Evaluation of 3 mainstream weather forecast models with IJmuiden observations at the North Sea

P.C. Kalverla, G.-J. Steeneveld, R.J. Ronda (KNMI) and A.A.M. Holtslag (presenter)

Presentation at Seminar National Doctoral College in Offshore Renewable Energy, TU Delft, March 2, 2018

Use of (mesoscale) weather forecast models

Among others:

Resource assessment

Rodrigues et al., 2015

(Power) forecasting

e.g. Foley et al., 2012

Realistic inflow fields

Sanz Rodrigo et al., 2017

Research questions

- What is the typical performance of each model for +36h forecasts?
- How much does model performance depend on weather type?
- Does more resolution help to improve results?

ECMWF-IFS (16km)

Harmonie (2.5 km)

WRF (3 km)

Four years of high quality data for validation (2012-2015)

Kalverla et al., 2017, JWEIA - An observational climatology of anomalous wind events ...

WRF results for wind speed at 115 m

Number of cases in cluster

Results for +36 h forecasts (case weighted numbers)

All bias: < 0.5 m/s

Typical spread: < 2m/s

Harmonie:

Smallest bias, largest spread

Impact of more refined data assimilation?

Results for +36 h forecasts (case weighted numbers)

IFS 1 K too warm
Others too cold
IFS much larger spread

Introducing error diagrams

For quick comparison of 1st and 2nd moments of error distributions

Models struggle to represent stable conditions (cluster 18)

315m – 27m wind speed difference 90m – 21m virtual potential temp. diff.

Take home

Wind speed bias < 0.5 m/s
Wind speed error std < 2 m/s
ECMWF temperature bias 1K

Stable conditions most challenging

Not much impact of higher resolution in this study

See also poster!

EUROS: uncertainty reductions in ...

External Conditions

Loads & Damage

Logistics & Design

www.offshorewindenergy.org/EUROS/

Back-up information

Case selection strategy: "UVS•t₂" clustering

principle component analysis in 6 dimensions (illustrated here for 2 dimensions)

Results of clustering algorithm

Cases representative for climatology

Good correlation with local observations

Additional info: cases

Case 18 most stable Worst performance

Case 4,5,6 also stable 4,5 weak wind 6: stronger wind

Additional info: WRF set-up

- WRFV3.9
- 600*600*91 points; 3 km hor. spacing
- Driven by ECMWF OA (~ 16 km)
- Noah land surface
- New Thompson microphysics
- RRTMG radiation
- Grell-Freitas scale-adaptive cumulus
- MYNN2.5 PBL and SL with mass-flux
- Based on 3km HRRR, CONUS/NCAR ensemble and active development

WRF domain (3 km)

Additional info: additional simulations

Additional info

- SST is very well represented in all models
- Harmonie is version V36, new cycle V40 includes new mixing length formulation
- Skill scores were calculated but don't add much to the visual impression
- 10m wind was also evaluated with synops at offshore platforms: similar error patterns

Additional info: case 5 evolution

Case 5: surface charts (saddle point)

