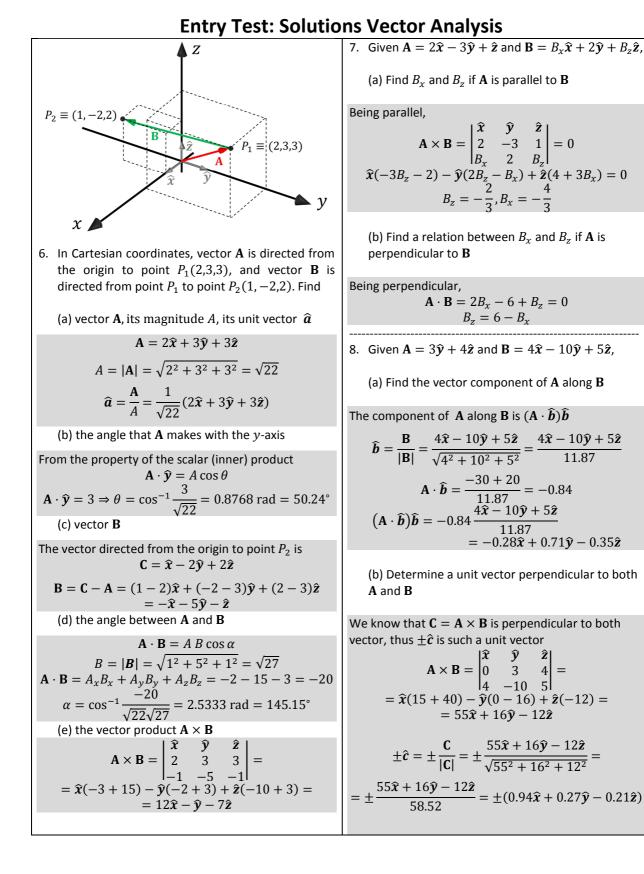
EE3330TU Guiding & Radiating Structures

Entry Test: Solution	s Comp
1. Given two complex numbers V = 3 - j4	z = 4(co)
I = -(2+j3)	(b) z =
(a) express V and I in polar form	1
$ V = 3 - j4 = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5$ V is in the second quadrant in the complex plane, thus $\angle V = \tan^{-1}(-4/3) = -0.93 \text{ rad } (\text{ or } -53.1^\circ)$ $V = 5e^{-j0.93}$	$z = \sqrt{3}$
$V = 5e^{-5\pi i t}$	(c) <i>z</i> =
$ I = -2 - j3 = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} = 3.61$ <i>I</i> is in the third quadrant in the complex plane, thus	<i>z</i> = 6
$\angle I = \tan^{-1}\left(\frac{3}{2}\right) - \pi = -2.16 \text{ rad (or } -123.7^{\circ})$ $I = 3.61e^{-j2.16}$	(d) z =
(b) Calculate VI	(e) <i>z</i> =
$VI = 5e^{-j0.93} \times 3.61e^{-j2.16} = 18.05e^{-j3.09}$	2
(c) Calculate <i>VI</i> *	(f) <i>z</i> =
$VI^* = 5e^{-j0.93} \times 3.61e^{j2.16} = 18.05e^{j1.23}$	
(d) Calculate V/I	$z = \left(\sqrt{2}\right)$
$V/I = \frac{5e^{-j0.93}}{3.61e^{-j2.16}} = 1.39e^{j1.23}$	
(e) Calculate \sqrt{I}	(g) z =
$\sqrt{I} = \sqrt{3.61e^{-j2.16}} = \pm \sqrt{3.61}e^{-j\frac{2.16}{2}} = \pm 1.9e^{-j1.08}$	$z = \left(\sqrt{2}e\right)$
Express the following complex functions in polar form:	$j\sin\frac{\pi}{8}$ =
$z_1 = (4 - j3)^2 = \left(\sqrt{16 + 9}e^{j\tan^{-1}\left(-\frac{3}{4}\right)}\right)^2$ $= 25e^{-j1.29}$	5. If $z = in pola (a) 1/z$
$z_2 = (4 - j3)^{1/2} = (5e^{-j0.64})^{1/2} = \pm \sqrt{5}e^{-j0.32}$	$ z = \sqrt{16}$ $\frac{1}{z} =$
3. Show that $\sqrt{2j} = \pm (1+j)$	(b) z^3
$\sqrt{2j} = (2j)^{1/2} = (2e^{j\pi/2})^{1/2} = \pm \sqrt{2}e^{j\pi/4}$	$z^{3} = 4.$
$=\pm\sqrt{2}\left(\cos\frac{\pi}{4}+j\sin\frac{\pi}{4}\right)$	(c) <i>z</i> ²
$=\pm\sqrt{2}\left(\frac{\sqrt{2}}{2}+j\frac{\sqrt{2}}{2}\right)=\pm(1+j)$	
	(d) <i>Im</i>
4. Evaluate each of the following complex numbers and express the result in rectangular form (Re+jIm)	
(a) $z = 4e^{j\pi/3}$	(e) <i>Im</i>


Entry Test: Solutions Complex Numbers

 $\cos\frac{\pi}{3} + j\sin\frac{\pi}{3} = 4\left(\frac{1}{2} + j\frac{\sqrt{3}}{2}\right) = 2 + j2\sqrt{3}$ $=\sqrt{3}e^{j3\pi/4}$ $f\left(\cos\frac{3\pi}{4} + j\sin\frac{3\pi}{4}\right) = \sqrt{3}\left(-\frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2}\right)$ $=-\frac{\sqrt{6}}{2}(1-j)$ $= 6e^{-j\pi/2}$ $b\left(\cos\frac{-\pi}{2} + j\sin\frac{-\pi}{2}\right) = 6(0-j) = -6j$ $= i^{3}$ $z = j^2 \cdot j = -j$ $= i^{-4}$ $z = \frac{1}{j^4} = \frac{1}{j^2 \cdot j^2} = \frac{1}{(-1) \cdot (-1)} = 1$ $=(1-i)^3$ $\left(\overline{2}e^{-j\frac{\pi}{4}}\right)^3 = 2\sqrt{2}\left(\cos\frac{-3\pi}{4} + j\sin\frac{-3\pi}{4}\right) =$ $= 2\sqrt{2}\left(-\frac{\sqrt{2}}{2} - j\frac{\sqrt{2}}{2}\right) = -2 - 2j$ $=(1-j)^{1/2}$ $\left(e^{-j\frac{\pi}{4}}\right)^{\frac{1}{2}} = \pm 1.19e^{-j\frac{\pi}{8}} = \pm 1.19\left(\cos\frac{\pi}{8} - 1\right)$ $\pm \pm 1.19(0.92 - j0.38) = \pm (1.09 - j0.45)$ -2 + j4, determine the following quantities ar form z $\overline{6+4} = 4.47 \quad \angle z = \tan^{-1}(-2) + \pi = 2.03$ $= \frac{1}{-2+j4} = \frac{1}{4.47e^{j2.03}} = 0.22e^{-j2.03}$ $4.47^3 e^{j2.03\cdot 3} = 89.31 e^{j6.09} = 89.31 e^{-j0.19}$ $|z|^2 = 4.47^2 e^{j0} = 19.98 e^{j0}$ $\iota\{z\}$ $Im\{z\} = 4e^{j0}$ $\{Z^*\}$

$$Im\{z^*\} = -4 = 4e^{j\pi}$$

ET Mi 109: Electrical Engineering for Autonomous Exploration Robots

EE3330TU Guiding & Radiating Structures

