Computational aeroacoustic methods for blade noise prediction

Situation

Siemens Wind Energy aims at an increase in market share for on-shore wind turbines. On-shore turbines cause these are three times less expensive to produce, it is closer to the end user and much easier to access. Possible

PhD Candidate: Wouter van der Velden Department: AWEP Section: Aerodynamics Supervisor: A.H. van Zuijlen Promoter: H. Bijl Start date: 01-04-2013 Funding: Siemens Wind Power **Cooperation: Siemens Wind Power** Type: Engineering

Project plan

- Analysis of the turbulent boundary layer using an infinite flat plate model
- Study into trailing edge flow using different **beveled**

"Develop a fast, reliable and accurate computational aeroacoustic method that can predict primary noise sources on a wind turbine blade with noise-suppression add-ons"

Publications

- W.C.P. van der Velden, A.H. van Zuijlen, A.T. de Jong, H. Bijl (2014), "On the estimation of spanwise pressure coherence of a turbulent boundary layer over a flat plate", WCCM XI, ECCM V, ECFD VI Barcelona, 1598

- W.C.P. van der Velden, A.H. van Zuijlen, A.T. de Jong, H. Bijl (2014) "On the trailing edge noise of beveled flat plates", 2nd Symposium on OpenFOAM in Wind Energy, Boulder, E3S Web of Conferences

Challenge the future