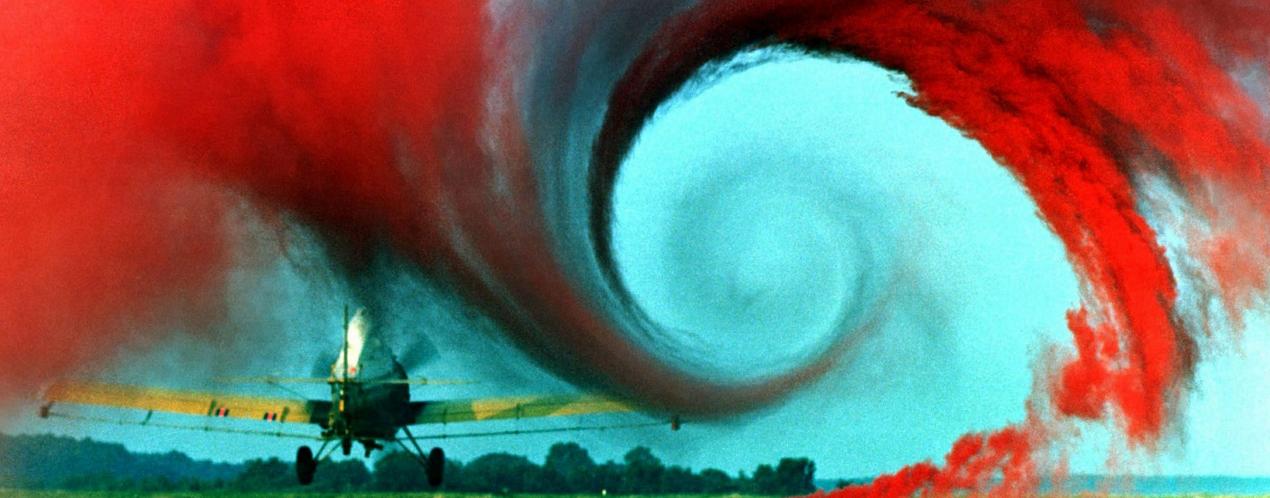


Calculus 1: Lecture 2

Inverse functions and implicit differentiation



Programme

- Inverse trigonometric functions
- Implicit differentiation
- Derivatives of inverse trigonometric functions

Responseware TurningPoint: the first steps

1. Go to: responseware.eu

2. Use the Session ID SessionID

3. Wait for a question to appear

Attendance

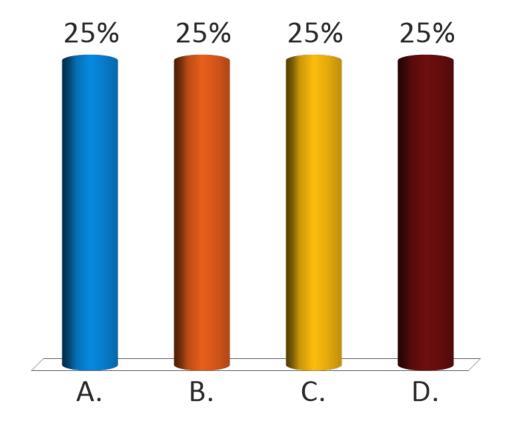
Enter your student number in TurningPoint

Inverse trigonometric functions

Inverse trigonometric functions

 $\arcsin\left(-\frac{\sqrt{3}}{2}\right)$ is equal to:

- **A.** $\frac{4\pi}{3}$
- $B. \frac{\pi}{4}$
- **✓C.** $-\frac{\pi}{3}$
 - D. $-\frac{\pi}{2}$



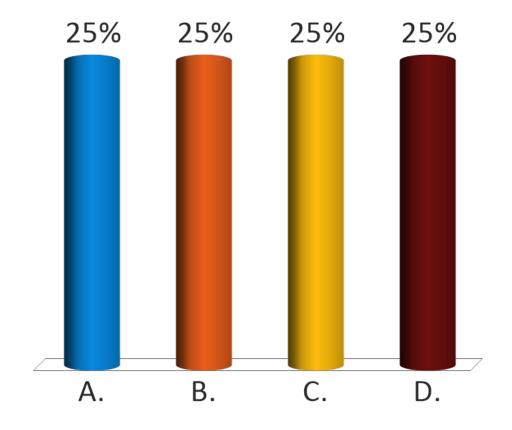
Inverse trigonometric functions

arctan $\sqrt{3}$ is equal to:

B.
$$-\frac{2\pi}{3}$$

C. $\frac{\pi}{4}$

D.
$$-\frac{\pi}{3}$$



Simplifying expressions

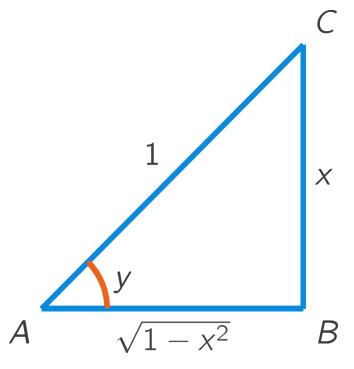
Simplify cos(arcsin x) to a formula without (inverse) trigonometric functions.

$$\arcsin(x) = y \Rightarrow \sin y = x = \frac{x}{1} \text{ with } -\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

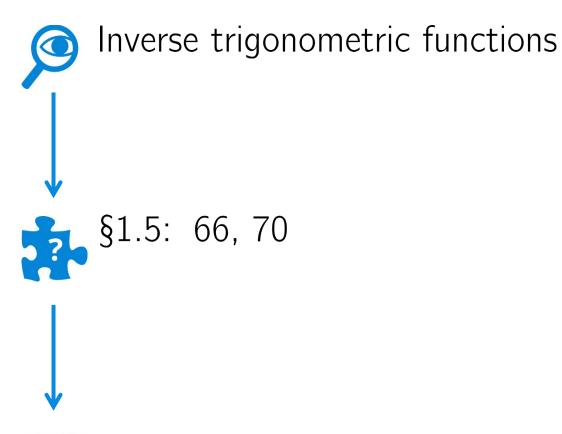
$$\Rightarrow \cos y = \frac{\sqrt{1 - x^2}}{1} = \sqrt{1 - x^2}$$

Conclusion:

$$\cos(\arcsin x) = \sqrt{1 - x^2}$$



Practice



Implicit differentiation

Implicit differentiation

We will see that $5x^2 - 7y^2 = C$ is the implicit general solution of the DE $\frac{dy}{dx} = \frac{5x}{7y}$.

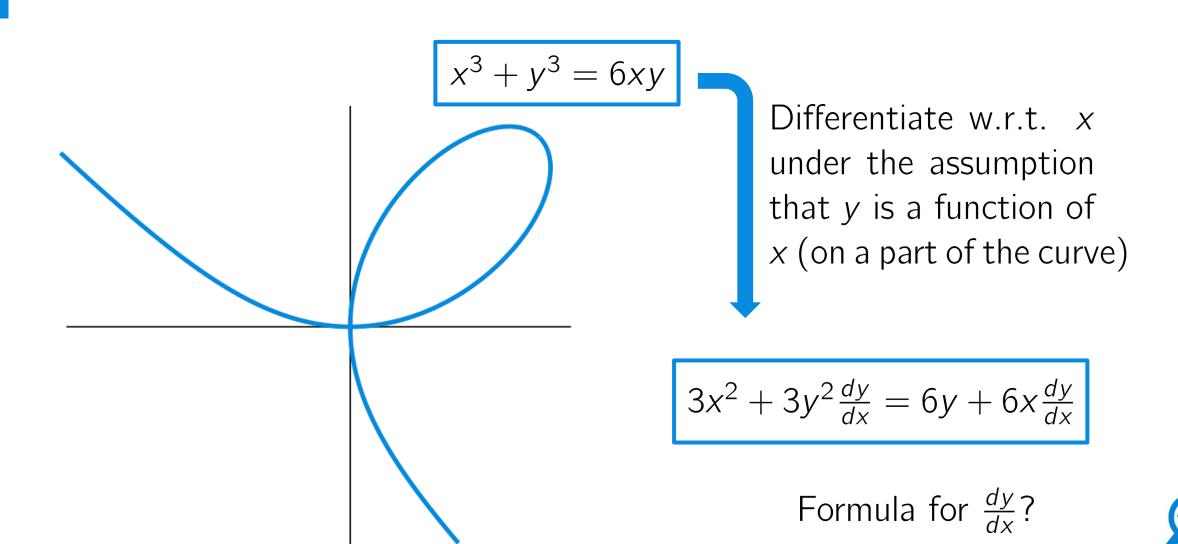
$$5x^{2} - 7y^{2} = C$$
Differentiate w.r.t. x

$$10x - 14y \frac{dy}{dx} = 0$$
Solve for $\frac{dy}{dx}$

$$\frac{dy}{dx} = \frac{-10x}{-14y} = \frac{5x}{7y}$$

- Use the Chain Rule!
- Remember y = y(x)
- This is called <u>implicit</u> <u>differentiation</u>.

Folium of Descartes



Solution curves

Which differential equation has the given solution curves?

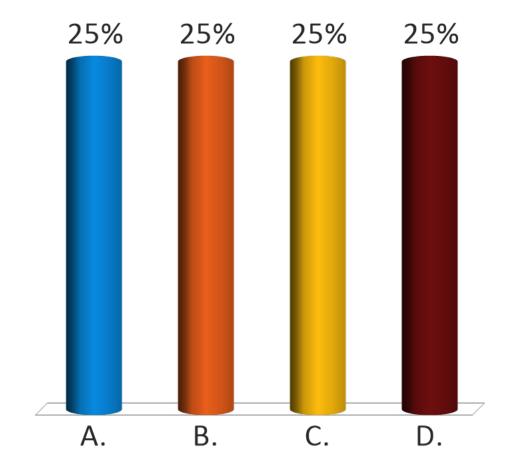
$$y^2 + 2e^y = x^2 + C$$

A.
$$\frac{dy}{dx} = \frac{y + e^y}{x}$$

$$\checkmark$$
 B. $\frac{dy}{dx} = \frac{x}{y + e^y}$

$$C. \frac{dy}{dx} = \frac{x^2 + C}{y^2 + 2e^y}$$

$$\mathbf{D.} \ \frac{dy}{dx} = \frac{x}{\frac{1}{3}y^3 + e^y}$$



Derivative

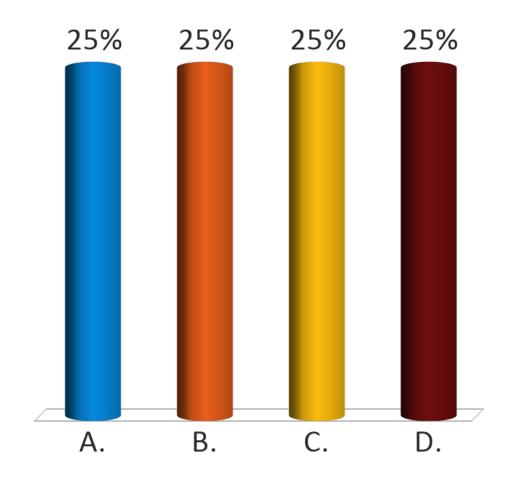
If y is a function of x, what is the derivative of y given sin(y) = x?

$$A. y' = \frac{1}{\tan(y)}$$

B.
$$y' = \frac{1}{\sin(y)}$$

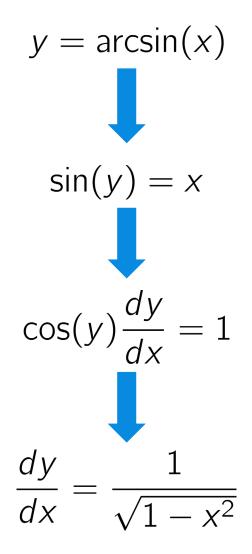
C.
$$y' = \frac{-1}{\cos(y)}$$

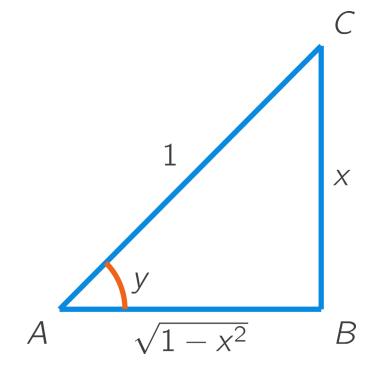
$$\checkmark D. y' = \frac{1}{\cos(y)}$$



Derivatives of trigonometric functions

Derivatives of inverse trigonometric functions





Derivatives of inverse trigonometrix functions

$$\frac{d}{dx}[\sin^{-1}x] = \frac{1}{\sqrt{1-x^2}} \Leftrightarrow \int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1}x + C$$

$$\frac{d}{dx}[\cos^{-1}x] = \frac{-1}{\sqrt{1-x^2}} \Leftrightarrow \int \frac{-1}{\sqrt{1-x^2}} dx = \cos^{-1}x + C$$

$$\frac{d}{dx}[\tan^{-1}x] = \frac{1}{1+x^2} \Leftrightarrow \int \frac{1}{1+x^2} dx = \tan^{-1}x + C$$

Wrap-up and next lecture

Practice the topics of this lecture to be able to:

- use the inverse trigonometric functions;
- find the derivative using implicit differentiation;
- use implicit differentiation to find the derivative of the inverse of a function.

Next lecture:

The substitution rule

Practice

Implicit differentiation

Derivatives of implicit trigonometric functions

§3.5: 5, 31, 51

You are now able to:

- find the derivative using implicit differentiation;
- use implicit differentiation to find the derivative of the inverse of a function.

See you next lecture!

