may
go to sleep once it has sent/received an ACK message. As
other nodes should not be sending until the block is com-
plete this has no impact on further message exchanges.
After the message exchange we can see the wait for activ-
ity before the radio is turned off, which is characteristic
of the T-MAC protocol. We do not show the traces for

11

 0

 5

 10

 15

 20

 25

 30

 35

 40

 3.18 3.2 3.22 3.24 3.26 3.28 3.3 3.32

P
ow

er
 c

on
su

m
pt

io
n

(m
A

)

Time (s)

CW RTS CTS DATA ACK Timeout

Sender
Receiver

Figure 9: Power trace from a run using the λT-MAC pro-
tocol.

Protocol SLOCCount
B-MAC 499
λB-MAC 324
T-MAC (TinyOS 1) 1090
λT-MAC 330
λCrankshaft 523
λLMAC 426
λMAC transport & multiplexing 775
λMAC time synchronisation 431

Table 5: Lines of code in the implementation of the tested
protocols.

the other protocols as they provide limited value over the
λT-MAC trace.

5.3 Code size

Next, we examine the lines of the code for the different
MAC layer implementations. In this case we can use the
original TinyOS 1 implementation for T-MAC as a com-
parison as bug-free operation of the protocol is not re-
quired for this comparison. First we look at the lines of
code required to implement the protocol. We use this mea-
sure, as it is a measure of effort required to implement the
protocol.

Table 5 shows the number of lines of code as counted
by the SLOCCount utility [22] for the tested protocols.
For the standard B-MAC implementation we counted the
lines for all the modules above the packet layer interface
(i.e. CC1000CsmaP.nc and CC1000ActiveMessageP.nc).
The same holds for the TinyOS 1 T-MAC implementation.
For the λMAC protocols we only count the parts specifi-
cally implementing the functionality of the protocol, and

Protocol RAM ROM
B-MAC 164 9114
λB-MAC 249 11664
T-MAC (TinyOS 1) 538 ∗ 17514
λT-MAC 381 16320
λCrankshaft 409 17158
λLMAC 611 16120

∗After correction for serial stack and packet-layer buffers

Table 6: RAM and ROM sizes in bytes of the same empty
application for different MAC protocol implementations.

not the shared parts of the λMAC framework. Again, this
is because we are interested in the implementation effort
required for the protocol, not the MAC stack as a whole.
The lines of code of the λMAC framework (excluding the
packet layer) are listed in the table as well. The time syn-
chronisation is listed separately because it is an optional
component. The λB-MAC implementation for example
does not use the time synchronisation module.

The λMAC implementations are significantly smaller
than there monolithic counter parts. The λB-MAC im-
plementation is 35% smaller and the λT-MAC imple-
mentation is 70% smaller. Because the B-MAC protocol
does not include any form of time synchronisation, the
code size gain obtained by using the λMAC framework
is smaller than it is for the T-MAC protocol which does
include time synchronisation.

For the λCrankshaft and λLMAC implementations we
do not have monolithic implementations. However, what
the the table does show is that even a complex protocol
like Crankshaft can be implemented within the λMAC
framework with relatively little effort.

From the lines of code comparison in we can also see
that the flexibility of the λMAC framework and the re-
duced per-protocol complexity comes at the expense of a
larger total lines of code for the MAC stack as a whole.
However, lines of code only indirectly translate to RAM
and ROM size. Therefore we also compare the RAM and
ROM size of a minimal program that includes the MAC
layer (see Table 6). Note that contrary to the lines-of-code
comparison, the numbers in Table 6 include the size of the
λMAC stack.

What is immediately clear is that λB-MAC uses 52%
more RAM than the standard B-MAC implementation.
The actual λB-MAC module only uses 9 bytes of memory
for state variables. The overhead is therefore mainly due
to the λMAC framework modules. The most important
source of overhead is in the unicast module. The unicast
module incorporates a message buffer which is used to
send control messages. In the case of λB-MAC it is used

12

as an ACK message. The standard B-MAC implementa-
tion has a hard coded ACK sequence which also does not
include any information about the message that the ACK
was sent in response to. Therefore it can store this se-
quence (5 bytes) in ROM rather than keeping a 44 byte
message buffer in RAM. Other significant overheads in-
troduced by the λMAC framework are bitmaps and tables
in the multiplexer (16 bytes), and state variables in the
unicast module (12 bytes). Analysis of the causes of the
difference in ROM size is thwarted by the inlining em-
ployed by the compiler.

The RAM size for the TinyOS 1 T-MAC implemen-
tation shown here is after correction. In TinyOS 1, the
radio stack and the serial stack cannot be enabled and dis-
abled separately. The serial stack uses approximately 130
bytes of RAM. Furthermore, the packet layer used in the
TinyOS 1 T-MAC implementation uses an extra 94 bytes
in packet buffers that the TinyOS 2 packet layers do not.
Including these extra overheads would distort the compar-
ison. Of course the different TinyOS versions already dis-
tort the comparison somewhat, but that cannot be avoided.
The ROM size cannot be easily corrected for the inclu-
sion of the serial stack due to the inlining performed by
the compiler.

Closer inspection of why the TinyOS 1 T-MAC im-
plementation uses more memory than the λT-MAC im-
plementation revealed that the monolithic implementation
includes three packet buffers more than λT-MAC. These
packet buffers account for 134 bytes, which leaves a dif-
ference of only 23 bytes between the two implementa-
tions. The remaining difference can be mostly attributed
to the different TinyOS versions used, but the exact vari-
ables are hard pinpoint exactly.

The overall picture that arises from these RAM and
ROM size numbers is that the less complicated the pro-
tocol, the larger the overhead incurred by the λMAC im-
plementation. However, the overhead is not very large.
Even in the case of the relatively simple B-MAC proto-
col, the overhead in RAM size is limited to only 85 bytes.
For the more complex T-MAC protocol, the overhead is
negligible. As ROM size is generally not a resource bot-
tleneck, the small absolute increase in ROM size is not a
problem.

5.4 CPU-cycle Overhead

Generally, the flexibility offered by using a framework
rather than creating a monolithic implementation comes
at a price. As we have seen in the previous section, using
the λMAC framework incurs an overhead in RAM and
ROM use. In the context of sensor networks another im-

Experiment Overhead
Idle 275.2%
Idle (adjusted) -5.0%
Send 60.7%
Send (adjusted) -0.2%

Table 7: CPU cycle overhead for λB-MAC, with and with-
out correction for radio switching optimisation.

portant factor is energy consumption. The two main en-
ergy consuming parts of a sensor node are the CPU and
the radio. In this section and the next we therefore quan-
tify the overhead of the λMAC framework with respect to
CPU and radio use.

Because we have two TinyOS implementations of B-
MAC, we can perform detailed comparisons. First of all,
we compare the CPU overhead for the λB-MAC proto-
col compared to the original B-MAC protocol implemen-
tation. We use the Avrora emulator [21] to get accurate
CPU cycle counts. We have tested two situations: first,
we compare the cycles used when there is no communica-
tion taking place. Second we look at the situation where a
node is sending. Both tests are the result of taking the
cycle count over a 20 second period. In the send test,
the node was sending one message per second. Unfor-
tunately, Avrora does not simulate the RSSI output of the
CC1000 radio, which means that the channel polling will
always detect an idle channel. As a result, we cannot pro-
vide CPU overhead numbers for a receiving node. Table 7
summarises our results.

The CPU cycle test results show a significant over-
head for λB-MAC in the idle test, and to a lesser ex-
tent in the send test. Closer examination of the results
showed that the original B-MAC employed an optimisa-
tion in the radio switching. Instead of switching the ra-
dio on completely for channel polling, it only switches
the radio on to the state where RSSI measurements can
be taken. Because the timing during the radio switches is
done through busy waiting, only performing part of the ra-
dio state switch uses fewer cycles. Although it is currently
not possible to tell the packet layer used in the λMAC
stack to do this partial radio state switch, we can calcu-
late the extra time used in busy waiting to do a complete
switch. If we subtract the difference between the busy
waiting time required for a complete state switch versus
a partial state switch, we can see what would be the CPU
cycle overhead if the packet layer used could perform the
optimised radio switching. In the table these numbers
are shown as “adjusted”. The results show that λB-MAC
could in principle be as CPU cycle efficient as the orig-
inal B-MAC, indicating that the λMAC framework does

13

Protocol Average Rate
B-MAC 9.0 (msg/sec)

λB-MAC 8.8 (msg/sec)

Table 8: Average maximum broadcast rate for B-MAC
and λB-MAC.

Protocol Sender Receiver Average
B-MAC 15.4% 7.4% 11.4%
λB-MAC 13.6% 8.0% 10.8%

Table 9: Average radio duty-cycle for one node sending
unicast messages to another node, using B-MAC and λB-
MAC.

not introduce any significant CPU-cycle overhead.

5.5 λB-MAC Micro Benchmarks

Next we performed two micro benchmarks with the two
TinyOS B-MAC implementations. First of all we setup
two nodes, one receiver and one sender node. The sender
simply tried to send as many broadcast packets as it can in
50 seconds. Both the original B-MAC and the λB-MAC
implementation approach the theoretical maximum of ap-
proximately 10 messages per second, and there is only
a small difference between the two implementations (cf.
Table 8).

Second, we measured the average radio duty-cycle for
the same two nodes, sending unicast messages from one
node to the other at a rate of one message per second.
Table 9 shows the average radio duty-cycle over 590 sec-
onds for the sender, the receiver, and the average of both
nodes. Again, both the standard B-MAC and λB-MAC
implementations perform very much the same.

6 Further Transmission modules

In this section we look at some Transmission modules that
can be implemented on top of the λMAC layer that would
not be considered part of a standard MAC protocol, but
would provide useful additional primitives for other ap-
plications. Notably, these would be non-trivial to add to
most normal MAC protocols, as we would either have to
try and build them out of Broadcast and Unicast opera-
tions, which would be significantly sub-optimal; or we
would need to rebuild the MAC entirely. Our modular
approach makes these additions not only possible, but rel-
atively easy.

6.1 ExOR
ExOR (Extremely Optimistic Routing) is a “one send,
many replies” approach to reliable multicast for routing
protocols. It was first explored by Biswas and Morris [1],
and an extended version was proposed in the Guesswork
routing protocol [15]. Both variants can be implemented
on top of the AllocateTime interface, but would require
significant effort to implement inside existing MAC pro-
tocols.

3 2 14

Time

Data

Acknowledgements

Figure 10: Example ExOR packet time-line

An ExOR sending node sends a packet that not only
contains the data for the packet, but also a list of other
nodes that should respond (in the order that they are meant
to respond in). Every node that is in the list that receives
the packet waits sufficient time for all of the earlier nodes
in the list to respond, and then sends an ACK to the sender
node (see Figure 10). This can be used for a number of
things - for example, implementing Reliable Broadcast,
as the sending node knows that all nodes that it receives
an ACK from have received the packet; or making a best-
effort next-hop transfer in a routing algorithm (by using
the ACKs to implement an election mechanism to pick the
“best” possible next-hop node that has correctly received
the original packet).

From the point of view of implementing ExOR as a
Transmission layer, it can be considered as a variant of
Unicast, with no RTS/CTS and a series of receiver nodes,
all of which need to pause a variable amount of time be-
fore sending their ACK packets, and then call sleepRe-
maining() to avoid overhearing the remaining ACKs.

6.2 Priority Queueing
Another possibility that arises once the λMAC layer has
been implemented is an option that has been requested by
various applications, namely priority queueing [14, 20] -
allowing for messages to be sent out in an order differ-
ent from that which they were received (either from other
nodes in routing scenarios, or events from local sensors).
In standard MAC protocols, the “send” method is a fire-
and-forget concept i.e. once the “send” has been called,
cancelling the message (or even being aware of whether

14

the message is queued or actually being sent right now) is
impossible.

Using the λMAC layer, a priority queue can be imple-
mented. By using the cancelBlock() call, a previous re-
quest to the λMAC layer can be revoked, after which a
different block can be requested. Priority queueing would
change the default MAC interface semantics in the sense
that currently a MAC protocol would not accept a new
packet before the last packet was completely handled.
However, when using priority queueing, the MAC stack
would have to accept more than one packet. Also, an in-
terface should be provided for the priority queue to deter-
mine which packet to send first.

7 Related work
At some levels, the core concepts of λMACs vs. tradi-
tional MAC protocols can be viewed as similar to the mi-
cro vs. macro-kernel debate in more conventional operat-
ing systems. In common with micro kernel design [5, 19],
the λMAC layer is able to separate out parts of a WSN ap-
plication that would normally be considered a very com-
plex part of the system (as both MAC layers and operating
system kernels in general tend to be regarded by many
programmers as “here be dragons” areas of code), and
these separated parts are then able to be altered with a
significantly lower chance of affecting the rest of the code
base.

Polastre et. al [17] proposed the Sensornet Protocol
(SP) that provided a greater level of control to applica-
tions wishing to influence the choices made by lower level
protocols. Their system created a much more horizon-
tal design for differing levels of an application stack, as
opposed to the more traditional vertical design in nor-
mal MAC protocols. This design allowed a lot of control
at application-level, with the trade-off that an application
was able to tweak core parts of the MAC layer that could
potentially introduce significant instabilities in the MAC,
unless the application was fully aware of how the partic-
ular MAC would react to those changes. In the λMAC
design, applications have large quantities of control - they
can allocate arbitrary blocks of time and do pretty much
whatever they like during this time - but in a way that pre-
serves the integrity of the λMAC layer, as it is able to de-
lay AllocateTime requests until it is a “good” (for values
of “good” defined by the individual λMAC layer) time for
the application to have control. The λMAC separation of
control, with most timing control out of the hands of the
application designer, allows for cleaner, safer, and simpler
design.

The MAC Layer Architecture (MLA) proposed by

Klues et. al. [11] also provides a component-based archi-
tecture for WSN MAC protocols. MLA provides a set
of modules implementing common MAC building blocks
like channel polling and TDMA slot handling. The com-
mon building blocks identified by MLA are at the level
of mechanisms and orthogonal to the role separation pro-
posed in our λMAC framework. For example, different
from our work MLA still requires the MAC implementer
to manually code the packet exchanges into the MAC spe-
cific code, sacrificing flexibility.

Ee et. al [4] attempted similar goals, but for routing
protocols. Their approach looked at providing a generic
toolkit for building routing protocols, and for creating
modules that could be used to piece together protocols, in-
cluding the possibility of new hybrid protocols built from
parts of earlier protocols. Their wish to do provide a
toolkit as opposed to a framework design such as we pro-
posed is possibly indicative of a wider variety of options
in routing protocol design, as opposed to the relatively
small set (time management) that we have identified here
for MAC protocols.

8 Conclusions
We set out to redesign and rethink how MAC protocols
are designed for WSNs, to create a new and improved
design concept, and to modularise common functional-
ity. We have managed to do this, and along the way also
provide new capabilities and a refocused take on the role
of a MAC in the WSN network stack. The reduction in
the roles of a MAC protocol to its core feature of time
management, by separating out the Network Time layer
to provide node-wide time synchronisation, as well as the
Transmission layer modules to allow for clean separation
of the logic required for features like Unicast, has given a
new look at an old topic.

Through our testing we have managed to show that
our initial attempt at a reference λMAC layer (λB-MAC)
was able to achieve similar performance, both in terms
of data rates and power usage, to a traditionally designed
MAC protocol, but with a significant decrease in com-
plexity. Lines of code is not always a good indicator of
system complexity, but the reduction of duties required of
λB-MAC vs. monolithic B-MAC is. Implementations of
LMAC, T-MAC and Crankshaft within the λMAC frame-
work show the λMAC framework’s flexibility. As it turns
out, the TDMA-based LMAC protocol that we expected
to be the most difficult case, was not so hard to imple-
ment.

By implementing several significantly different MAC
protocols, we have shown that our framework is suffi-

15

ciently generic to be used by the wider community as a
general-purpose MAC creation framework. Especially for
experimental platforms, the importance of allowing peo-
ple to extend existing work without having to reinvent the
wheel cannot be overemphasised.

We hope that one of the side effects of our creation of
the λMAC framework will be the creation of more MAC
protocol implementations for real hardware, as many new
MAC protocols are currently only implemented in simu-
lation. We feel that this is important because simulation
is a poor guide to how something as low-level and radio
hardware dependant as a MAC protocol will behave on
real hardware.

References
[1] S. Biswas and R. Morris. Opportunistic routing in

multi-hop wireless networks. SIGCOMM Comput.
Commun. Rev., 34(1):69–74, 2004.

[2] S. Coleri-Ergen and P. Varaiya. PEDAMACS: Power
efficient and delay aware medium access protocol
for sensor networks. IEEE Trans. on Mobile Com-
puting, 5(7):920–930, July 2006.

[3] T. van Dam and K. Langendoen. An adaptive
energy-efficient MAC protocol for wireless sensor
networks. In 1st ACM Conf. on Embedded Net-
worked Sensor Systems (SenSys 2003), pages 171–
180, Los Angeles, CA, USA, November 2003.

[4] C. Ee, R. Fonseca, S. Kim, D. Moon, A. Tavakoli,
D. Culler, S. Shenker, and I. Stoica. A modular net-
work layer for sensornets. Proceedings of the ACM
Symposium on Operating System Design and Imple-
mentation (OSDI), 2006.

[5] D. R. Engler, M. F. Kaashoek, and J. O’Toole.
Exokernel: An operating system architecture for
application-level resource management. In Sympo-
sium on Operating Systems Principles, pages 251–
266, 1995.

[6] D. Gay, P. Levis, R. von Behren, M. Welsh,
E. Brewer, and D. Culler. The nesC language: A
holistic approach to networked embedded systems.
In ACM Conf. on Programming Language Design
and Implementation (PLDI), pages 1–11, San Diego,
CA, June 2003.

[7] G. Halkes and K. Langendoen. Crankshaft: An
energy-efficient MAC-protocol for dense wireless
sensor networks. In 4th European conference on

Wireless Sensor Networks (EWSN’07), pages 228–
244, Delft, The Netherlands, January 2007.

[8] I. Haratcherev, G. Halkes, T. Parker, O. Visser, and
K. Langendoen. PowerBench: A scalable testbed in-
frastructure for benchmarking power consumption.
In Int. Workshop on Sensor Network Engineering
(IWSNE), pages 37–44, Santorini Island, Greece,
June 2008.

[9] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler,
and K. Pister. System architecture directions for net-
worked sensors. SIGARCH Comput. Archit. News,
28(5):93–104, 2000.

[10] L. van Hoesel and P. Havinga. A lightweight
medium access protocol (LMAC) for wireless sen-
sor networks. In 1st Int. Workshop on Networked
Sensing Systems (INSS 2004), Tokyo, Japan, June
2004.

[11] K. Klues, G. Hackmann, O. Chipara, and C. Lu.
A component based architecture for power-efficient
media access control in wireless sensor networks. In
5th ACM Conf. on Embedded Networked Sensor Sys-
tems (SenSys 2007), pages 59–72, Sydney, Australia,
November 2007.

[12] K. Langendoen and G. Halkes. Energy-efficient
medium access control. In R. Zurawski, editor,
Embedded Systems Handbook, pages 34.1 – 34.29.
CRC press, 2005.

[13] Y. Li, W. Ye, and J. Heidemann. Energy and latency
control in low duty cycle MAC protocols. In Pro-
ceedings of the IEEE Wireless Communications and
Networking Conference, New Orleans, LA, USA,
March 2005.

[14] K. Lorincz, D. Malan, T. R. F. Fulford-Jones, A. Na-
woj, A. Clavel, V. Shnayder, G. Mainland, S. Moul-
ton, and M. Welsh. Sensor networks for emergency
response: Challenges and opportunities. IEEE Per-
vasive Computing, Special Issue on Pervasive Com-
puting for First Response, Oct-Dec 2004.

[15] T. Parker and K. Langendoen. Guesswork: Robust
routing in an uncertain world. In 2nd IEEE Conf. on
Mobile Ad-hoc and Sensor Systems (MASS 2005),
Washington, DC, November 2005.

[16] J. Polastre and D. Culler. B-MAC: An adaptive
CSMA layer for low-power operation. Technical Re-
port cs294-f03/bmac, UC Berkeley, December 2003.

16

[17] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler,
S. Shenker, and I. Stoica. Unifying link abstrac-
tion for wireless sensor networks. In 3rd ACM Conf.
on Embedded Networked Sensor Systems (SenSys
2005), San Diego, CA, November 2005.

[18] V. Rajendran, K. Obraczka, and J. Garcia-Luna-
Aceves. Energy-efficient, collision-free medium ac-
cess control for wireless sensor networks. In 1st
ACM Conf. on Embedded Networked Sensor Sys-
tems (SenSys 2003), pages 181–192, Los Angeles,
CA, November 2003.

[19] R. Rashid, D. Julin, D. Orr, R. Sanzi, R. Baron,
A. Forin, D. Golub, and M. B. Jones. Mach: a
system software kernel. In Proceedings of the 1989
IEEE International Conference, COMPCON, pages
176–178, San Francisco, CA, USA, 1989. IEEE
Comput. Soc. Press.

[20] M. A. Taleghan, A. Taherkordi, and M. Sharifi.
Quality of service support in distributed sink-based
wireless sensor networks. In 2nd IEEE Interna-
tional Conference on Information and Communi-
cation Technologies: from Theory to Applications
(ICTTA ’06), April 2006.

[21] B. Titzer, D. Lee, and J. Palsberg. Avrora: scalable
sensor network simulation with precise timing. In
4th Int. Symp. on Information Processing in Sensor
Networks (IPSN05), April 2005.

[22] D. A. Wheeler. SLOCCount.
http://www.dwheeler.com/sloc/, 2001.

[23] W. Ye, J. Heidemann, and D. Estrin. An energy-
efficient MAC protocol for wireless sensor net-
works. In 21st Conference of the IEEE Computer
and Communications Societies (INFOCOM), vol-
ume 3, pages 1567–1576, New York, NY, June 2002.

[24] W. Ye, F. Silva, and J. Heidemann. Ultra-low duty
cycle mac with scheduled channel polling. In 4th
ACM Conf. on Embedded Networked Sensor Sys-
tems (SenSys 2006), pages 321–334, Boulder, CO,
November 2006.

17

