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Probabilistic surrogates for 
floating wind-turbine load 
emulation
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APPROACH MODELS

RESULTS

In measurements and in simulations, the wind turbine 
is subject to randomly varying inflow conditions. For a 
set of mean inflow conditions 𝒙𝒙, the loads are not 
deterministic, but random variables of unknown 
probability density function (pdf).

Bayesian statistical methods like the heteroscedastic 
Gaussian process regression can directly infer the 
underlying mean and variance of the pdf from a noisy 
database.
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deterministic probabilistic
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Gaussian process regression 

(GPR)
𝑦𝑦𝑖𝑖 = 𝑓𝑓 𝑥𝑥𝑖𝑖 + 𝜀𝜀

𝑥𝑥
heteroscedastic Gaussian process 

regression (H-GPR)
𝑦𝑦𝑖𝑖 = 𝑓𝑓 𝑥𝑥𝑖𝑖 + 𝜀𝜀 𝑥𝑥𝑖𝑖

Tower top fore-aft moment (standard deviation) Tower base fore-aft moment (standard deviation) 

𝑥𝑥 = [wind speed (𝑢𝑢), turbulence intensity = 12 0.75𝑢𝑢 + 5.6
𝑢𝑢

, α = 0.08, significant wave height = 1m, wave period = 7s, wave direction = 0°]T

𝑦𝑦 𝑦𝑦
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The predicted conditional pdf at specific values of 𝑥𝑥 for a fixed-bottom offshore wind turbine are shown. H-GPR 
shows a very good agreement with the full order model and a significant improvement over the more 
commonly used GPR model. The work is currently being extended to floating wind turbines.
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