Mini-lecture

Entropy and the II law: why do we need them?

Piero Colonna

SYMPOSIUM
Teaching and Learning Thermodynamics in a Time of Change

Science Center, Delft University of Technology - July 5th, 2019

The concept of entropy

- ➤ II law of thermodynamics → great (!) principle of science
- Based on <u>entropy</u>, a <u>property of matter</u> (analogy with energy and the I law)
- Physical approach: measure of the degree of microscopic randomization, disorder and unpredictability

More on entropy...

Ideas are the basis for a macroscopic hypothesis (entropy hypothesis) about entropy as a property of matter

➤ Framework provides ways to evaluate entropy of substances (thermodynamic property) → entropy balance

Equations to predict what can happen and best performance!

Energy balance: insensitive to time evolution - 1

Energy balance independent of direction of time

Example: consider flywheel immersed in gas

(b) State 2: flywheel at rest, warm.

- (a) State 1: spinning flywheel, cool.
- (b) State 2: flywheel at rest, warm.
- Isolated system, energy balance, between time 1 and 2

- (1) energy in organized motion of flywheel
- (2) energy in random molecular motion (U_2) due to friction

Energy balance and violation of physical evidence

Invert state 1 and 2: start from 2 (warm, at rest) and end up in 1 (cold, spinning)

$$U_2 = U_1 + E_{K,1}$$

- Energy balance is satisfied !!!
- ➤ The process 2→1 cannot happen in reality
- If microscopic disorder, the system cannot microscopically organize itself!
- therefore...

Another principle is needed!

We need another principle in order to perform correct thermodynamic analysis

→ ENTROPY AND THE II LAW

Microscopic view of entropy

Microscopic randomness: entropy to quantify it.

- State 1: low entropy (organized rotation of the flywheel)
- State 2: high entropy (random motion of warm gas)

real life analogue: two libraries...

which one is more useful?

