ET Mi 109: Electrical Engineering for Autonomous Exploration Robots

EE3330TU Guiding \& Radiating Structures
 Entry Test

Name and study number:

\square

COMPLEX NUMBERS

Notation:

$$
\begin{array}{ll}
j=\sqrt{-1} & \\
z=\operatorname{Re}\{z\}+j \operatorname{limaginary}\{z\} & \text { (rectangular form) } \\
z=|z| e^{j \angle z} & \\
\text { (polar form) }
\end{array}
$$

VECTOR ANALYSIS
 Notation:

$\mathbf{A}=A_{x} \widehat{\boldsymbol{x}}+A_{y} \widehat{\boldsymbol{y}}+A_{z} \hat{\mathbf{z}} \quad$ (vector in Cartesian coord.)
$\widehat{\boldsymbol{a}} \quad$ (unit vector)
$A=|\mathbf{A}|$ (magnitude)
A • B (scalar or inner product)
$\mathbf{A} \times \mathbf{B} \quad$ (vector product)

1. Given two complex numbers

$$
\begin{gathered}
V=3-j 4 \\
I=-(2+j 3)
\end{gathered}
$$

(a) express V and I in polar form
(b) calculate $V I$
(c) calculate $V I^{*}$
(d) calculate V / I
(e) calculate \sqrt{I}
2. Express the following complex functions in polar form:

$$
\begin{gathered}
z_{1}=(4-j 3)^{2} \\
z_{2}=(4-j 3)^{1 / 2}
\end{gathered}
$$

3. Show that $\sqrt{2 j}= \pm(1+j)$
4. Evaluate each of the following complex numbers and express the result in rectangular form
(a) $z=4 e^{j \pi / 3}$
(b) $z=\sqrt{3} e^{j 3 \pi / 4}$
(c) $z=6 e^{-j \pi / 2}$
(d) $z=j^{3}$
(e) $z=j^{-4}$
(f) $z=(1-j)^{3}$
(g) $z=(1-j)^{1 / 2}$
5. If $z=-2+j 4$, determine the following quantities in polar form
(a) $1 / z$
(b) z^{3}
(c) $|z|^{2}$
(d) $\operatorname{Im}\{z\}$
(e) $\operatorname{Im}\left\{z^{*}\right\}$

6. In Cartesian coordinates, vector \mathbf{A} is directed from the origin to point $P_{1}(2,3,3)$, and vector \mathbf{B} is directed from point P_{1} to point $P_{2}(1,-2,2)$. Find
(a) vector \mathbf{A}, its magnitude A, its unit vector $\widehat{\boldsymbol{a}}$
(b) the angle that \mathbf{A} makes with the y-axis
(c) vector \mathbf{B}
(d) the angle between \mathbf{A} and \mathbf{B}
(e) the vector product $\mathbf{A} \times \mathbf{B}$
7. Given $\mathbf{A}=2 \widehat{\boldsymbol{x}}-3 \widehat{\boldsymbol{y}}+\hat{\mathbf{z}}$ and $\mathbf{B}=B_{x} \widehat{\boldsymbol{x}}+2 \widehat{\boldsymbol{y}}+B_{z} \hat{\boldsymbol{z}}$,
(a) Find B_{x} and B_{z} if \mathbf{A} is parallel to \mathbf{B}
(b) Find a relation between B_{x} and B_{z} if \mathbf{A} is perpendicular to \mathbf{B}
8. Given $\mathbf{A}=3 \widehat{\boldsymbol{x}}+4 \widehat{\mathbf{z}}$ and $\mathbf{B}=4 \widehat{\boldsymbol{x}}-10 \widehat{\boldsymbol{y}}+5 \hat{\boldsymbol{z}}$,
(a) Find the vector component of \mathbf{A} along \mathbf{B}
(b) Determine a unit vector perpendicular to both A and B
