Wind farm fluid dynamics

Richard Stevens University of Twente

Large eddy simulation JHU-LES code, Stevens et al, JSRE 6, 023105 (2014) Visualization courtesy of D. Bock (Extended Services XSEDE)

Coworkers and funding

Mengqi Zhang (Now NUS, Singapore) Srinidhi Nagarada

Jessica Strickland

Charles Meneveau (Johns Hopkins) Denice Gayme (Johns Hopkins) Michael Wilczek (Gottingen) Laura Lukassen (Oldenburg)

Development wind turbines

Global Wind Energy Council (GWEC), Global wind statistics 2014

Wind turbine construction

Large wind-farms

What is the effect of the wake on the operation of downstream wind turbines?

Sørensen, Annual Rev. Fluid Mech (2011); Emeis, DEWI Magazin 37, 52-55 (2010)

Wake effects in large wind-farms

--Field measurements

Wake effects dramatically decrease performance of downstream turbines

Barthelmie, et al., Final report for UpWind WP8, Risø-R-1765(EN) (2011), 012049; Sanderse et al., Wind Energy 14, 799-819 (2011), Mehta et al., J. Wind Eng. Ind. Aerodyn. 133 (2014) 1–17

Simulation extended wind-farm

Large eddy simulation, Stevens et al. 2014 Visualization courtesy of D Bock (XSEDE)

Wake effects in large wind-farms

Field measurements
Stevens et al. (LES)

State of the art simulations capture performance trends

Barthelmie, et al., Final report for UpWind WP8, Risø-R-1765(EN) (2011), 012049; Sanderse et al., Wind Energy 14, 799-819 (2011), Mehta et al., J. Wind Eng. Ind. Aerodyn. 133 (2014) 1–17

Fluid dynamics phenomena in windfarms

Stevens and Meneveau, Annual Rev. Fluid Mech 49, 311-339 (2017).

Coupled wake boundary layer model

•Wake model approach

- + Works well in entrance regime
- Does not work well in fully developed regime

•`Top-down' approach

- -No information about turbine positioning
- + Captures interaction with atmospheric boundary layer

Stevens, Gayme, Meneveau, JRSE 7, 023115 (2015)

Coupled wake boundary layer model

Effective wake coverage area, w_f

Two way coupling leads to improved results!

Stevens, Gayme, Meneveau, JRSE 7, 023115 (2015), Wind Energy 19 (11) (2016), 2023-2040

Analytical wind farm models

Requires physical understanding

Needed to improve wind farm design

Stevens, Gayme, Meneveau, Wind Energy 19 (11), 2023-2040 (2016).

Analytical wind farm models

Requires physical understanding

Needed to improve wind farm design

Stevens, Gayme, Meneveau, Wind Energy 19 (11), 2023-2040 (2016).

Analytical wind farm models

Requires physical understanding

Needed to improve wind farm design

Stevens, Gayme, Meneveau, Wind Energy 19 (11), 2023-2040 (2016).

Fluid dynamics phenomena in windfarms

Stevens and Meneveau, Annual Rev. Fluid Mech 49, 311-339 (2017).

Comparisons to the Horns Rev wind farm

Comparison with LES Porté-Agel, Wu, Chen, Energies 2013, 6, 5297-5313 Stevens, Gayme, Meneveau, Wind Energy 19 (11), 2023-2040 (2016).

Comparisons to the Horns Rev wind farm

Comparison with LES Porté-Agel, Wu, Chen, Energies 2013, 6, 5297-5313 Stevens, Gayme, Meneveau, Wind Energy 19 (11), 2023-2040 (2016).

Modeling Horns Rev performance

Stevens, Meneveau, Annual Review of Fluid Mechanics, 49, 311-339 (2017).

Optimal spacing in wind-farms

Optimal spacing in large wind-farms

- Actual turbine spacing in wind-farms is around 6-10D in stream-wise and span-wise direction
- Meyers and Meneveau predicted optimal distance in square fully developed (infinite) wind farms is 15D, using a physics based modeling approach
- Spacing effect is hugely important to make sure we understand how to "scale up" wind farms
- We reveal that optimal spacing depends on wind-farm length

Meyers, Meneveau, Wind Energy 15, 305–317 (2012); Sørensen, Annual Rev. Fluid Mech (2011)

Cost optimization (simplest approach)

Consider total

 $Cost = (sD)^2 Cost_{land} + Cost_{turb}$

Define dimensionless cost ratio:

Turbines:
$$\alpha = \frac{\text{Cost}_{\text{turb}}/(\frac{1}{4}\pi D^2)}{\text{Cost}_{\text{land}}}$$

Power per unit cost

$$P^* = \frac{P_{\infty}(s_x, s_y, \text{layout}, \dots)}{s} \frac{4s^2/\pi}{\alpha + 4s^2/\pi}$$

Where P_{avg} is the average turbine power output normalized with the power output of the first row

Meyers, Meneveau, Wind Energy 15, 305–317 (2012); Stevens, Wind Energy 19, 651-663 (2016)

Optimal spacing in large wind-farms

Spacing in simple model similar to what is observed in real wind farms

Meyers, Meneveau, Wind Energy 15, 305–317 (2012); Stevens, Wind Energy 19, 651-663 (2016)

Taking cable costs into account

Area (land) cost

$$\theta = \frac{\text{Cost}_{\text{land}}}{\frac{\text{Cost}_{\text{turbine}}/D^2}{\text{Cost}_{\text{turbine}}/D^2}}$$
Linear (cable, road, loss) costs
$$\frac{\text{Cost}_{\text{turbine}}}{\frac{\text{Cost}_{\text{turbine}}}{1-\frac{1}{2}}}$$

$$\beta = \frac{\text{Cost}_{\text{cable}}}{\text{Cost}_{\text{turbine}}/D}$$

\$/m \$/m

Ravania

Minimize cost (or MAX power/cost)

Define costs as

$$Cost = Cost_{turb} + (sD)Cost_{cable} + (sD)^2Cost_{land}.$$

Power per unit cost for a turbine deep into a large farm:

$$P^* = \frac{P_{\infty}(s_x, s_y, \text{layout}, ...)}{\text{Cost}} = \frac{P_{\infty}(s_x, s_y, \text{layout}, ...)}{\text{Cost}}$$
$$= \frac{P_{\infty}(s_x, s_y, \text{layout}, ...)}{\text{Cost}} \frac{1}{1 + \beta s + \theta s^2}$$
$$P^* = \left(\frac{\frac{1}{2}C_p \rho A U_{h0}^3}{Cost_{turb}}\right) \frac{\left[U_h(s_x, s_y, layout, C_T ...)/U_{h0}\right]^3}{1 + \beta s + \theta s^2}$$
$$\theta = \frac{\text{Cost}_{\text{land}}}{\text{Cost}_{\text{turb}}/D^2} \qquad \beta = \frac{\text{Cost}_{\text{cable}}}{\text{Cost}_{\text{turbine}}/D}$$

Minimize cost (or MAX power/cost)

Power per unit cost for a turbine deep into a large farm:

$$P^{*} = \begin{pmatrix} \frac{1}{2}C_{p}\rho AU_{h0}^{3} \\ Cost_{uub} \end{pmatrix} \underbrace{\begin{bmatrix} U_{h}(s_{x},s_{y},layout,C_{T}..)/U_{h0} \end{bmatrix}^{3}}_{1+\beta s+\theta s^{2}}$$
Revenue
$$\begin{bmatrix} U_{h}(s_{x}..)/U_{h0} \end{bmatrix}^{3}$$

$$\beta = \frac{\text{Cost_{cable}}}{\text{Cost_{turbine}/D}}$$

$$1+\beta s+\theta s^{2}$$

$$\beta = \frac{\text{Cost_{cable}}}{\text{Cost_{turbine}/D^{2}}}$$

$$\beta = \frac{\text{Cost_{land}}}{\text{Costs}}$$

Minimize cost (or MAX power/cost)

$$P^* = \left(\frac{\frac{1}{2}C_p \rho A U_{h0}^3}{Cost_{urb}}\right) \frac{\left[U_h(s_x, s_y, layout, C_T..)/U_{h0}\right]^3}{1 + \beta s + \theta s^2}$$

$$\theta = \frac{\text{Cost}_{\text{land}}}{\text{Cost}_{\text{turbine}}/D^2}$$

$$\beta = \frac{\text{Cost}_{\text{cable}}}{\text{Cost}_{\text{turbine}}/D}$$

Sample (levelized) cost ratios:

Land:

- Land cost $\theta \sim 0.53/550 \sim 0.001$
- Length cost $\beta \sim 240/5.8 \times 10^4 \sim 0.004$

Royalties for 20 yrs \sim \$5300/ha = 0.53 \$/m²

```
Cables ~ 60/m + Roads ~80/m,
+ Resistance losses~100/m = 240/m
1 Turbine = 6.2 $Million
(3.6 MW turbine, D=106 m, NREL 2013 all-in
value: 1728/kW \times 3,600 = 6.2 \
550 \/m<sup>2</sup> and 5.8 \times 10^4 \/m
```

Off-Shore:

- • $\theta \sim 0.01/1,664 < 0.00001$
- $\beta \sim 1,370/1.76 \times 10^5 \sim 0.008$

Lease cost for 20 yrs ~ 0.01 /m^2 Cables ~ \$1000/m, Resistance~370 \$/m 1 Turbine = 18.7 \$Million (3.6 MW turbine, D=106 m, NREL 2013 all-in value: \$5187/kW x 3,600 = 18,700 \$M

1,664 m^2 and 1.76 x 10⁵ m

NREL: C. Mone et al., 2013 Cost of Wind Energy Review, NREL/TP-5000-63267, Feb. 2015 IRENA, Renewable Energy Technologies: Cost Analysis Series, Wind Power, Volume 1, Power Sector, Issue 5/5, June 2012.

Effect of linear and area costs

Conclusions

- State of the art large eddy simulations can be used to get reliable performance estimates of wind-farms
- Large simulations can be used to further develop simplified wind farm models that can be used to optimize wind farm design

Questions?

Large eddy simulation JHU-LES code, Stevens et al, JSRE 6, 023105 (2014) Visualization courtesy of D. Bock (Extended Services XSEDE)