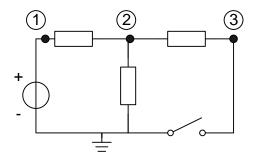
## ET3033TU Circuit Analysis

## Self-test


In the following, for each question, check those and only those statements that are correct.

| Kirchhoff's current law is: always true provided the circuit has only ideal sources is only true for circuits for capacitors when the circuit is at rest. If the circuit is not at rest, the charging or discharging of the capacitor disrupts the current balance is only true when there are no controlled voltage sources is true with linear controlled sources but not with non-linear ones                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| is true independent of the kind of sources and possible non-linearity of the circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Tick the expressions that are correct: $U = I \times R$ $P = I^2 / R$ $I = C dV / dt$ $R = \rho L / A$                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| The output impedance of an ideal current source: Is always zero Can never be zero Is always infinite Can never be infinite Can neither be zero nor infinite Can't be known in general without knowing more details Depends on the rest of the circuit that is connected to the source                                                                                                                                                                                                                                                      |
| Consider the following statements, indicate which one is/are true:  All circuits have Thévenin and Norton equivalent circuits  All circuits have Thévenin and/or Norton equivalent circuits  All linear circuits have Thévenin and Norton equivalent circuits  All linear circuits have a Thévenin and/or Norton equivalent circuits  For a circuit to have a Thévenin equivalent, it is sufficient that the voltage sources are linear. If a circuit has a Thévenin equivalent circuit, it cannot have a Norton equivalent, and viceversa |

Please, turn over for more questions

| 5. | VCCS means                        |
|----|-----------------------------------|
|    | Variable current control system   |
|    | Voltage-controlled current source |
|    | Virtual-current color schematic   |
|    | Voltage-current control system    |

6. Consider the circuit on the right. The switch is initially open. When the switch closes, the effect on the voltages and the power delivered by the source is as follows (tick what applies)



|                     | increase | decrease | Remains unchanged | Need component values to decide |
|---------------------|----------|----------|-------------------|---------------------------------|
| V <sub>12</sub>     |          |          |                   |                                 |
| $V_{2\text{-GND}}$  |          |          |                   |                                 |
| $V_{23}$            |          |          |                   |                                 |
| P <sub>source</sub> |          |          |                   |                                 |

7. You are given a LED and a number of 1.5 V batteries. All resistors from the E6 series (100, 150, 220, 330, 470, 680) are available. Design a circuit for this LED. What is the overall power dissipation and how much is wasted in the resistor? For the LED, the following is given (typical values):  $V_F=1.8V$ ,  $I_{MAX}=30mA$ 

My confidence level with these 7 questions:

| Completely or almost sure                |
|------------------------------------------|
| Not completely, but sufficient           |
| 50/50                                    |
| I was guessing for some of the questions |
| I was guessing for most of the questions |