

Noise Simulations at Transonic Operating Conditions Using Lattice-Boltzmann Methods

Fan Tonal and Broadband

Ignacio Gonzalez-Martino and Damiano Casalino TU-Delft/3DS Workshop on PowerFLOW simulations of aircraft noise

Motivation

- Noise radiated by modern fan stages are becoming comparable to jet noise due to engine trends:
 - ▷ Increase in bypass ratio
 - > Transonic tip speeds
 - ▷ More compact, thus reduced fan-OGV distance
- ► 3 main fan stage noise sources:
 - Rotor-stator interaction noise
 - ▷ Rotor self noise: ingested boundary layer
 - ▷ Rotor-locked tones (for transonic tip speed)

Objective: demonstrate of the capability of SIMULIA PowerFLOW to simulate broadband and tonal fan noise for a wide variety of operating conditions and geometry variations

Outline

GE/NASA Fan Stage SDT

Computational Approach

Stage Performance and Flows

Farfield Noise

Modeling Multiple Pure Tones

Summary

3

SDT Fan/OGV Stage

► GE/NASA fan stage model: ø 22 in

► Wind-tunnel tests at different RPM:

Operating Conditions	% Design Fan Speed	Fan Tip Speed (m/s)	Fan RPM
Approach	61.7 %	228.1	7809
Cutback	87.5 %	323.6	11075
Sideline	100 %	369.8	12657

- ► 3 OGV configurations designed:
 - ▷ Baseline: 54 straight vanes
 - ▷ Low-Count: 26 straight vanes
 - ▷ Low-Noise: 26 swept vanes

Low-Noise (26 swept vanes)

AULT | The **3DEXPERIENCE**® Company

Woodward, "Comparison of Far-Field Noise for Three Significantly Different Model Turbofans", AIAA 2008 Envia et al., "An Assessment of Current Fan Noise Prediction Capability", AIAA 2008

กร์ร รเคบเเค

© Exa Corporation - Public

3DS_Docur

Computational Approach

- ► Simulia PowerFLOW solver:
 - ▷ Lattice-Boltzmann method for subsonic & supersonic flows
 - ▷ LBM-VLES turbulence model
 - Extended turbulent wall model to account for pressure gradients at high Re#
- ► Cartesian grid with several resolution regions:
 - Finest cell size at fan tip gap (0.5mm): previous resolution studies showed small impact on farfield noise
 - \vartriangleright Leading and trailing edges of fan blades and OGV: 0.183mm
 - ► This region covers full rotor blades in "Refined rotor" grid
 - $\,\triangleright\,$ Blades and OGV offsets at 0.366mm
 - ▷ Bypass channel and intake BLs at 0.732mm
 - ▷ Permeable surface for FW-H at 1.46mm

Simulation Statistics

Grid Resolution	Fan Tip Cell Size (mm)	# Cells	Turn-Around Time (1000 cores)
Coarse	0.122	430 M	1 day
Fine	0.0915	885 M	2.5 days
Refined Rotor (x2 near-wall)	0.0915	953 M	5 days

OGV Configurations

- ► Sideline/Take-Off Operating Point: 12657 rpm (100%)
- ► Three different OGV configurations were tested:
 - ▷ Baseline: 54 vanes
 - > Low-Count: 26 vanes
 - ▷ Low-Noise: 26 swept vanes

ent 2015

on | 9/20/2018 | ref.: 3DS_Docum

BDS.COM/SIMULIA © Dassault Systèmes | Confide

OGV Configuration – Engine Performance

- Very good agreement with experiments in the pressure mass flow curve
 - ► Highest simulated point slightly under 100% RPM
 - ▶ Slight mass flow & total pressure underprediction at iso-RPM (2-3% max).
- > Almost no difference between OGV configurations

SIMULIA

Plane in the rotating frame

Shock Waves at Sideline Conditions

**Shur et al., "Unsteady Simulations of a Fan/Outlet-Guide-Vane System. Part 1: Aerodynamics and Turbulence" AIAA 2017-3875

Shock waves slightly earlier than in experiments Possible thicker boundary layers inducing higher blockage

Sustemes | The **3DEXPERIENCE**[®] Company

Exa Corporation - Public

3DS.COM

ent 2015

ref.: 3DS_Docur

n | 9/20/2018

es | Confidential In

Exp. Data

Refined rotor PowerFLOW

LBM – Data

35 SIMULIA

Interstage Flows

1 2

· Increase in velocity RMS levels: closer to LDV data

DASSAULT | The **3DEXPERIENCE**[®] Company

Better wake deficit prediction / equivalent width

Farfield Noise Computations

- ► Unsteady flows are recorded on a permeable surface around the engine
- ► FW-H integral method is used to compute far-field noise on a sideline array of microphones:
 - > Pressure time series from microphones along a sideline array
 - \triangleright OASPL for all operating points and some OGV configurations
 - ▷ Power Levels (PWL) reconstructed from these microphone signals

Power Levels & Directivity

Sessent I The **3D**EXPERIENCE[®] Company

19

SIMULIA

OGV Effect – Far-Field Acoustics

ent 2015 es | Confidential Information | 9/20/2018 | ref.: 3DS_Docun 0 3DS.COM/SIMULIA

Multiple Pure Tones (MPT)

- Slight variations of the stagger angle between neighbor blades can produce MPT at transonic fan conditions
 - Simulate in PowerFLOW this stagger variation by imposing a random angle to each blade

Original Stagger Random Stagger (x40)

Actual stagger angles not measured in wind tunnel tests.

Random stagger angle distribution [-0.25 - +0.25] deg This corresponds to an RMS of 0.25/sqrt(3) = 0.144 deg

Similar to what is suggested in literature: Gliebe et al., "Aeroacoustic Prediction Codes", NASA/CR 2000-210244

Original Stagger

Azimuthal Modes vs. Frequency. Maximum SPL

Random Stagger

Azimuthal Modes vs. Frequency. Maximum SPL

Random stagger angles show higher positive modes in the line between +0 (at 0 frequency), +22 at BPF1, +44 at BPF2, etc.

n | 9/20/2018 | ref.: 3DS_Document_2015

ault Systèm

© Da

3DS.COM/SIMULIA

MPT – Far-Field Acoustics

MPT – Far-Field Acoustics

Summary

- PowerFLOW solver is able to predict tonal and broadband noise of a fan stage at transonic conditions, in turnaround times compatible with industry cycles.
- ▶ Both, absolute and relative far-field noise levels have been predicted in the range of experimental uncertainty.
- Broadband noise generation mechanisms are less sensitive than tonal noise mechanisms to variability to the
 operating conditions and other uncertainties in the test rig.
 - ho In experiments, tones tend to present higher uncertainties (±4dB) than BB (±1dB).
 - > Higher uncertainty from intake noise contribution (compared to exhaust) due to fan scattering of interaction noise
 - Small variations in blade stagger angles or fan RPM can induce this tone scattering
 - arepsilon Consequently, it seems to be easier to predict consistently broadband than tonal noise
- In simulations, tones are much more sensitive than broadband to the setup variations:
 - > BB mainly affected by geometrical modifications (i.e. the distance between fan blade tips and OGV tips)
 - \triangleright BPF tone vary from 1 to 4dB depending on the grid strategy, blade stagger angles, etc...
- Outer radial areas of bypass flow are responsible for most of the noise:
 - arphi Variations in wake depth and RMS at low radial stations have small impact on far-field acoustics
 - \triangleright Tonal noise is quite sensitive to the fan shocks intensity and their relative position

