ET Mi 109: Electrical Engineering for Autonomous Exploration Robots

EE3330TU Guiding & Radiating Structures

Entry Test

Name and study number:	
COMPLEX NUMBERSNotation: $j = \sqrt{-1}$ (imaginary unit) $z = Re\{z\} + jIm\{z\}$ (rectangular form) $z = z e^{j\angle z}$ (polar form)1. Given two complex numbers $V = 3 - j4$ $I = -(2 + j3)$	VECTOR ANALYSIS Notation: $\mathbf{A} = A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}}$ (vector in Cartesian coord.) $\hat{\mathbf{a}}$ (unit vector) $A = \mathbf{A} $ (magnitude) $\mathbf{A} \cdot \mathbf{B}$ (scalar or inner product) $\mathbf{A} \times \mathbf{B}$ (vector product) $\mathbf{A} \neq \mathbf{Z}$
(a) express V and I in polar form (b) calculate VI (c) calculate VI (d) calculate V/I (e) calculate \sqrt{I} 2. Express the following complex functions in polar form: $z_1 = (4 - j3)^2$ $z_2 = (4 - j3)^{1/2}$ 3. Show that $\sqrt{2j} = \pm (1 + j)$ 4. Evaluate each of the following complex numbers and express the result in rectangular form (a) $z = 4e^{j\pi/3}$ (b) $z = \sqrt{3}e^{j3\pi/4}$ (c) $z = 6e^{-j\pi/2}$ (d) $z = j^3$ (e) $z = j^{-4}$ (f) $z = (1 - j)^3$ (g) $z = (1 - j)^{1/2}$ 5. If $z = -2 + j4$, determine the following quantities in polar form (a) $1/z$ (b) z^3 (c) $ z ^2$ (d) $Im\{z\}$ (e) $Im\{z^*\}$	$P_{2} = (1, -2, 2)$ $P_{2} = (1, -2, 2)$ $P_{2} = (1, -2, 2)$ $P_{3} = (2, 3, 3)$ $P_{4} = (2, 3, 3)$ $P_{1} = (2, 3, 3)$ $P_{2} = (2, 3, 3)$ $P_{2} = (2, 3, 3)$ $P_{2} = (2, 3, 3)$ $P_{3} = (2, 3, 3)$ $P_{2} = (2, 3, 3)$ $P_{3} = (2, 3, 3)$ P