Deliverable D1.12

Modelling of extreme wind conditions at higher atmospheres

Part 2:

Constrained stochastic simulation of spatial wind gusts

Agreement n.:

Duration
Co-ordinator:

308974
November 2012 - October 2017
DTU Wind

The research leading to these results has received funding from the European Community's Seventh Framework Programme FP7-ENERGY-2012-1-2STAGE under grant agreement No. 308974 (INNWIND.EU).

Document information

Document Name:

Document Number:

Author:

Document Type

Dissemination level

Review:

Date:

WP:

Task:

Approval:

Constrained stochastic simulation of spatial wind gusts

Deliverable D 1.1.2 - Part 2

René Bos and Wim Bierbooms (TU Delft)

Report

PP

Jens Tambke (ForWind / University of Oldenburg)

February 2015
WP1: Conceptual Design
Task 1.1: External Conditions

Approved by Task Leader

TABLE OF CONTENTS

1 INTRODUCTION 5
2 CONSTRAINED STOCHASTIC SIMULATION 6
2.1 The 1D solution 6
2.2 The 3D solution 7
2.3 Setting constraints on volumes 9
2.4 Setting multiple constraints 11
3 STATISTICS OF SPATIAL GUSTS 15
3.1 Rice's formula 15
3.2 Level excursions in $\mathbb{R} 3$ 16
3.3 A special note on low-pass filters 18
3.4 Gust probability 18
4 VALIDATION 21
4.1 Data source 21
4.2 Gust shapes 23
4.3 Probability of occurrence 26
5 APPLICATION 31
5.1 The method in a nutshell 31
5.2 A step-by-step guide 32
6 CONCLUSION 35
A APPENDIX: EXAMPLE MATLAB CODES 36
A. 1 A local velocity maximum (example 1) 36
A. 2 A local velocity maximum in 3D space (example 2) 37
A. 3 A local maximum averaged over a cubic subvolume (example 3) 39
A. 4 One-dimensional velocity jump over a distance (example 4) 41
A. 5 A cluster of three single-point velocity maxima (example 5). 42
A. 6 Velocity jump between two planes (example 6) 44
A. 7 Return levels for wind speeds in a domain using the IEC NTM (example 7) 46
B MATLAB FUNCTION TO GENERATE IEC-COMPATIBLE GUSTS 50

1 INTRODUCTION

The design of very large wind turbines demands a different way of approaching extreme gust loads. At present, IEC standards require a design to withstand a 50-year extreme load arising from stochastic turbulence. However, especially during conceptual design, this 50-year return level has to be extrapolated from relatively short time series, leading to considerable uncertainty. In addition, designs need to handle a Mexican hat wavelet with a perturbation velocity that is uniform over the rotor plane. Clearly, such a gust shape becomes very unrealistic as rotor diameters increase.

More realistic gust shapes can be obtained through constrained stochastic simulation ${ }^{1}$. This method allows a designer to generate extremes in a time series, while adhering to the statistics of turbulence. However, the method has not yet been fully extended to a 3D domain. Moreover, quantifying the statistics of extremes in a 3D domain has been an issue.

This report shows how extreme gusts can be generated in a 3D domain, and how these gusts can be connected to a certain probability of occurrence. First, the method of generating extremes is explained in chapter 2 through various examples. Chapter 3 then deals with the statistics of these extremes. Furthermore, a comparison to real-life measurements is included in chapter 4. A general guide to the method, targeted at designers, can be found in chapter 5. Finally, chapter 6 presents the conclusions.

[^0]
2 CONSTRAINED STOCHASTIC SIMULATION

Constrained stochastic simulation is a method to embed events of certain properties in a field of stochastic turbulence. This way, a designer can easily simulate situations where a structure may experience extreme loading, for example by an N -year extreme gust. The basic principles are best explained through the 1D solution, e.g. one velocity component in one direction. Although it is already well-documented in literature ${ }^{2}$, it is repeated here to introduce the reader to the subject and to provide clear use of notation. The remaining part of this chapter will deal with the full 3D solution and its applications.

2.1 The 1D solution

A one-dimensional, single-component process, $u(x)$, can be expressed as a Fourier series by

$$
\begin{equation*}
u(x) \approx \sum_{\kappa} \sqrt{\frac{2 \pi E(\kappa)}{L_{x}}} n(\kappa) \mathrm{e}^{\mathrm{i} \kappa x} \tag{2.1}
\end{equation*}
$$

where $E(\kappa)$ is the spectral density function, L_{x} the domain size in x-direction, $n(\kappa) \sim \mathrm{N}(0,1)$ are zero-centered, normally distributed Fourier coefficients, and κ is the wave number. This summation can be reformulated as a dot product, $u(x) \approx \boldsymbol{\Psi}(x) \cdot \mathbf{n}$, where $\boldsymbol{\psi}$ is the DFT (Discrete Fourier Transform) matrix:

$$
u(x) \approx \sqrt{\frac{2 \pi}{L_{x}}}\left[\begin{array}{llll}
\sqrt{E\left(\kappa_{1}\right)} \mathrm{e}^{\mathrm{i} \kappa_{1} x} & \sqrt{E\left(\kappa_{2}\right)} \mathrm{e}^{\mathrm{i} \kappa_{2} x} & \cdots & \sqrt{E\left(\kappa_{N}\right)} \mathrm{e}^{\mathrm{i} \kappa_{N} x}
\end{array}\right]\left[\begin{array}{c}
n_{1} \tag{2.2}\\
n_{2} \\
\vdots \\
n_{N}
\end{array}\right] .
$$

Now, define a vector of constraints:

$$
\mathbf{b}=\left[\begin{array}{l}
u\left(x_{0}\right) \tag{2.3}\\
\dot{u}\left(x_{0}\right) \\
\ddot{u}\left(x_{0}\right)
\end{array}\right],
$$

to specify an event at x_{0}. For example, a local velocity maximum corresponds to $u\left(x_{0}\right)>0$, $\dot{u}\left(x_{0}\right)=0$, and $\ddot{u}\left(x_{0}\right)<0$. The DFT matrix can then be expanded to include first and second order derivatives, yielding a linear system, $\mathbf{A n}=\mathbf{b}$:

$$
\sqrt{\frac{2 \pi}{L_{x}}}\left[\begin{array}{cccc}
\sqrt{E\left(\kappa_{1}\right)} \mathrm{e}^{\mathrm{i} \kappa_{1} x_{0}} & \sqrt{E\left(\kappa_{2}\right)} \mathrm{e}^{\mathrm{i} \kappa_{2} x_{0}} & \cdots & \sqrt{E\left(\kappa_{N}\right)} \mathrm{e}^{\mathrm{i} \kappa_{N} x_{0}} \\
\mathrm{i} \kappa_{1} \sqrt{E\left(\kappa_{1}\right)} \mathrm{e}^{\mathrm{i} \kappa_{1} x_{0}} & \mathrm{i} \kappa_{2} \sqrt{E\left(\kappa_{2}\right)} \mathrm{e}^{\mathrm{i} \kappa_{2} x_{0}} & \cdots & \mathrm{i} \kappa_{N} \sqrt{E\left(\kappa_{N}\right)} \mathrm{e}^{\mathrm{i} \kappa_{N} x_{0}} \\
-\kappa_{1}^{2} \sqrt{E\left(\kappa_{1}\right)} \mathrm{e}^{\mathrm{i} \kappa_{1} x_{0}} & -\kappa_{2}^{2} \sqrt{E\left(\kappa_{2}\right)} \mathrm{e}^{\mathrm{i} \kappa_{2} x_{0}} & \cdots & -\kappa_{N}^{2} \sqrt{E\left(\kappa_{N}\right)} \mathrm{e}^{\mathrm{i} \kappa_{N} x_{0}}
\end{array}\right]\left[\begin{array}{c}
n_{1} \\
n_{2} \\
\vdots \\
n_{N}
\end{array}\right]=\left[\begin{array}{c}
u\left(x_{0}\right) \\
\dot{u}\left(x_{0}\right) \\
\ddot{u}\left(x_{0}\right)
\end{array}\right] .
$$

In the case of extreme gusts, the third constraint can often be omitted, considering that it is unlikely for $u\left(x_{0}\right)$ to be a local minimum when the amplitudes are high positive (or vice versa in the case of negative amplitudes). The constrained vector, \mathbf{n}_{c}, which satisfies the above is given by the Woodbury matrix identity:

$$
\begin{equation*}
\mathbf{n}_{c}=\mathbf{n}+\boldsymbol{\Sigma} \mathbf{A}^{*}\left(\mathbf{A} \mathbf{\Sigma} \mathbf{A}^{*}\right)^{-1}(\mathbf{b}-\mathbf{A n}), \tag{2.4}
\end{equation*}
$$

where the asterisk, \mathbf{A}^{*}, denotes the conjugate transpose of \mathbf{A} and $\boldsymbol{\Sigma}=\mathrm{E}\left[\mathbf{n n}^{\mathrm{T}}\right]$ is the covariance matrix of \mathbf{n}. Since \mathbf{n} has unit variance, the $\boldsymbol{\Sigma}$ is an identity matrix and equation (2.4) reduces to

$$
\begin{equation*}
\mathbf{n}_{c}=\mathbf{n}+\mathbf{A}^{*}\left(\mathbf{A} \mathbf{A}^{*}\right)^{-1}(\mathbf{b}-\mathbf{A n}) \tag{2.5}
\end{equation*}
$$

A Fourier transform of \mathbf{n}_{c} then straightforwardly yields the constrained time series.

[^1]
Example 1 A local velocity maximum

Consider a turbulent wind field $u(x)$, where $0 \leq x \leq 200 \mathrm{~m}$, with a longitudinal standard deviation of $\sigma_{1}=1.5 \mathrm{~m} / \mathrm{s}$ and an isotropic von Kármán energy spectrum in accordance with IEC 61400-1 annex B.1. Say one wants to place an $8 \mathrm{~m} / \mathrm{s}$ velocity peak at $x=100$ m . In that case, the linear system $\mathbf{A n}=\mathbf{b}$, omitting any second derivatives, becomes

$$
\sqrt{\frac{2 \pi}{L_{x}}}\left[\begin{array}{cccc}
\sqrt{E\left(\kappa_{1}\right)} \mathrm{e}^{\mathrm{i} \kappa_{1} \cdot 100} & \sqrt{E\left(\kappa_{2}\right)} \mathrm{e}^{\mathrm{i} \kappa_{2} \cdot 100} & \cdots & \sqrt{E\left(\kappa_{N}\right)} \mathrm{e}^{\mathrm{i} \kappa_{N} \cdot 100} \\
\mathrm{i} \kappa_{1} \sqrt{E\left(\kappa_{1}\right)} \mathrm{e}^{\mathrm{i} \kappa_{1} \cdot 100} & \mathrm{i} \kappa_{2} \sqrt{E\left(\kappa_{2}\right)} \mathrm{e}^{\mathrm{i} \kappa_{2} \cdot 100} & \cdots & \mathrm{i} \kappa_{N} \sqrt{E\left(\kappa_{N}\right)} \mathrm{e}^{\mathrm{i} \kappa_{N} \cdot 100}
\end{array}\right]\left[\begin{array}{c}
n_{1} \\
n_{2} \\
\vdots \\
n_{N}
\end{array}\right]=\left[\begin{array}{l}
8 \\
0
\end{array}\right]
$$

Here, the variance is included in the matrix \mathbf{A} to make \mathbf{n} a vector of standard-normal distributed coefficients. An inverse Fourier transform of the constrained Fourier coefficients then results in the time series shown below.

2.2 The 3D solution

In three dimensions, the Fourier series is given by

$$
\begin{equation*}
\mathbf{u}(\mathbf{x}) \approx \sum_{\boldsymbol{\kappa}} \mathrm{e}^{\mathrm{i} \boldsymbol{\kappa} \cdot \mathbf{x}} \mathbf{C}(\boldsymbol{\kappa}) \mathbf{n}(\boldsymbol{\kappa}) \tag{2.6}
\end{equation*}
$$

where $\mathbf{u}=[u, v, w]^{\mathrm{T}}$ is a velocity vector, $\mathbf{x}=[x, y, z]^{\mathrm{T}}$ a position vector, $\mathbf{\kappa}=\left[\kappa_{x}, \kappa_{y}, \kappa_{z}\right]^{\mathrm{T}}$ the wave number vector, $\mathbf{C}(\boldsymbol{\kappa})$ a correlation tensor, and $\mathbf{n}(\boldsymbol{\kappa}) \sim N\left(0, \mathbf{I}_{3}\right)$ a vector of standard-normal distributed coefficients ${ }^{3}$. For multiple dimensions, the linear system, $\mathbf{A n}=\mathbf{b}$, has to be expanded. This can be achieved by rewriting the multiple summation to a single sum, e.g.

$$
\begin{array}{cccccccc}
a_{1,1} & + & a_{1,2} & + & \cdots & + & a_{1, N_{y}} \\
+ & & + & & & & + \\
a_{2,1} & + & a_{2,2} & + & \cdots & + & a_{2, N_{y}} \\
+ & & + & & & & + \\
\vdots & & \vdots & & \ddots & & \vdots \\
+ & & + & & & & + \\
a_{N_{x}, 1} & + & a_{N_{x}, 2} & + & \cdots & + & a_{N_{x}, N_{y}} \\
& & & & & & & \\
a_{1,1}+a_{1,2}+\cdots+a_{1, N_{y}}+a_{2,1}+a_{2,2}+\cdots & +a_{2, N_{y}}+\cdots+a_{N_{x}, 1}+a_{N_{x}, 2}+\cdots+a_{N_{x}, N_{y}}
\end{array}
$$

${ }^{3}$ Alternatively, the correlation tensor can be included in the covariance matrix such that $\mathbf{n} \sim N(0, \boldsymbol{\Sigma})$ where $\boldsymbol{\Sigma}=\mathbf{C}^{*} \mathbf{C}$. However, this may lead to quite bulky matrices when working with large domain sizes. For three dimensions, $\boldsymbol{\Sigma}=\mathrm{E}\left[\mathbf{n} \mathbf{n}^{\mathrm{T}}\right]$ is a $N_{x} N_{y} N_{z} \times N_{x} N_{y} N_{z}$ matrix.

Example 2 A local velocity maximum in 3D space

Consider a turbulent wind field $\mathbf{u}(\mathbf{x})$, where $0 \leq x \leq 200 \mathrm{~m}, 0 \leq y \leq 200 \mathrm{~m}, 0 \leq z \leq 200$ m , with an isotropic standard deviation of $\sigma_{\text {iso }}=1.5 \mathrm{~m} / \mathrm{s}$ and a von Kármán isotropic energy spectrum in accordance with IEC 61400-1 annex B.1. The isotropic covariance matrix is given by

$$
\mathbf{C}_{\text {iso }}=\sigma_{\text {iso }} \sqrt{\frac{2 \pi^{2} \ell^{3} E(\kappa)}{L_{x} L_{y} L_{z} \kappa^{4}}}\left[\begin{array}{ccc}
0 & \kappa_{z} & -\kappa_{y} \\
-\kappa_{z} & 0 & \kappa_{x} \\
\kappa_{y} & -\kappa_{x} & 0
\end{array}\right],
$$

where ℓ is the turbulence length scale and

$$
\kappa=\sqrt{\kappa_{x}^{2}+\kappa_{y}^{2}+\kappa_{z}^{2}} .
$$

Say one wants to place an $8 \mathrm{~m} / \mathrm{s}$ velocity peak, in horizontal direction, at $\mathbf{x}=$ $[75,125,100]^{\mathrm{T}} \mathrm{m}$. In that case, the linear system $\mathbf{A n}=\mathbf{b}$, again omitting any second derivatives, becomes

$$
\left[\begin{array}{ccc}
\mathbf{C}_{1,1,1} \mathrm{e}^{\mathrm{i} \mathbf{k}_{1,1,1} \cdot[75,125,100]^{\mathrm{T}}} & \mathbf{C}_{2,1,1} \mathrm{e}^{\mathrm{i} \mathbf{k}_{2,1,1} \cdot[75,125,100]^{\mathrm{T}}} & \ldots \\
\mathrm{i} \kappa_{x} \mathbf{C}_{1,1,1}^{(u)} \mathrm{e}^{\mathrm{i} \mathbf{\kappa}_{1,1,1} \cdot[75,125,100]^{\mathrm{T}}} & \mathrm{i} \kappa_{x} \mathbf{C}_{2,1,1}^{(u)} \mathrm{e}^{\mathrm{i} \mathbf{k}_{2,1,1} \cdot[75,125,100]^{\mathrm{T}}} & \ldots \\
\mathrm{i} \kappa_{y} \mathbf{C}_{1,1,1,}^{(u)} \mathrm{e}^{\mathrm{i} \mathbf{k}_{1,1,1} \cdot[75,125,100]^{\mathrm{T}}} & \mathrm{i} \kappa_{y} \mathbf{C}_{2,1,1}^{(u)} \mathrm{e}^{\mathrm{i} \mathbf{k}_{2,1,1} \cdot[75,125,100]^{\mathrm{T}}} & \ldots \\
\mathrm{i} \kappa_{z} \mathbf{C}_{1,1,1}^{(u)} \mathrm{e}^{\mathrm{i} \mathbf{k}_{1,1,1} \cdot[75,125,100]^{\mathrm{T}}} & \mathrm{i} \kappa_{z} \mathbf{C}_{2,1,1}^{(u)} \mathrm{e}^{\mathrm{i} \mathbf{\kappa}_{2,1,1} \cdot[75,125,100]^{\mathrm{T}}} & \ldots
\end{array}\right]\left[\begin{array}{c}
\mathbf{n}_{1,1,1} \\
\mathbf{n}_{2,1,1} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
8 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],
$$

where the matrix $\mathbf{C}^{(u)}$ corresponds to the first row, i.e.

$$
\mathbf{C}_{\mathrm{iso}}^{(u)}=\sigma_{\text {iso }} \sqrt{\frac{2 \pi^{2} \ell^{3} E(\kappa)}{L_{x} L_{y} L_{z} \kappa^{4}}}\left[\begin{array}{lll}
0 & \kappa_{z} & -\kappa_{y}
\end{array}\right] .
$$

An inverse 3D Fourier transform of the constrained Fourier coefficients then results in the velocity field shown below. A slice is made through the field at $z=100 \mathrm{~m}$.

The sum with respect to the wave number vector, $\boldsymbol{\kappa}$, then denotes the triple sum:

$$
\sum_{\mathbf{\kappa}} \mathbf{n}(\boldsymbol{\kappa})=\sum_{\kappa_{x}} \sum_{\kappa_{y}} \sum_{\kappa_{z}} \mathbf{n}\left(\kappa_{x}, \kappa_{y}, \kappa_{z}\right)=\sum_{i=1}^{N_{x}} \sum_{j=1}^{N_{y}} \sum_{k=1}^{N_{z}} \mathbf{n}\left(\boldsymbol{\kappa}_{i, j, k}\right) .
$$

Using this notation, the DFT matrix multiplication $\mathbf{u}(\mathbf{x}) \approx \boldsymbol{\Psi}(x)$ n now becomes

$$
\mathbf{u}(\mathbf{x}) \approx\left[\begin{array}{llll}
\mathbf{C}_{1,1,1} \mathrm{e}^{\mathrm{i} \mathbf{k}_{1,1,1} \cdot \mathbf{x}} & \mathbf{C}_{2,1,1} \mathrm{e}^{\mathrm{i} \mathbf{k}_{2,1,1} \cdot \mathbf{x}} & \cdots & \mathbf{C}_{N_{x}, N_{y}, N_{z}} \mathrm{e}^{\mathrm{i} \mathbf{K}_{N_{x}, N_{y}, N_{z}} \cdot \mathbf{x}}
\end{array}\right]\left[\begin{array}{c}
\mathbf{n}_{1,1,1} \tag{2.7}\\
\mathbf{n}_{2,1,1} \\
\vdots \\
\mathbf{n}_{N_{x}, N_{y}, N_{z}}
\end{array}\right]
$$

Since a purely horizontal gust requires

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial u}{\partial y}=\frac{\partial u}{\partial z}=0 \tag{2.8}
\end{equation*}
$$

the linear system, omitting the second derivatives, can be set up as follows:
where $\mathbf{C}_{i, j, k}^{(u)}$ denotes the u-component, or first row, of the correlation tensor ${ }^{4}$, e.g.

$$
\mathbf{C}^{(u)}=\left[\begin{array}{lll}
C_{u u} & C_{u v} & C_{u w}
\end{array}\right] .
$$

Again, this can be solved for the constrained vector \mathbf{n}_{c}.

2.3 Setting constraints on volumes

Although velocity amplitude may be a good measure of the damage inflicted by a gust acting on a single point, for spatial structures this velocity needs to act on a significant area. In that case, it might be convenient to switch from single-point amplitudes to velocities averaged over space.

For an unsteady velocity field, the mean velocity of a fluid parcel of volume $V=\lambda_{x} \lambda_{y} \lambda_{z}$, at a position \mathbf{x}, can be expressed as

$$
\begin{equation*}
\overline{\mathbf{u}}(\mathbf{x})=\frac{1}{\lambda_{x} \lambda_{y} \lambda_{z}} \int_{V} \mathbf{u}(\mathbf{x}+\mathbf{r}) \mathrm{d} \mathbf{r} \tag{2.9}
\end{equation*}
$$

where

$$
\int \mathrm{d} \mathbf{r}=\iiint \mathrm{d} r_{x} \mathrm{~d} r_{y} \mathrm{~d} r_{z}
$$

Now, let the velocity field by represented by a Fourier-Stieltjes integral

$$
\begin{equation*}
\mathbf{u}(\mathbf{x})=\int_{\boldsymbol{\kappa}} \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}} \mathrm{~d} \mathbf{Z}(\boldsymbol{\kappa}) \tag{2.10}
\end{equation*}
$$

[^2]
Example 3 A local maximum averaged over a cubic subvolume

Consider a turbulent wind field $\mathbf{u}(\mathbf{x})$, where $0 \leq x \leq 200 \mathrm{~m}, 0 \leq y \leq 200 \mathrm{~m}, 0 \leq z \leq 200$ m , with an isotropic standard deviation of $\sigma_{\text {iso }}=1.5 \mathrm{~m} / \mathrm{s}$ and a von Kármán isotropic energy spectrum in accordance with IEC 61400-1 annex B.1. Given is a cubic subvolume at $\mathbf{x}=[100,100,100]^{\mathrm{T}} \mathrm{m}$ with dimensions $\lambda_{x}=50 \mathrm{~m}, \lambda_{y}=50 \mathrm{~m}$, and $\lambda_{z}=50 \mathrm{~m}$. For the average horizontal velocity inside the subvolume to be, say, $5 \mathrm{~m} / \mathrm{s}$, define a filter using equation (2.11) or (2.12):

$$
G(\boldsymbol{\kappa})=\operatorname{sinc}\left(\frac{50 \kappa_{x}}{2}\right) \operatorname{sinc}\left(\frac{50 \kappa_{y}}{2}\right) \operatorname{sinc}\left(\frac{50 \kappa_{z}}{2}\right)
$$

From there on, the procedure is equal to the previous example, only with the inclusion of the filter:

$$
\left[\begin{array}{ccc}
G(\boldsymbol{\kappa}) \mathbf{C}_{1,1,1} \mathrm{e}^{\mathrm{i} \mathbf{\kappa}_{1,1,1} \cdot[100,100,100]^{\mathrm{T}}} & G(\boldsymbol{\kappa}) \mathbf{C}_{2,1,1} \mathrm{e}^{\mathrm{i} \mathbf{\kappa}_{2,1,1} \cdot[100,100,100]^{\mathrm{T}}} & \ldots \\
\mathrm{i} \kappa_{x} G(\boldsymbol{\kappa}) \mathbf{C}_{1,1,1}^{(u)} \mathrm{e}^{\mathrm{i} \boldsymbol{\kappa}_{1,1,1} \cdot[100,100,100]^{\mathrm{T}}} & \mathrm{i} \kappa_{x} G(\boldsymbol{\kappa}) \mathbf{C}_{2,1,1}^{(u)} \mathrm{e}^{\mathrm{i} \boldsymbol{\kappa}_{2,1,1} \cdot[100,100,100]^{\mathrm{T}}} & \ldots \\
\mathrm{i} \kappa_{y} G(\boldsymbol{\kappa}) \mathbf{C}_{1,1,1}^{(u)} \mathrm{e}^{\mathrm{i} \boldsymbol{\kappa}_{1,1,1} \cdot[100,100,100]^{\mathrm{T}}} & \mathrm{i} \kappa_{y} G(\boldsymbol{\kappa}) \mathbf{C}_{2,1,1}^{(u)} \mathrm{e}^{\mathrm{i} \mathbf{\kappa}_{2,1,1} \cdot[100,100,100]^{\mathrm{T}}} & \ldots \\
\mathrm{i} \kappa_{z} G(\boldsymbol{\kappa}) \mathbf{C}_{1,1,1}^{(u)} \mathrm{e}^{\mathrm{i} \mathbf{\kappa}_{1,1,1} \cdot[100,100,100]^{\mathrm{T}}} & \mathrm{i} \kappa_{z} G(\boldsymbol{\kappa}) \mathbf{C}_{2,1,1}^{(u)} \mathrm{e}^{\mathrm{i} \mathbf{\kappa}_{2,1,1} \cdot[100,100,100]^{\mathrm{T}}} & \ldots
\end{array}\right]\left[\begin{array}{c}
\mathbf{n}_{1,1,1} \\
\mathbf{n}_{2,1,1} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
5 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

A slice at $z=100 \mathrm{~m}$. then yields the velocity field shown below.

Then it holds that

$$
\begin{aligned}
\overline{\mathbf{u}}(\mathbf{x}) & =\frac{1}{\lambda_{x} \lambda_{y} \lambda_{z}} \int_{V}\left[\int_{\mathbf{\kappa}} \mathrm{e}^{\mathrm{i} \boldsymbol{\kappa} \cdot(\mathbf{x}+\mathbf{r})} \mathrm{d} \mathbf{Z}(\mathbf{\kappa})\right] \mathrm{d} \mathbf{r}, \\
& =\frac{1}{\lambda_{x} \lambda_{y} \lambda_{z}} \int_{\boldsymbol{\kappa}}\left[\int_{V} \mathrm{e}^{\mathrm{i} \boldsymbol{\kappa} \cdot(\mathbf{x}+\mathbf{r})} \mathrm{d} \mathbf{r}\right] \mathrm{d} \mathbf{Z}(\boldsymbol{\kappa}),
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\lambda_{x} \lambda_{y} \lambda_{z}} \int_{\boldsymbol{\kappa}}\left[\mathrm{e}^{\mathrm{i} \cdot \cdot \mathrm{x}} \prod_{i=1}^{3}\left(\frac{\mathrm{e}^{\mathrm{i} \kappa_{i} r_{i, 2}}}{\mathrm{i} \kappa_{i}}-\frac{\mathrm{e}^{-\mathrm{i} \kappa_{i} r_{i, 1}}}{\mathrm{i} \kappa_{i}}\right)\right] \mathrm{d} \mathbf{Z}(\boldsymbol{\kappa}), \\
& =\int_{\boldsymbol{\kappa}}\left[\mathrm{e}^{\mathrm{i} \boldsymbol{\kappa} \cdot \mathbf{x}} \prod_{i=1}^{3} \operatorname{sinc}\left(\frac{\kappa_{i} \lambda_{i}}{2}\right)\right] \mathrm{d} \mathbf{Z}(\boldsymbol{\kappa}),
\end{aligned}
$$

where integration has been carried out for $r_{i}=-\frac{1}{2} \lambda_{i}$ to $+\frac{1}{2} \lambda_{i}$. The above implies that a mean velocity can be easily obtained by applying a low pass filter:

$$
\begin{equation*}
G(\boldsymbol{\kappa}, V)=\prod_{i=1}^{3} \operatorname{sinc}\left(\frac{\kappa_{i} \lambda_{i}}{2}\right), \tag{2.11}
\end{equation*}
$$

or, when omitting the product operator:

$$
\begin{equation*}
G(\kappa, V)=\operatorname{sinc}\left(\frac{\kappa_{x} \lambda_{x}}{2}\right) \operatorname{sinc}\left(\frac{\kappa_{y} \lambda_{y}}{2}\right) \operatorname{sinc}\left(\frac{\kappa_{z} \lambda_{z}}{2}\right) \tag{2.12}
\end{equation*}
$$

Since the low-pass filter is not dependent on \mathbf{x}, it can straightforwardly be inserted in the DFT matrix. It adds three parameters, λ_{x}, λ_{y}, and λ_{z}, which grants control over a cube-shaped volume ${ }^{5}$:

$$
\left[\begin{array}{ccc}
G_{1,1,1} \mathbf{C}_{1,1,1} \mathrm{e}^{\mathrm{i} \mathbf{k}_{1,1,1} \cdot \mathbf{x}_{0}} & G_{2,1,1} \mathbf{C}_{2,1,1} \mathrm{e}^{\mathrm{i} \mathbf{k}_{2,1,1} \cdot \mathbf{x}_{0}} & \ldots \\
\mathrm{i} \kappa_{x} G_{1,1,1} \mathbf{C}_{1,1,1}^{(u)} \mathrm{e}^{\mathrm{i} \mathbf{k}_{1,1,1}} \cdot \mathbf{x}_{0} & \mathrm{i} \kappa_{x} G_{2,1,1} \mathbf{C}_{2,1,1}^{(u)} \mathrm{e}^{\mathrm{i} \mathbf{k}_{2,1,1} \cdot \mathbf{x}_{0}} & \ldots \\
\mathrm{i} \kappa_{y} G_{1,1,1} \mathbf{C}_{1,1,1}^{(u)} \mathrm{e}^{\mathrm{i} \mathbf{k}_{1,1,1} \cdot \mathbf{x}_{0}} & \mathrm{i} \kappa_{y} G_{2,1,1} \mathbf{C}_{2,1,1,1}^{(u)} \mathrm{e}^{\mathrm{i} \mathbf{k}_{2,1,1} \cdot \mathbf{x}_{0}} & \ldots \\
\mathrm{i} \kappa_{z} G_{1,1,1} \mathbf{C}_{1,1,1}\left(\mathrm{e}^{\mathrm{i} \mathbf{k}_{1,1,1} \cdot \mathbf{x}_{0}}\right. & \mathrm{i} \kappa_{z} G_{2,1,1} \mathbf{C}_{2,1,1} \mathrm{e}^{\mathrm{i} \mathbf{k}_{2,1,1} \cdot \mathbf{x}} \mathbf{x} & \ldots
\end{array}\right]\left[\begin{array}{c}
\bar{u}\left(\mathbf{x}_{0}\right) \\
\mathbf{n}_{1,1,1} \\
\mathbf{n}_{2,1,1} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

The solution for a single-point velocity amplitude is then easily retrieved by setting $\lambda_{x} \lambda_{y} \lambda_{z}=0$, such that $G(\kappa, 0)=1$.

2.4 Setting multiple constraints

Adding more constraints to the system is very straightforward by adding more rows to the linear system, essentially treating it as a block matrix:

$$
\left[\begin{array}{c}
\mathbf{A}_{1} \tag{2.13}\\
\mathbf{A}_{2} \\
\vdots \\
\mathbf{A}_{k}
\end{array}\right] \mathbf{n}=\left[\begin{array}{c}
\mathbf{b}_{1} \\
\mathbf{b}_{2} \\
\vdots \\
\mathbf{b}_{k}
\end{array}\right],
$$

This way, it is possible to generate multiple gusts in one domain, or specify a velocity jump over a certain distance.

For a one-dimensional problem with k maxima, a linear system with first derivatives can be set up according to

$$
\left[\begin{array}{cccc}
\mathrm{e}^{\mathrm{i} \kappa_{1} x_{1}} & \mathrm{e}^{\mathrm{i} \kappa_{2} x_{1}} & \cdots & \mathrm{e}^{\mathrm{i} \kappa_{N} x_{1}} \\
\mathrm{i} \kappa_{1} \mathrm{e}^{\mathrm{i} \kappa_{1} x_{1}} & \mathrm{i} \kappa_{2} \mathrm{e}^{\mathrm{i} \kappa_{2} x_{1}} & \cdots & \mathrm{i} \kappa_{N} \mathrm{e}^{\mathrm{i} \kappa_{N} x_{1}} \\
\mathrm{e}^{\mathrm{i} \kappa_{1} x_{2}} & \mathrm{e}^{\mathrm{i} \kappa_{2} x_{2}} & \cdots & \mathrm{e}^{\mathrm{i} \kappa_{N} x_{2}} \\
\mathrm{i} \kappa_{1} \mathrm{e}^{\mathrm{i} \kappa_{1} x_{2}} & \mathrm{i} \kappa_{2} \mathrm{e}^{\mathrm{i} \kappa_{2} x_{2}} & \cdots & \mathrm{i} \kappa_{N} \mathrm{e}^{\mathrm{i} \kappa_{N} x_{2}} \\
\vdots & \vdots & & \\
\vdots \\
\mathrm{e}^{\mathrm{i} \kappa_{1} x_{k}} & \mathrm{e}^{\mathrm{i} \kappa_{2} x_{k}} & \cdots & \mathrm{e}^{\mathrm{i} \kappa_{N} \mathrm{e}_{\mathrm{i}} \mathrm{e}_{1} x_{k}} \\
\mathrm{i} \kappa_{2} \mathrm{e}^{\mathrm{i} \kappa_{2} x_{k}} & \cdots & \mathrm{i} \kappa_{N} \mathrm{e}^{\mathrm{i} \kappa_{N} x_{k}}
\end{array}\right]\left[\begin{array}{c}
u\left(x_{1}\right) \\
\dot{u}\left(x_{1}\right) \\
u\left(x_{2}\right) \\
n_{2} \\
\dot{u}\left(x_{2}\right) \\
\vdots \\
u\left(x_{k}\right) \\
\dot{u}\left(x_{k}\right)
\end{array}\right] .
$$

The linear system for a three-dimensional problem with k horizontal maxima looks a little more complex, but works in the same way:

[^3]
Example 4 One-dimensional velocity jump over a distance

Given the conditions from example 1. Placing a velocity jump from $u\left(x_{1}=90 \mathrm{~m}\right)=-6$ m / s to $u\left(x_{2}=110 \mathrm{~m}\right)=8 \mathrm{~m} / \mathrm{s}$ requires a linear system in the shape of

$$
\left[\begin{array}{cccc}
\mathrm{e}^{\mathrm{i} \kappa_{1} \cdot 90} & \mathrm{e}^{\mathrm{i} \kappa_{2} \cdot 90} & \cdots & \mathrm{e}^{\mathrm{i} \kappa_{N} \cdot 90} \\
\mathrm{i} \kappa_{1} \mathrm{e}^{\mathrm{i} \kappa_{1} \cdot 90} & \mathrm{i} \kappa_{2} \mathrm{e}^{\mathrm{i} \kappa_{2} \cdot 90} & \cdots & \mathrm{i} \kappa_{N} \mathrm{e}^{\mathrm{i} \kappa_{N} \cdot 90} \\
\mathrm{e}^{\mathrm{i} \kappa_{1} \cdot 110} & \mathrm{e}^{\mathrm{i} \kappa_{2} \cdot 110} & \cdots & \mathrm{e}^{\mathrm{i} \kappa_{N} \cdot 110} \\
\mathrm{i} \kappa_{1} \mathrm{e}^{\mathrm{i} \kappa_{1} \cdot 110} & \mathrm{i} \kappa_{2} \mathrm{e}^{\mathrm{i} \kappa_{2} \cdot 110} & \cdots & \mathrm{i} \kappa_{N} \mathrm{e}^{\mathrm{i} \kappa_{N} \cdot 110}
\end{array}\right]\left[\begin{array}{c}
n_{1} \\
n_{2} \\
\vdots \\
n_{N}
\end{array}\right]=\left[\begin{array}{c}
-6 \\
0 \\
8 \\
0
\end{array}\right]
$$

Again, an inverse Fourier transform leads to the following time series:

Example 5 A cluster of three single-point velocity maxima

Given is a cubic domain with sides $200 \times 200 \times 200 \mathrm{~m}$. Inside are three individual velocity maxima:

$$
\mathbf{u}\left(\left[\begin{array}{c}
40 \\
90 \\
100
\end{array}\right]\right)=\left[\begin{array}{l}
6 \\
0 \\
0
\end{array}\right] \mathrm{m} / \mathrm{s}, \quad \mathbf{u}\left(\left[\begin{array}{c}
100 \\
150 \\
100
\end{array}\right]\right)=\left[\begin{array}{l}
7 \\
0 \\
0
\end{array}\right] \mathrm{m} / \mathrm{s}, \quad \mathbf{u}\left(\left[\begin{array}{c}
160 \\
30 \\
100
\end{array}\right]\right)=\left[\begin{array}{c}
8 \\
0 \\
0
\end{array}\right] \mathrm{m} / \mathrm{s} .
$$

In that case, the linear system $\mathbf{A n}=\mathbf{b}$ becomes

yielding the field shown below:

Example 6 Velocity jump between two planes

Given are two planes located at $\mathbf{x}_{1}=[75,100,100]^{\mathrm{T}}$ and $\mathbf{x}_{2}=[125,100,100]^{\mathrm{T}}$, with each a width and height of $\lambda_{y}=50 \mathrm{~m}$ and $\lambda_{z}=50 \mathrm{~m}$, respectively. Now, specify a velocity jump where the wind speed increases from $\overline{\mathbf{u}}_{1}=-5 \mathrm{~m} / \mathrm{s}$ to $\overline{\mathbf{u}}_{1}=5 \mathrm{~m} / \mathrm{s}$, averaged over the planes. Then, define the following filter shape:

$$
G(\boldsymbol{\kappa})=\operatorname{sinc}\left(\frac{50 \kappa_{y}}{2}\right) \operatorname{sinc}\left(\frac{50 \kappa_{z}}{2}\right)
$$

and set the linear system up as follows:

This yields a velocity field, of which a slice at $z=100 \mathrm{~m}$ is shown below.

3 STATISTICS OF SPATIAL GUSTS

Generating gusts in a spatial domain leads to an interesting problem when quantifying the statistics. First and foremost, it requires a three-dimensional version of Rice's formula. Under the assumption of Gaussian turbulence, the gust probability can be expressed by the second-order spectral moment, together with a relevant length scale.

3.1 Rice's formula

Let a one-dimensional gust be an event in stationary, homogeneous, Gaussian turbulence, where $u(x) \sim \mathrm{N}\left(0, \sigma^{2}\right), x \in \mathbb{R}$. The expected number of times $u(x)$ takes the value A over a length L_{x} is then given by Rice's formula ${ }^{6}$:

$$
\begin{equation*}
\frac{\mathrm{E}\left[N_{u=A}\right]}{L_{x}}=\int_{-\infty}^{\infty}|\dot{u}| f(A, \dot{u}) \mathrm{d} \dot{u}, \tag{3.1}
\end{equation*}
$$

where $\dot{u}=\mathrm{d} u / \mathrm{d} x$ and $f(u, \dot{u})$ is the joint probability density of u and its first derivative,

$$
\left[\begin{array}{l}
u \tag{3.2}\\
\dot{u}
\end{array}\right] \sim N\left(\left[\begin{array}{c}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
\sigma^{2} & 0 \\
0 & r
\end{array}\right]\right),
$$

where

$$
\begin{equation*}
r=\mathrm{E}\left[\left(\frac{\partial u}{d x}\right)^{2}\right] \tag{3.3}
\end{equation*}
$$

is the variance of the first derivative of u. The number of excursions above a threshold A can be obtained simply by only taking upcrossings into account ($\dot{u}>0$). This yields

$$
\begin{equation*}
\frac{\mathrm{E}\left[N_{u>A}\right]}{L_{x}}=\int_{0}^{\infty} \frac{\dot{u}}{2 \pi \sigma \sqrt{r}} \mathrm{e}^{-\frac{\dot{u}^{2}}{2 r}-\frac{A^{2}}{2 \sigma^{2}}} \mathrm{~d} \dot{u}, \tag{3.4}
\end{equation*}
$$

which can be solved by making the substitution $v=\dot{u}^{2} /(2 r), \mathrm{d} v=\dot{u} / r \mathrm{~d} \dot{u}$, leading to

$$
\begin{equation*}
\frac{\mathrm{E}\left[N_{u>A}\right]}{L_{x}}=\frac{\sqrt{r}}{2 \pi \sigma} \mathrm{e}^{-\frac{A^{2}}{2 \sigma^{2}}} . \tag{3.5}
\end{equation*}
$$

To illustrate, figure 1 shows a comparison between the level excursions counted from synthetic turbulence, using an isotropic von Kármán spectrum, and equation (3.5).

Figure 1: Level excursions counted in synthetic 1D isotropic turbulence, compared to the Rice distribution.

[^4]
3.2 Level excursions in \mathbb{R}^{3}

For higher-order dimensions, however, the problem quickly becomes much more complex as the boundaries of an upcrossing are harder to define. This problem has been tackled by Adler and Taylor ${ }^{7}$ through the use of the Euler characteristic, $\varphi(x)$, making it a matter of topology. The Euler characteristic counts the number of connected components in a field and subtracting the amount of holes. If, for an excursion set $u(\mathbf{x}) \geq A$, the amplitude threshold is high enough, the holes disappear and what is left are the number of regions where the A is exceeded (see figure 2):

$$
\begin{equation*}
\mathrm{P}\left(\sup _{\mathbf{x} \in B} u(\mathbf{x}) \geq A\right) \approx \mathrm{E}\left[\varphi\left(Z_{A}\right)\right] . \tag{3.6}
\end{equation*}
$$

where the approximation is off by an error

$$
\begin{equation*}
\left|\mathrm{P}\left(\sup _{\mathbf{x} \in B} u(\mathbf{x}) \geq A\right)-\mathrm{E}\left[\varphi\left(Z_{A}\right)\right]\right|<O\left(e^{-\alpha \frac{A^{2}}{2 \sigma^{2}}}\right) . \tag{3.7}
\end{equation*}
$$

for some $\alpha>1$. A generalized expression for the expected Euler characteristic exists for N dimensions and is given by Adler and Taylor in the book Random Fields and Geometry (theorem 11.7.2), preceded by about 300 pages of background:

$$
\begin{equation*}
\mathrm{E}\left[\varphi\left(Z_{A}\right)\right]=\mathrm{e}^{-\frac{A^{2}}{2 \sigma^{2}}} \sum_{k=0}^{N} \sum_{J \in O_{k}} \frac{|J| \sqrt{\left|\mathbf{R}_{J}\right|}}{(2 \pi)^{(k+1) / 2} \sigma^{k}} H_{k-1}\left(\frac{A}{\sigma}\right), \tag{3.8}
\end{equation*}
$$

where

$$
H_{\mathrm{n}}(x)= \begin{cases}n!\sum_{j=0}^{\lfloor n / 2\rfloor} \frac{(-1)^{j} x^{n-2 j}}{j!(n-2 j)!2 j}, & n \geq 0 \tag{3.9}\\ \sqrt{2 \pi} \Psi(x) e^{x^{2} / 2}, & n=-1\end{cases}
$$

Figure 2: Connected components in the excursion set $\boldsymbol{u}(\mathbf{x}) \geq \boldsymbol{A}$, compared to the Euler characteristic. The field $\boldsymbol{u}(\mathbf{x})$ is the horizontal velocity component of isotropic turbulence, smoothed with a $20 \times 20 \times 20 \mathrm{~m}$ lowpass box filter.

[^5]is the nth Hermite polynomial for $x \in \mathbb{R}$ with $\Psi(x)$ being the tail of the Gaussian distribution ${ }^{8}$, e.g.
\[

$$
\begin{equation*}
\Psi(x)=1-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-v^{2} / 2} \mathrm{~d} v \tag{3.10}
\end{equation*}
$$

\]

Moreover, $|J|$ denotes the Lebesgue measure of J and $\left|\mathbf{R}_{J}\right|$ is the determinant of the matrix of second-order spectral moments:

$$
\mathbf{R}_{J}=\int_{\mathbf{\kappa}} \kappa_{i} \kappa_{j}[G(\boldsymbol{\kappa}, V)]^{2} \boldsymbol{\Phi}_{u u}(\boldsymbol{\kappa}) \mathrm{d} \mathbf{\kappa}=\left[\begin{array}{lll}
r_{x x} & r_{x y} & r_{x z} \tag{3.11}\\
r_{y x} & r_{y y} & r_{y z} \\
r_{z x} & r_{z y} & r_{z z}
\end{array}\right]
$$

Furthermore, $\sum_{J \in O_{k}}$ denotes summing over the $\binom{N}{k} k$-dimensional faces of B which contain the origin. The variance of the filtered spectrum can be obtained through

$$
\begin{equation*}
\sigma^{2}=\int_{\boldsymbol{\kappa}}[G(\boldsymbol{\kappa}, V)]^{2} \boldsymbol{\Phi}_{u u}(\boldsymbol{\kappa}) \mathrm{d} \boldsymbol{\kappa} \tag{3.12}
\end{equation*}
$$

When B is a three-dimensional rectangle ${ }^{9}$ with sides $L_{x} \times L_{y} \times L_{z}, O_{0}$ contains the single vertex at the origin; O_{1} three ribs along the x-, y-, and z-axes; O_{2} the $x y$-, $x z$-, and $y z$-planes; and O_{3} the volume of the rectangle. Then, equation (3.8) can be written out as

$$
\begin{equation*}
\mathrm{E}\left[\varphi\left(Z_{A}\right)\right]=\Psi\left(\frac{A}{\sigma}\right)+\mathrm{e}^{-\frac{A^{2}}{2 \sigma^{2}}}\left[c_{1}+c_{2} \frac{A}{\sigma}+c_{3}\left(\frac{A^{2}}{\sigma^{2}}-1\right)\right] \tag{3.13}
\end{equation*}
$$

where

$$
\begin{aligned}
& c_{1}=\frac{L_{x} \sqrt{r_{x x}}+L_{y} \sqrt{r_{y y}}+L_{z} \sqrt{r_{z z}}}{2 \pi \sigma} \\
& c_{2}=\frac{L_{x} L_{y} \sqrt{\left|\begin{array}{cc}
r_{x x} & r_{x y} \\
r_{y x} & r_{y y}
\end{array}\right|+L_{x} L_{z} \sqrt{\left|\begin{array}{cc}
r_{x x} & r_{x z} \\
r_{z x} & r_{z z}
\end{array}\right|+L_{y} L_{z} \sqrt{\left|\begin{array}{cc}
r_{y y} & r_{y z} \\
r_{z y} & r_{z z}
\end{array}\right|}} \begin{array}{l}
(2 \pi)^{\frac{3}{2}} \sigma^{2} \\
c_{3}=\frac{L_{x} L_{y} L_{z}}{(2 \pi)^{2} \sigma^{3}} \sqrt{\left|\begin{array}{ccc}
r_{x x} & r_{x y} & r_{x z} \\
r_{y x} & r_{y y} & r_{y z} \\
r_{z x} & r_{z y} & r_{z z}
\end{array}\right|}
\end{array} .} .}{} .
\end{aligned}
$$

In most (if not all) cases, it is true that $L_{x} \gg L_{y}, L_{z}$. For large enough amplitudes $(\Psi(A / \sigma) \approx 0)$, equation (3.13) can then be approximated as

$$
\begin{equation*}
\mathrm{E}\left[\varphi\left(Z_{A}\right)\right] \approx L_{x} L_{y} L_{z} \frac{\sqrt{|\mathbf{R}|}}{4 \pi^{2} \sigma^{3}} \mathrm{e}^{-\frac{A^{2}}{2 \sigma^{2}}}\left(\frac{A^{2}}{\sigma^{2}}-1\right) \tag{3.14}
\end{equation*}
$$

where \mathbf{R} is computed as in (3.11). The above is the same result mentioned in Adler (1976) ${ }^{10}$ and Adler and Husofer (1976) ${ }^{11}$, and is caused by neglecting the $0^{\text {th- }}$ through $2^{\text {nd_dimensional faces of }}$ the domain (i.e., the edges, vertices, and surfaces). The linear dependence on the domain size is now much easier to understand (twice the domain size equals twice as many excursions). However, if the gust scale is relatively large compared to the domain size, it is advisable to rely on

[^6]

Figure 3: Wind advecting through an area with sides $\boldsymbol{L}_{\boldsymbol{y}} \times \boldsymbol{L}_{z}$.
the full expression given by equation (3.13) to avoid any errors (the full expression does not contain any additional parameters).

3.3 A special note on low-pass filters

Low-pass filters were introduced in section 2.3 as a means to set constraints on volumes. However, they serve another important purpose when it comes to assessing the probability of gusts. When evaluating second order spectral moments for turbulent velocity fluctuations for which the spectrum scales according to $E(\kappa) \propto \kappa^{-5 / 3}$, the integral in equation (3.11) is not finite unless a low-pass filter is included. This is because the second-order fluctuations (i.e., $\partial u / \partial x$) display the Richardson effect.

For example, an interesting problem in geography is the coastline paradox, which shows that the length of a coastline is not well-defined, but instead is dependent on the ruler that is used to measure it. A short ruler will take into account more of the small-scale features of a coast's geometry than a long ruler, and would therefore return a longer length. In his 1967 paper, How Long Is the Coast of Britain? ${ }^{12}$, Benoît Mandelbrot argues that, since geography is uninterested in the details, one should rather settle for a minimum feature size to define what features are relevant.

Since turbulent velocity fluctuations display a high degree of self-similarity across the inertial sub-range, the same problem exists for wind gusts. The use of low-pass filters in the constraint set, shown in section 2.3, and in equation (3.11) therefore act as a "ruler" that defines which scales are relevant. In meteorology, the instantaneous wind speed and peak gusts are usually recorded as the average over $2-3$ seconds. The reason for that is that those few seconds correspond to a wind run-defined as the gust duration times the average velocity-of about 100 m . This time scale is chosen such that an average structure will likely experience the full gust load ${ }^{13}$. Of course, different scales can be thought of, depending on the structure of interest.

3.4 Gust probability

The occurrence probability of extreme wind gusts can be derived on basis of the Poisson limit. For high enough amplitudes, a binomial distribution with k successes can be approximated by

[^7]\[

$$
\begin{equation*}
\mathrm{P}\left(N_{u>A}=k\right) \approx \frac{\left(\mathrm{E}\left[N_{u>A}\right]\right)^{k}}{k!} \mathrm{e}^{-\mathrm{E}\left[N_{u>A}\right]} \tag{3.15}
\end{equation*}
$$

\]

where $\mathrm{E}\left[N_{u>A}\right] \approx \mathrm{E}\left[\varphi\left(Z_{A}\right)\right]$ denotes the expected frequency of an event for which the horizontal velocity, u, is higher than a threshold A. Under the assumption of frozen turbulence, the domain length is given by a mean wind speed and a certain time period (i.e., $L_{x}=\bar{U} T$). Equation (3.13) or (3.14) can then be used to determine a return period:

$$
\begin{equation*}
T_{A} \approx \frac{T}{\mathrm{E}\left[\varphi\left(Z_{A}\right)\right]} \tag{3.16}
\end{equation*}
$$

In practice, the mean wind speed and variance are not constant, but instead given by a joint probability density function, $f(\bar{U}, \sigma)$. The expected number of gusts exceeding A then follows from

$$
\begin{equation*}
\mathrm{E}\left[N_{u>A}\right] \approx \int_{0}^{\infty} \int_{0}^{\infty} \mathrm{E}\left[\varphi\left(Z_{A}\right)\right] f(\bar{U}, \sigma) \mathrm{d} \sigma \mathrm{~d} \bar{U} \tag{3.17}
\end{equation*}
$$

The above is visualized by example 7 .

Example 7 Return levels for wind speeds in a domain using the IEC NTM

The normal turbulence model (NTM) in the IEC 61400-1 standards prescribes a wind speed and turbulence distribution by

$$
\begin{aligned}
& f\left(V_{\text {hub }}\right)=1-\mathrm{e}^{-\pi\left(\frac{V_{\text {hub }}}{2 V_{\text {ave }}}\right)^{2}} \\
& \sigma_{1}=I_{\text {ref }}\left(0.75 V_{\text {hub }}+5.6\right),
\end{aligned}
$$

with $V_{\text {ave }}=50 \mathrm{~m} / \mathrm{s}$ and $I_{\text {ref }}=0.16$ for a class 1 A site. To evaluate the second-order spectral moments, the Mann model is used as defined in IEC 61400-1 Annex B. The expected number of wind gusts in the NTM over a sample length can then be found by calculating the expected Euler characteristic from equation (3.13):

$$
\mathrm{E}\left[N_{u>A}\right] \approx \int_{0}^{\infty} \mathrm{E}\left[\varphi\left(Z_{A}\right)\right] f\left(V_{\text {hub }}\right) \mathrm{d} V_{\text {hub }}
$$

Through a frontal surface of $100 \times 100 \mathrm{~m}$ (e.g., see figure 3), the following return levels can be expected for Gaussian gusts, where the velocity is smoothed using a cubic kernel with sides $3 \bar{U} \times 5 \times 5 \mathrm{~m}$ (i.e., a longitudinal scale of 3 seconds).

Figure 4: Absolute 50-year gust amplitudes, averaged over a rectangular box with size $3 \bar{U} \times \lambda \times \lambda$ (i.e., a 3second gust), through a square $178.3 \times 178.3 \mathrm{~m}$ area (indicated with dashed lines). Turbulence properties are according to an IEC class 1A wind regime, using the Mann turbulence spectrum (see IEC 61400-1 Annex B). Added for scale is the DTU 10 MW reference turbine.

To conclude this chapter, the 50-year return levels will be presented for a class 1A wind regime, over a square frontal area with a size of $178.3 \times 178.3 \mathrm{~m}$ (exactly fitting the rotor of the DTU 10 MW reference turbine). The methodology is similar to what is shown in example 7, but the expected level excursions are summed with respect to the absolute amplitude, $\bar{U}(z)+A$. The process is repeated for different heights along the wind shear profile (turbulence properties are fixed for a 119 m hub height) and for various filter sizes. The results, shown in figure 4 , clearly show how the amplitude decreases with increasing area of effect. This underlines that coherent gusts (i.e., gusts with a uniform velocity over the rotor plane) are very unphysical events for large rotor diameters. Moreover, it also shows that velocity amplitudes taken from single-point measurements cannot be used to as input for coherent gust models.

4 VALIDATION

The previous chapters introduced low-pass filters as an important aspect of gust statistics. This chapter discusses what happens when gusts are extracted from high-frequency measurements, based on the filtered amplitude, and how this compares with theory.

4.1 Data source

The Offshore Windfarm Egmond aan Zee (OWEZ) is the first offshore wind farm ever to be constructed in the Netherlands, and is located about 10-18 km off the coast of Egmond aan Zee. The turbines were installed starting in the summer of 2006 and the park was officially opened in March 2007. Prior to construction, in 2005 , a met mast was installed at $52^{\circ} 36^{\prime} 22.9^{\prime \prime} \mathrm{N}, 4^{\circ} 23^{\prime}$ $22.7^{\prime \prime} \mathrm{E}$ to gather wind and wave data from the site. The mast is a 116 m high triangular lattice tower placed on a monopile foundation. Measurement stations are located at 21, 70 and 116 m , and are each equipped with three cup anemometers, three wind vanes, and one sonic anemometer in the configuration shown in figure 5. Meteorological data spanning July 2005 to December 2010, subdivided in 10-minute intervals, is freely available online ${ }^{14}$. Moreover, raw high-frequency (4 Hz) wind data has been made available by the Energy Research Centre of the Netherlands (ECN) from May 2007 until December 2008.

Figure 5: Location of the OWEZ wind farm in the Dutch North Sea. Added to the top-left is a detailed view of the park layout together with the directions of undistorted flow, as seen from the met mast.

[^8]
a) Wind rose at 116 m .

Figure 6: Wind roses for the three sensor heights at the OWEZ met mast.
Frequency plots of the mean wind speed and wind direction are shown in figure 6 a through c . Approximate Weibull scale and shape parameters for the annual 10-minute mean wind speeds are respectively 9.1 and 2.4 for $h=21 \mathrm{~m} ; 10.3$ and 2.3 for $h=70 \mathrm{~m}$; and 10.8 and 2.2 for $h=$ 116 m . The prevailing wind direction is south west; typical for the Dutch coast.

Since the park was already in operation during the time of the measurements, the met mast can encounter wake effects for wind directions from 315 to $135^{\circ} 15$. However, measurements between 295 and 155° already show a significantly higher turbulence intensity ${ }^{16}$. Moreover, easterly winds will be affected by the roughness onshore. In that sense, excluding the data from $25 \leq \theta \leq 205^{\circ}$, as shown in figure 5 , will ensure offshore conditions with a fetch of at least 170 km . In addition, only the sonic anemometers placed on the northwest booms can deliver good high-frequency measurements. At this position, the tower wake invalidates the wind directions from roughly 90 to 150°. All these effects cause a large portion of the data to be too unreliable for a good site assessment.

These constraints mean that the measurements should be limited to $205 \leq \theta \leq 295^{\circ}$, which amounts to 40% of the wind directions counted from 2006 to 2010 (see figure 6). A more detailed overview of the usable sonic anemometer records is given in figure 7a through c. Notable is the fact that the data set from $h=116 \mathrm{~m}$ is very incomplete during some periods, which means some seasonal bias can be expected.

[^9]

Figure 7: Availability of sonic data at the OWEZ met mast.

4.2 Gust shapes

The mean shape of extreme gusts can be shown to follow the turbulence autocorrelation function ${ }^{17}$. From the discussion in section 2.3, it is expected that the peaks from a filtered turbulence signal should follow the filtered autocorrelation function. To validate this, gusts exceeding an amplitude of 3σ (after filtering) have been extracted from the sonic anemometer. This process is repeated with different low-pass box filters having a window size of 3,10 , and 30 seconds. Gusts are centered and normalized with respect to the amplitude. A smooth autocorrelation function is obtained by fitting an exponential function to the unfiltered signal. At first, the gust shapes contained a dominant harmonic with a period of 2.5 seconds, coinciding with the tower's natural frequency ${ }^{18}$. Therefore, the wind signal was first filtered with a third-order Butterworth band-stop filter ranging from 0.35 to 0.45 Hz .

Figure 8 a through g show that, for 7 different mean wind speed bins, the results match well with what is expected. For increasing wind speeds, the measured gusts tend to become more narrow (although the effect is most dominant in the absence of filters), which can be attributed to a higher rate of advection. The quality of the fit is somewhat lower for the 30 s window. This might be because turbulence spectra often do not agree well at low frequencies, depending on the stability of the atmospheric boundary layer.

[^10]
a) $0<\bar{U} \leq 4 \mathrm{~m} / \mathrm{s}(N=1194,776,434)$.

b) $4<\bar{U} \leq 8 \mathrm{~m} / \mathrm{s}(N=3101,1861,1060)$.

c) $8<\bar{U} \leq 12 \mathrm{~m} / \mathrm{s}(N=4272,2488,1060)$.

Figure 8: Mean gust shapes extracted from the OWEZ met mast compared to the filtered autocorrelation function (-). The figures shows the density of N gusts with an amplitude, $\boldsymbol{A}>3 \boldsymbol{\sigma}$, averaged over a window of 3,10 , and 30 seconds (indicated by the black dashed lines). The gusts are centered and the wind speed is normalized with respect to the amplitude. Data is taken from the sonic anemometer at 116 m and filtered for wind directions from 205 to 295°.

d) $12<\bar{U} \leq 16 \mathrm{~m} / \mathrm{s}(N=2792,1701,1033)$.

e) $16<\bar{U} \leq 20 \mathrm{~m} / \mathrm{s}(N=1790,1168,679)$.

Figure 8 (cont.): Mean gust shapes extracted from the OWEZ met mast compared to the filtered autocorrelation function (-). The figures shows the density of N gusts with an amplitude, $\boldsymbol{A}>3 \sigma$, averaged over a window of 3,10 , and 30 seconds (indicated by the black dashed lines). The gusts are centered and the wind speed is normalized with respect to the amplitude. Data is taken from the sonic anemometer at 116 m and filtered for wind directions from 205 to 295°.

Figure 8 (cont.): Mean gust shapes extracted from the OWEZ met mast compared to the filtered autocorrelation function (-).. The figures shows the density of N gusts with an amplitude, $A>3 \sigma$, averaged over a window of 3,10 , and 30 seconds (indicated by the black dashed lines). The gusts are centered and the wind speed is normalized with respect to the amplitude. Data is taken from the sonic anemometer at 116 m and filtered for wind directions from 205 to 295°.

4.3 Probability of occurrence

Figure 9a through h shows the level excursions counted in 20 months of 4 Hz wind speed data measured at the OWEZ wind farm. Without filtering, the number of level excursions can deviate significantly from the Rice distribution for $A / \sigma<2$ and $A / \sigma>4$. However, the mean wind speed has a significant effect. At higher mean wind speeds (i.e., a higher rate of advection), an anemometer will sample the velocity field at larger spatial separations. Large-scale fluctuations are more Gaussian in nature, and will therefore agree better with the theoretical distribution, given by equation (3.5) (which is based on the assumption of a Gaussian process). The effect of a lowpass filter is similar to the effect of a higher wind speed, namely that the small-scale fluctuations are not taken into account. Though, it should be noted that at high amplitudes and high wind speeds, there may not be enough counts for a reliable trend.

From the data in figure 9, it seems that non-Gaussian behavior would not have any significant impact on extreme loads. First, one can argue that a wind turbine fulfills the same role as a low-pass filter, since the effect of small-scale fluctuations can easily cancel out over the length of a blade. And secondly, extreme loads for pitch-controlled turbines are likely to be found near and above the rated wind speed. Combined, these two aspects may well suppress the effects of non-Gaussianity. However, without actual load calculations, this of course remains mere speculation at this point.

a) Level excursions for $\lambda=0 \mathrm{~s}$.

b) Level excursions for $\lambda=3 \mathrm{~s}$.

Figure 9: Normalized frequency of level excursions where the velocity is averaged over a temporal window $\boldsymbol{\lambda}$. Shown here are theoretical Rice distribution based on 10-minute statistics, compared to the actual counts in the OWEZ data, separated by mean wind speeds. Data is taken from the sonic anemometer at 116 m and filtered for wind directions from 205 to 295°.

Figure 9 (cont.): Normalized frequency of level excursions where the velocity is averaged over a temporal window λ. Shown here are theoretical Rice distribution based on 10-minute statistics, compared to the actual counts in the OWEZ data, separated by mean wind speeds. Data is taken from the sonic anemometer at 116 m and filtered for wind directions from 205 to 295°.

Figure 9 (cont.): Normalized frequency of level excursions where the velocity is averaged over a temporal window λ. Shown here are theoretical Rice distribution based on 10-minute statistics, compared to the actual counts in the OWEZ data, separated by mean wind speeds. Data is taken from the sonic anemometer at 116 m and filtered for wind directions from 205 to 295°.

Figure 9 (cont.): Normalized frequency of level excursions where the velocity is averaged over a temporal window λ. Shown here are theoretical Rice distribution based on 10-minute statistics, compared to the actual counts in the OWEZ data, separated by mean wind speeds. Data is taken from the sonic anemometer at 116 m and filtered for wind directions from 205 to 295°.

5 APPLICATION

To make this report as accessible as possible, this chapter contains a brief guide to the method, targeted at readers without a strong background in wind field modeling (i.e., the users).

5.1 The method in a nutshell

Constrained stochastic simulation allows one to generate wind fields containing extreme events (i.e., gusts). These events arise from the statistics of "regular" turbulence. Therefore, the resulting wind fields are a representation of what can be found in very long time series. When the probability of such an event is known, it becomes possible to target the extreme load behavior of a structure, for example by using Monte Carlo methods with importance sampling.

Figure 10: Sketch of the wind field with all the relevant parameters. Note that, in the IEC standards, the anisotropy parameter is set to $\boldsymbol{\gamma}=3.9$ and the turbulent length scale, \boldsymbol{l}, is given by $\mathbf{0 . 8} \boldsymbol{\Lambda}_{\mathbf{1}}$, where $\boldsymbol{\Lambda}_{\mathbf{1}}$ is a height-dependent turbulence scale parameter.

Table 1: Relevant parameters with their descriptions.

Symbol			Unit	Description
used here	IEC	in code		
A	-	a	[m/s]	Gust amplitude
h	z	h	[m]	Hub height
L_{x}, L_{y}, L_{z}	-	Lx, Ly, Lz	[m]	Wind field length, width, and height
l	l	-	[m]	Turbulent length scale (see IEC 61400-1 Annex B)
$N_{u>A}$	-	N	[-]	Number of events where $u>A$
M_{0}	-	м0	[$\left.\mathrm{m}^{2} / \mathrm{s}^{2}\right]$	Filtered zeroth-order spectral moment
\mathbf{M}_{2}	-	M2	[1/s ${ }^{2}$]	Filtered second-order spectral moment
T	-	T	[s]	Simulated time period
\bar{U}	$V_{\text {hub }}$	U	[m/s]	Mean wind speed at hub height
u, v, w	u_{1}, u_{2}, u_{3}	u, v, w	[m/s]	Velocity components
x, y, z	x, y, z	$\mathrm{x}, \mathrm{y}, \mathrm{z}$	[m]	Coordinates of the spatial grid points
x_{0}, y_{0}, z_{0}	-	x0, y0, z0	[m]	Position of the gust's center
γ	γ	-	[-]	Anisotropy parameter (see IEC 61400-1 Annex B)
$\lambda_{x}, \lambda_{y}, \lambda_{z}$	-	lx, ly, lz	[m]	Gust length scales
σ_{u}	σ_{1}	sigma1	[m/s]	Longitudinal standard deviation

5.2 A step-by-step guide

Figure 10 shows a sketch of a wind field with all the parameters that are needed to simulate a gust. In addition, table 1 contains a nomenclature for this chapter. Note that, in the IEC standards, the anisotropy parameter is set to $\gamma=3.9$ and the turbulent length scale is given by $0.8 \Lambda_{1}$, where Λ_{1} is a height-dependent turbulence scale parameter.

1. Set the mean wind speed, \bar{U}, the longitudinal standard deviation, σ_{1}, and the hub height, h.
```
U = 11.4; % Mean wind speed [m/s]
I = 0.16; % Reference turbulence intensity [-]
sigma1 = I*(0.75*U+5.6);% Longitudinal standard deviation [m/s]
h = 119; % Hub height [m]
```

2. Define a rectangular domain with a size of $\bar{U} T \times L_{y} \times L_{z}$ to fit the wind field.
```
5 T = 120;
Time period [s]
Lx = U*T; % Domain length [m]
Ly = 200; % Domain width [m]
Lz = 200; % Domain height [m]
Nx = 2^10; % Number of points in x-direction [-]
10 Ny = 2^5; % Number of points in y-direction [-]
11 Nz = 2^5; % Number of points in z-direction [-]
```

3. Pad the domain in all directions to avoid periodicity ${ }^{19}$. Moreover, ensure that $\bar{U} T, L_{y}, L_{z}>8 l$.
```
py = 12; % Array padding in y-direction [-]
pz = 12; % Array padding in z-direction [-]
dx = Lx/Nx; % Step size in x-direction [m]
dy = Ly/Ny; % Step size in y-direction [m]
dz = Lz/Nz; % Step size in z-direction [m]
[x,y,z] = meshgrid(...
    dx:dx:Lx, ...
    (-(Ny+py-1)/2:(Ny+py-1)/2)*dy, ...
    (-(Nz+pz-1)/2:(Nz+pz-1)/2)*dz + h);
```

4. Define a gust event by setting its position, $\left(x_{0}, y_{0}, z_{0}\right)$, amplitude, A, and the box over which the amplitude is averaged, $\lambda_{x} \times \lambda_{y} \times \lambda_{z}$.

21	$A=6 ;$	\%	Gust amplitude [m/s]
22	$x 0=60 * U ;$	\%	Gust x-position [m]
23	$\mathrm{y} 0=0$;	\%	Gust y-position [m]
24	$\mathrm{zO}=\mathrm{h}$;	\%	Gust z-position [m]
25	$1 \mathrm{x}=3 * \mathrm{U}$;	\%	Gust longitudinal length scale [m]
26	$1 \mathrm{y}=25$;	\%	Gust lateral length scale [m]
27	$1 z=25 ;$	\%	Gust vertical length scale [m]

5. Compute the velocity field, $\mathbf{u}(\mathbf{x})$, together with the zeroth- and second-order spectral moments ${ }^{20}, M_{0}$ and \mathbf{M}_{2} (see appendix B).
```
28 [u,v,w,M0,M2] = ConstrainedIEC(x,y,z,sigma1,h,A,lx,ly,lz,x0,y0,z0);
```

6. Retrieve the unpadded domain size.
```
29 x = dx:dx:Lx;
30 y = (-(Ny-1)/2:(Ny-1)/2)*dy;
31 z = (-(Nz-1)/2:(Nz-1)/2)*dz + h;
32 u = u(py/2+(1:Ny),1:Nx,pz/2+(1:Nz));
33 v = v(py/2+(1:Ny),1:Nx,pz/2+(1:Nz));
34 w = w(py/2+(1:Ny),1:Nx,pz/2+(1:Nz));
```

7. Output the 3D velocity field to a binary file format and feed to a turbine model, such as Bladed, FAST, or HAWC2 (how is well-explained in appendix D and E of the TurbSim manual ${ }^{21}$).

[^11]8. Compute the expected number of level exceedances, $\mathrm{E}\left[N_{u>A}\right]$.

```
35 c1 = (sqrt (M2 (1,1))*Lx + sqrt (M2 (2, 2))*Ly +
    sqrt(M2 (3, 3)) *Lz) / (2*pi*sqrt (M0)) ;
    c2 = ((sqrt (det (M2 ([1,2],[1,2])))*Lx*Ly + sqrt (det (M2 ([1, 3],[1,3])))*Lx*Lz +
    sqrt (det (M2 ([2, 3], [2,3])))*Ly*Lz)/((2*pi)^(3/2) * M0));
37c3 = Lx*Ly*Lz/((2*pi)^2 * M0^(3/2))*sqrt(det (M2));
38 N = (1-normcdf(A/sqrt (M0),0,1)) + exp (-A.^2/(2*M0)) .* (c1 +
    c2.*(A/sqrt(M0)) + c3.*(A.^2/M0-1));
```

9. Compute the probability of occurrence with a Poisson distribution, $\mathrm{P}\left(N_{u>A}=k\right)$, using $k=1$.
```
39 P = N*exp (-N); % Probability of occurrence [-]
```


6 CONCLUSION

This report has shown how gusts can be generated in a spatial domain and connected to a probability of occurrence. The method can be used to simulate extreme events arising in the IEC DLC 1.1 and 1.3 load cases.

Gusts are set-up by an amplitude, position, and a low pass filter defining the volume over which the amplitude is averaged. The use of low-pass filters has appeared to be a vital ingredient of this method. By cutting off part of the high-wavenumber region of the turbulence spectrum, the second-order spectral moments become finite, which allows the statistics to be quantified. Furthermore, under the influence of low-pass filters, simulated gusts become larger and rarer. This may lead to interesting load cases when being fed to a turbine model.

The method presented here is an efficient way of simulating extreme events without having to extract them from very long time series. Moreover, simulated gusts do not rely on the assumption of a uniform velocity across the $y z$-plane (as with the Mexican hat wavelet), which leads to more realistic load cases.

A APPENDIX: EXAMPLE MATLAB CODES

The Matlab scripts presented here are meant for the reader to be able to reproduce the various examples in this report. Each contains the full code for one example, but does not include any plotting commands. A new script for each example means that this appendix contains a lot of similar code snippets. However, it does not outweigh the convenience of being able to copy-paste things directly.

When checking the results, please be aware that the gust position may be located in between grid points, causing the amplitude to be slightly off in the case of large grid spacings.

Examples 7 relies on the function $\mathrm{pfq}(\mathrm{a}, \mathrm{b}, \mathrm{z}, \mathrm{d})$, the generalized hypergeometric function, ${ }_{p} F_{q}$, which is not part of the standard Matlab version. It can be found in the Matlab file exchange ${ }^{22}$.

A. 1 A local velocity maximum (example 1)

```
%% Variables
% Turbulence properties
L = 33.6; % Turbulence length scale
sigma_iso = 1.5; % Isotropic standard deviation [m/s]
% Gust parameters
uc = 8; % Gust amplitude [m/s]
duc = 0; % First derivative
x0 = 100; % Gust position [m]
%% Domain
% Spatial domain
Lx = 200; % Sample length [m]
N = 2^12; % Number of points
x = linspace(0,Lx,N); % Position vector [m]
dx = x(2) - x(1); % Step size [m]
% Nondimensional wave numbers
m = ifftshift(-N/2:N/2-1);
k = 2*pi*m*L/Lx;
%% Spectrum function
% Non-dimensional von Kármán isotropic turbulence spectrum
E = 1.453*k.^4 ./ (1 + k.^2).^(17/6);
% Match with variance
E = 2*pi*E*L/Lx * sigma_iso^2 / (trapz(k,E));
%% Solve for constraints
% Constraint vector
b = [uc; duc];
```

[^12]```
% DFT matrix with derivatives
A = [sqrt(E).*exp(1i * 2*pi*m/N * x0/dx); ...
 sqrt(E).*(1i*k).*exp(1i * 2*pi*m/N * x0/dx)];
% Unconstrained stochastic variable
n = randn (N,1) + 1i*randn (N,1);
% Constrained stochastic variable
nc = n + (A')/(A* (A')) * (b - A* n);
%% Reconstruct time series
u = N*real(ifft(nc.*sqrt(E')));
```


## A. 2 A local velocity maximum in 3D space (example 2)

```
%% Variables
% Turbulence properties
L = 33.6; % Turbulence length scale
sigma_iso = 1.5; % Isotropic standard deviation [m/s]
% Gust parameters
uc = [8; 0; 0]; % Gust amplitude [m/s]
duc = [0; 0; 0]; %First derivatives
x0 = [75; 125; 100]; % Gust position [m]
%% Domain
% Spatial domain
Lx = 200; % Sample length in x-direction [m]
Ly = 200; % Sample length in y-direction [m]
Lz = 200; % Sample length in z-direction [m]
Nx = 2^6; % Number of points in x-direction
Ny = 2^6; % Number of points in y-direction
Nz = 2^6; % Number of points in z-direction
x = linspace(0,Lx,Nx); % Position vector in x-direction [m]
y = linspace(0,Ly,Ny); % Position vector in y-direction [m]
z = linspace(O,Lz,Nz); % Position vector in z-direction [m]
dx = x(2) - x(1); % Step size in x-direction [m]
dy = y(2) - y(1); % Step size in x-direction [m]
dz = z(2) - z(1); % Step size in x-direction [m]
[x,y,z] = meshgrid(x,y,z);
% Non-dimensional wave numbers (the +1e-6 is added to prevent a zero
% wave number)
[mx, my, mz] = meshgrid(...
 -Nx/2:Nx/2-1, ...
 -Ny/2:Ny/2-1, ...
 -Nz/2:Nz/2-1);
mx = ifftshift(mx+1e-6);
my = ifftshift(my+1e-6);
mz = ifftshift(mz+1e-6);
kx = 2*pi*mx*L/Lx;
ky = 2*pi*my*L/Ly;
```

```
kz = 2*pi*mz*L/Lz;
k = sqrt(kx.^2 + ky.^2 + kz.^2);
%% Spectrum function
% Non-dimensional von Kármán isotropic turbulence spectrum
E = 1.453*k.^4 ./ (1 + k.^2).^(17/6);
% Correlation matrix
B = sigma_iso * sqrt(2*pi^2 * L^3 * E ./ (Lx*Ly*Lz * k.^4));
C = zeros([3,3,size(x)]);
C(1,2,:,:,:) = B .* kz;
C(1,3,:,:,:) = B .* -ky;
C (2,1,:,:,:) = B .* -kz
C(2,3,:,:,:) = B .* kx;
C(3,1,:,:,:) = B .* ky;
C(3,2,:,:,:) = B .* -kx;
%% Solve for constraints
% Constraint vector
b = [uc; duc];
% Reshape wave numbers to vector
mx = reshape(mx,1, []);
my = reshape(my,1, []);
mz = reshape (mz,1,[]);
C = reshape(C,3,[]);
% DFT matrix with first derivatives
A = [C .* kron(exp(1i * 2*pi* (mx/Nx * (x0(1)-x(1))/dx + my/Ny * (x0 (2) -
y(1))/dy + mz/Nz * (x0(3)-z(1))/dz)), ones(3)); ...
 C(1,:) .* kron((2i*pi*mx/Lx) .* exp(1i * 2*pi*(mx/Nx * (x0 (1)-x(1))/dx +
my/Ny * (x0 (2)-y(1))/dy + mz/Nz * (x0(3)-z(1))/dz)),ones(1,3)); ...
 C(1,:) .* kron((2i*pi*my/Ly) . * exp(1i * 2*pi*(mx/Nx * (x0(1)-x(1))/dx +
my/Ny * (x0 (2)-y(1))/dy + mz/Nz * (x0 (3)-z(1))/dz)),ones(1,3)); ...
 C(1,:) .* kron((2i*pi*mz/Lz) .* exp(1i * 2*pi*(mx/Nx * (x0 (1)-x(1))/dx +
my/Ny * (x0 (2)-y(1))/dy + mz/Nz * (x0(3)-z(1))/dz)), ones(1,3))];
% Unconstrained stochastic variable
n = randn(size(A,2),1) + 1i*randn(size(A, 2),1);
% Constrained stochastic variable
nc = n + A'/(A*A') * (b - A*n);
% Stochastic field (alternatively, the nested for-loops can be
% replaced by dZ = mtimesx(C,nc) to speed up the code)
dZ = zeros([3, size(x)]);
nc = reshape(nc, [3, 1, size(x)]);
C = reshape(C, [3, 3, size(x)]);
for n1 = 1:size(y,1)
 for n2 = 1:size(x,2)
 for n3 = 1:size(z,3)
 dZ(:,n1,n2,n3) = C(:,:,n1,n2,n3) * nc(:,:,n1,n2,n3);
 end
 end
end
```


## A. 3 A local maximum averaged over a cubic subvolume (example 3)

```
%% Variables
% Turbulence properties
L = 33.6; % Turbulence length scale
sigma_iso = 1.5; % Isotropic standard deviation [m/s]
% Gust parameters
uc = [5; 0; 0]; % Gust amplitude [m/s]
duc = [0; 0; 0]; % First derivatives
x0 = [100; 100; 100]; % Gust position [m]
lx = 50; % Gust longitudinal length scale [m]
ly = 50; % Gust lateral length scale [m]
lz = 50; % Gust vertical length scale [m]
%% Domain
% Spatial domain
Lx = 200; % Sample length in x-direction [m]
Ly = 200; % Sample length in y-direction [m]
Lz = 200; % Sample length in z-direction [m]
Nx = 2^6; % Number of points in x-direction
Ny = 2^6; % Number of points in y-direction
Nz = 2^6; % Number of points in z-direction
x = linspace(0,Lx,Nx); % Position vector in x-direction [m]
y = linspace(0,Ly,Ny); % Position vector in y-direction [m]
z = linspace(0,Lz,Nz); % Position vector in z-direction [m]
dx = x(2) - x(1); % Step size in x-direction [m]
dy = y(2) - y(1); % Step size in y-direction [m]
dz = z(2) - z(1); % Step size in z-direction [m]
[x,y,z] = meshgrid(x,y,z);
% Non-dimensional wave numbers (the +1e-6 is added to prevent a zero
% wave number)
[mx, my, mz] = meshgrid(...
 -Nx/2:Nx/2-1, ...
 -Ny/2:Ny/2-1, ...
 -Nz/2:Nz/2-1);
mx = ifftshift(mx+1e-6);
my = ifftshift(my+1e-6);
mz = ifftshift(mz+1e-6);
kx = 2*pi*mx*L/Lx;
ky = 2*pi*my*L/Ly;
kz = 2*pi*mz*L/Lz;
k = sqrt(kx.^2 + ky.^2 + kz.^2);
```

```
%% Spectrum function
% Non-dimensional von Kármán isotropic turbulence spectrum
E = 1.453*k.^4 ./ (1 + k.^2).^(17/6);
% Correlation matrix
B = sigma_iso * sqrt(2*pi^2 * L^3 * E ./ (Lx*Ly*Lz * k.^4));
C = zeros([3,3,size(x)]);
C(1,2,:,:,:) = B .* kz;
C(1,3,:,:,:) = B .* -ky;
C(2,1,:,:,:) = B .* -kz;
C(2,3,:,:,:) = B .* kx;
C(3,1,:,:,:) = B .* ky;
C(3,2,:,:,:) = B .* -kx;
```

$\%$ Solve for constraints
\% Constraint vector
b = [uc; duc];
\% Reshape wave numbers to vector
$\mathrm{mx}=$ reshape (mx,1,[]);
my $=$ reshape (my,1, []);
$\mathrm{mz}=$ reshape $(\mathrm{mz}, 1,[])$;
C = reshape (C,3,[]);
\% Low pass filter
$G=\operatorname{sinc}(m x * l x /(N x * d x)) . * \operatorname{sinc}(m y * l y /(N y * d y)) . * \operatorname{sinc}(m z * l z /(N z * d z)) ;$
\% DFT matrix with first derivatives
$A=\left[C . * \operatorname{kron}\left(G . * \exp \left(1 i * 2 * i^{*}(m x / N x *(x 0(1)-x(1)) / d x+m y / N y *(x 0(2)-\right.\right.\right.$
$y(1)) / d y+m z / N z *(x 0(3)-z(1)) / d z)), \quad$ ones(3)); ...
$C(1,:) . * \operatorname{kron}(G . *(2 i * p i * m x / L x) . * \exp (1 i * 2 * p i *(m x / N x *(x 0(1)-$
$\mathrm{x}(1)) / \mathrm{dx}+\mathrm{my} / \mathrm{Ny}$ * (x0(2)-y(1))/dy+mz/Nz*(x0(3)-z(1))/dz)), ones(1,3)); ...
C(1,:) .* kron (G .* (2i*pi*my/Ly) .* exp(1i * 2*pi*(mx/Nx * (x0 (1)-
$\mathrm{x}(1)) / \mathrm{dx}+\mathrm{my} / \mathrm{Ny} *(\mathrm{x} 0(2)-\mathrm{y}(1)) / \mathrm{dy}+\mathrm{mz} / \mathrm{Nz} *(\mathrm{x} 0(3)-\mathrm{z}(1)) / \mathrm{dz}))$, ones (1,3)); ...
C(1,:) .* kron(G .* (2i*pi*mz/Lz) .* exp(1i * 2*pi*(mx/Nx * (x0(1)-
$x(1)) / d x+m y / N y ~ * ~(x 0(2)-y(1)) / d y+m z / N z *(x 0(3)-z(1)) / d z)), ~ o n e s(1,3))] ;$
\% Unconstrained stochastic variable
$\mathrm{n}=$ randn(size (A, 2), 1) + 1i*randn(size (A, 2), 1);
\% Constrained stochastic variable
$\mathrm{nc}=\mathrm{n}+\mathrm{A}^{\prime} /\left(\mathrm{A}^{*} \mathrm{~A}^{\prime}\right)$ * (b $\left.-\mathrm{A}^{*} \mathrm{n}\right)$;
\% Stochastic field (alternatively, the nested for-loops can be
\% replaced by $d Z=$ mtimesx (C,nc) to speed up the code)
$d Z=z e r o s([3$, size(x)]);
$\mathrm{nc}=$ reshape (nc, $[3,1, \operatorname{size}(\mathrm{x})])$;
C = reshape(C, [3, 3, size(x)]);
for $\mathrm{n} 1=1: \operatorname{size}(\mathrm{y}, 1)$
for n 2 = 1:size $(x, 2)$
for n3 = 1:size(z, 3 )
$\mathrm{dZ}(:, \mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3)=\mathrm{C}(:,:, \mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3)$ * $\mathrm{nc}(:,:, \mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3)$;
end
end
end

| 98 |  |
| :---: | :---: |
| 99 |  |
| 100 | \%\% Reconstruct time series |
| 101 |  |
| 102 |  |
| 103 |  |

## A. 4 One-dimensional velocity jump over a distance (example 4)

```
%% Variables
% Turbulence properties
L = 33.6; % Turbulence length scale
sigma_iso = 1.5; % Isotropic standard deviation [m/s]
% Gust parameters
uc1 = -6; %Amplitude of first gust [m/s]
duc1 = 0; % First derivative of first gust
x1 = 90; % Position of first gust [m]
uc2 = 8; % Amplitude of second gust [m/s]
duc2 = 0; % First derivative of second gust
x2 = 110; %Position of second gust [m]
%% Domain
% Spatial domain
Lx = 200; % Sample length [m]
N = 2^12; % Number of points
x = linspace(0,Lx,N); % Position vector [m]
dx = x(2) - x(1); % Step size [m]
% Nondimensional wave numbers
m = ifftshift(-N/2:N/2-1);
k = 2*pi*m*L/Lx;
%% Spectrum function
% Non-dimensional von Kármán isotropic turbulence spectrum
E = 1.453*k.^4 ./ (1 + k.^2).^(17/6);
% Match with variance
E = 2*pi*E*L/Lx * sigma_iso^2 / (trapz(k,E));
%% Solve for constraints
% Constraint vector
b = [uc1; duc1; uc2; duc2];
% DFT matrix with derivatives
A = [sqrt(E).*exp(1i * 2*pi*m/N * x1/dx); ...
 sqrt(E).*(1i*k).*exp(1i * 2*pi*m/N * x2/dx); ...
 sqrt(E).*exp(1i * 2*pi*m/N * x2/dx); ...
 sqrt(E).*(1i*k).*exp(1i * 2*pi*m/N * x2/dx)];
% Unconstrained stochastic variable
```

```
n = randn(N,1) + 1i*randn(N,1);
% Constrained stochastic variable
nc = n + (A')/(A*(A')) * (b - A*n);
%% Reconstruct time series
u = N*real(ifft(nc.*sqrt(E')));
```


## A. 5 A cluster of three single-point velocity maxima (example 5)

```
%% Variables
% Turbulence properties
L = 33.6; % Turbulence length scale
sigma_iso = 1.5; % Isotropic standard deviation [m/s]
% Gust parameters
uc1 = [6; 0; 0]; % Amplitude of first gust [m/s]
duc1 = [0; 0; 0]; % First derivatives of first gust
x1 = [40; 90; 100]; % Position of first gust [m]
uc2 = [7; 0; 0]; % Amplitude of second gust [m/s]
duc2 = [0; 0; 0]; % First derivatives of second gust
x2 = [100; 150; 100]; % Position of second gust [m]
uc3 = [8; 0; 0]; % Amplitude of third gust [m/s
duc3 = [0; 0; 0]; % First derivatives of third gust
x3 = [160; 30; 100]; % Position of third gust [m]
%% Domain
% Spatial domain
Lx = 200; % Sample length in x-direction [m]
Ly = 200; % Sample length in y-direction [m]
Lz = 200; % Sample length in z-direction [m]
Nx = 2^6; % Number of points in x-direction
Ny = 2^6; % Number of points in y-direction
Nz = 2^6; % Number of points in z-direction
x = linspace(0,Lx,Nx); % Position vector in x-direction [m]
y = linspace(0,Ly,Ny); % Position vector in y-direction [m]
z = linspace(0,Lz,Nz); % Position vector in z-direction [m]
dx = x(2) - x(1); % Step size in x-direction [m]
dy = y(2) - y(1); % Step size in y-direction [m]
dz = z(2) - z(1); % Step size in z-direction [m]
[x,y,z] = meshgrid(x,y,z);
% Non-dimensional wave numbers (the +1e-6 is added to prevent a zero
% wave number)
[mx, my, mz] = meshgrid(...
 -Nx/2:Nx/2-1, ...
 -Ny/2:Ny/2-1, ...
 -Nz/2:Nz/2-1);
mx = ifftshift(mx+1e-6);
my = ifftshift (my+1e-6);
mz = ifftshift(mz+1e-6);
kx = 2*pi*mx*L/Lx;
```

```
ky = 2*pi*my*L/Ly;
kz = 2*pi*mz*L/Lz;
k = sqrt(kx.^2 + ky.^2 + kz.^2);
%% Spectrum function
% Non-dimensional von Kármán isotropic turbulence spectrum
E = 1.453*k.^4 ./ (1 + k.^2).^(17/6);
% Correlation matrix
B = sigma_iso * sqrt(2*pi^2 * L^3 * E ./ (Lx*Ly*Lz * k.^4));
C = zeros([3,3,size(x)]);
C(1,2,:,:,:) = B .* kz;
C(1,3,:,:,:) = B .* -ky;
C(2,1,:,:,:) = B .* -kz;
C(2,3,:,:,:) = B .* kx;
C(3,1,:,:,:) = B .* ky;
C(3,2,:,:,:) = B .* -kx;
%% Solve for constraints
% Constraint vector
b = [uc1; duc1; uc2; duc2; uc3; duc3];
% Reshape wave numbers to vector
mx = reshape(mx,1, []);
my = reshape(my,1,[]);
mz = reshape(mz,1,[]);
C = reshape(C,3,[]);
% DFT matrix with first derivatives
A = [C .* kron(exp(1i * 2*pi*(mx/Nx * (x1(1)-x(1))/dx + my/Ny * (x1 (2)-y(1))/dy
+ mz/Nz * (x1(3)-z(1))/dz)), ones(3)); ...
 C(1,:) .* kron((2i*pi*mx/Lx) .* exp(1i * 2*pi*(mx/Nx * (x1(1)-x(1))/dx +
my/Ny * (x1(2)-y(1))/dy + mz/Nz * (x1(3)-z(1))/dz)), ones(1,3)); ...
 C(1,:) .* kron((2i*pi*my/Ly) .* exp(1i * 2*pi*(mx/Nx * (x1(1)-x(1))/dx +
my/Ny * (x1 (2)-y(1))/dy + mz/Nz * (x1(3)-z(1))/dz)), ones(1,3)); ...
 C(1,:) .* kron((2i*pi*mz/Lz) .* exp(1i * 2*pi*(mx/Nx * (x1(1)-x(1))/dx +
my/Ny * (x1(2)-y(1))/dy + mz/Nz * (x1(3)-z(1))/dz)), ones(1,3)); ...
 C .* kron(exp(1i * 2*pi*(mx/Nx * (x2(1)-x(1))/dx + my/Ny * (x2(2)-y(1))/dy
+ mz/Nz * (x2(3)-z(1))/dz)), ones(3)); ...
 C(1,:) .* kron((2i*pi*mx/Lx) .* exp(1i * 2*pi*(mx/Nx * (x2(1)-x(1))/dx +
my/Ny * (x2(2)-y(1))/dy + mz/Nz * (x2(3)-z(1))/dz)), ones(1,3)); ...
 C(1,:) .* kron((2i*pi*my/Ly) .* exp(1i * 2*pi*(mx/Nx * (x2(1)-x(1))/dx +
my/Ny * (x2(2)-y(1))/dy + mz/Nz * (x2(3)-z(1))/dz)), ones(1,3)); ...
 C(1,:) .* kron((2i*pi*mz/Lz) .* exp(1i * 2*pi*(mx/Nx * (x2(1)-x(1))/dx +
my/Ny * (x2(2)-y(1))/dy + mz/Nz * (x2(3)-z(1))/dz)), ones(1,3)); ...
 C .* kron(exp(1i * 2*pi*(mx/Nx * (x3(1)-x(1))/dx + my/Ny * (x3(2)-y(1))/dy
+mz/Nz * (x3(3)-z(1))/dz)), ones(3)); ...
 C(1,:) .* kron((2i*pi*mx/Lx) .* exp(1i * 2*pi*(mx/Nx * (x3(1)-x(1))/dx +
my/Ny * (x3(2)-y(1))/dy + mz/Nz * (x3(3)-z(1))/dz)), ones(1,3)); ...
 C(1,:) .* kron((2i*pi*my/Ly) .* exp(1i * 2*pi*(mx/Nx * (x3(1)-x(1))/dx +
my/Ny * (x3(2)-y(1))/dy + mz/Nz * (x3(3)-z(1))/dz)), ones(1,3)); ...
 C(1,:) .* kron((2i*pi*mz/Lz) .* exp(1i * 2*pi*(mx/Nx * (x3(1)-x(1))/dx +
my/Ny * (x3(2)-y(1))/dy + mz/Nz * (x3(3)-z(1))/dz)), ones(1,3))];
% Unconstrained stochastic variable
```

```
n = randn(size(A,2),1) + 1i*randn(size(A,2),1);
% Constrained stochastic variable
nc = n + A'/(A*A') * (b - A*n);
% Stochastic field (alternatively, the nested for-loops can be
% replaced by dz = mtimesx(C,nc) to speed up the code)
dZ = zeros([3, size(x)]);
nc = reshape(nc, [3, 1, size(x)]);
C = reshape(C, [3, 3, size(x)]);
for n1 = 1:size(y,1)
 for n2 = 1:size(x,2)
 for n3 = 1:size(z,3)
 dZ(:,n1,n2,n3) = C(:,:,n1,n2,n3) * nc(:,:,n1,n2,n3);
 end
 end
end
%% Reconstruct time series
u = Nx*NY*Nz*real(ifftn(squeeze(dz(1,:,:,:))));
v = Nx*Ny*Nz*real(ifftn(squeeze(dz(2,:,:,:))));
w = Nx*Ny*Nz*real(ifftn(squeeze(dz(3,:,:,:))));
```


## A. 6 Velocity jump between two planes (example 6)

```
%% Variables
% Turbulence properties
L = 33.6; % Turbulence length scale
sigma_iso = 1.5; % Isotropic standard deviation [m/s]
% Gust parameters
uc1 = [-5; 0; 0]; % Amplitude of first gust [m/s]
duc1 = [0; 0; 0]; %First derivatives of first gust
x1 = [75; 100; 100]; % Position of first gust [m]
uc2 = [5; 0; 0]; % Amplitude of second gust [m/s]
duc2 = [0; 0; 0]; %First derivatives of second gust
x2 = [125; 100; 100]; % Position of second gust [m]
lx = 0; % Gust longitudinal length scale [m]
ly = 50; % Gust lateral length scale [m]
lz = 50; % Gust vertical length scale [m]
%% Domain
% Spatial domain
Lx = 200; % Sample length in x-direction [m]
Ly = 200; % Sample length in y-direction [m]
Lz = 200; % Sample length in z-direction [m]
Nx = 2^6; % Number of points in x-direction
Ny = 2^6; % Number of points in y-direction
Nz = 2^6; % Number of points in z-direction
x = linspace(0,Lx,Nx); % Position vector in x-direction [m]
y = linspace(0,Ly,Ny); % Position vector in y-direction [m]
z = linspace(0,Lz,Nz); % Position vector in z-direction [m]
```

```
dx = x(2) - x(1); % Step size in x-direction [m]
dy = y(2) - y(1); % Step size in y-direction [m]
dz = z(2) - z(1); % Step size in z-direction [m]
[x,y,z] = meshgrid(x,y,z);
% Non-dimensional wave numbers (the +1e-6 is added to prevent a zero wave
number)
[mx, my, mz] = meshgrid(...
 -Nx/2:Nx/2-1, ...
 -Ny/2:Ny/2-1, ...
 -Nz/2:Nz/2-1);
mx = ifftshift(mx+1e-6);
my = ifftshift(my+1e-6);
mz = ifftshift(mz+1e-6);
kx = 2*pi*mx*L/Lx;
ky = 2*pi*my*L/Ly;
kz = 2*pi*mz*L/Lz;
k = sqrt(kx.^2 + ky.^2 + kz.^2);
%% Spectrum function
% Non-dimensional von Kármán isotropic turbulence spectrum
E = 1.453*k.^4 ./ (1 + k.^2).^^(17/6);
% Correlation matrix
B = sigma_iso * sqrt(2*pi^2 * L^3 * E ./ (Lx*Ly*Lz * k.^4));
C = zeros([3,3,size(x)]);
C(1,2,:,:,:) = B .* kz;
C(1,3,:,:,:) = B .* -ky;
C}(2,1,:,:,:) = B .* -kz
C(2,3,:,:,:) = B .* kx;
C(3,1,:,:,:) = B .* ky;
C(3,2,:,:,:) = B .* -kx;
%% Solve for constraints
% Constraint vector
b = [uc1; duc1; uc2; duc2];
% Reshape wave numbers to vector
mx = reshape(mx,1,[]);
my = reshape(my,1,[]);
mz = reshape(mz,1,[]);
C = reshape(C,3,[]);
% Low pass filter
G = sinc(mx*lx/(Nx*dx)).*sinc(my*ly/(Ny*dy)).*sinc(mz*lz/(Nz*dz));
% DFT matrix with first derivatives
A = [C .* kron(G .* exp(1i * 2*pi*(mx/Nx * (x1 (1)-x(1))/dx + my/Ny * (x1 (2)-
y(1))/dy + mz/Nz * (x1(3)-z(1))/dz)), ones(3)); ...
 C(1,:) .* kron(G .* (2i*pi*mx/Lx) .* exp(1i * 2*pi*(mx/Nx * (x1(1)-
x(1))/dx + my/Ny * (x1(2)-y(1))/dy + mz/Nz * (x1(3)-z(1))/dz)), ones(1,3));
 C(1,:) .* kron(G .* (2i*pi*my/Ly) .* exp(1i * 2*pi*(mx/Nx * (x1(1)-
x(1))/dx + my/Ny * (x1(2)-y(1))/dy + mz/Nz * (x1(3)-z(1))/dz)), ones(1,3));
```

...

```
C(1,:) .* kron(G .* (2i*pi*mz/Lz) .* exp(1i * 2*pi*(mx/Nx * (x1 (1) -
x(1))/dx + my/Ny * (x1(2)-y(1))/dy + mz/Nz * (x1 (3)-z(1))/dz)),ones(1,3));
 C .* kron(G .* exp(1i * 2*pi*(mx/Nx * (x2(1)-x(1))/dx + my/Ny * (x2(2) -
y(1))/dy + mz/Nz * (x2(3)-z(1))/dz)), ones(3)); ...
 C(1,:) .* kron(G .* (2i*pi*mx/Lx) .* exp(1i * 2*pi*(mx/Nx * (x2(1)-
x(1))/dx + my/Ny * (x2(2)-y(1))/dy + mz/Nz * (x2(3)-z(1))/dz)), ones(1,3));
...
 C(1,:) .* kron(G .* (2i*pi*my/Ly) .* exp(1i * 2*pi*(mx/Nx * (x2(1) -
x(1))/dx + my/Ny * (x2(2)-y(1))/dy + mz/Nz * (x2(3)-z(1))/dz)),ones(1, 3));
 C(1,:) .* kron(G .* (2i*pi*mz/Lz) .* exp(1i * 2*pi*(mx/Nx * (x2(1) -
x(1))/dx + my/Ny * (x2(2)-y(1))/dy + mz/Nz * (x2(3)-z(1))/dz)),ones(1,3))];
% Unconstrained stochastic variable
n = randn(size(A,2),1) + 1i*randn(size(A, 2),1);
% Constrained stochastic variable
nc}=n+\mp@subsup{A}{}{\prime}/(A*A') * (b - A*n)
% Stochastic field (alternatively, the nested for-loops can be
% replaced by dZ = mtimesx(C,nc) to speed up the code)
dZ = zeros([3, size(x)]);
nc = reshape(nc, [3, 1, size(x)]);
C = reshape(C, [3, 3, size(x)]);
for n1 = 1:size(y,1)
 for n2 = 1:size(x,2)
 for n3 = 1:size(z,3)
 dZ(:,n1,n2,n3) = C(:,:,n1,n2,n3) * nc(:,:,n1,n2,n3);
 end
 end
end
%% Reconstruct time series
u = Nx*Ny*Nz*real(ifftn(squeeze(dZ (1,:,:,:))));
v = Nx*Ny*Nz*real(ifftn(squeeze(dZ (2,:,:,:))));
w = Nx*Ny*Nz*real(ifftn(squeeze(dZ (3,:,:,:))));
```


## A. 7 Return levels for wind speeds in a domain using the IEC NTM (example 7)

```
%% Problem
% Turbine properties
D = 178.332; % Rotor diameter [m]
R = D/2; % Rotor radius [m]
H}=119.03; % Hub height
% Frontal area
T = 4*60; % Sample time period [s]
By = 100; % Width of frontal area [m]
Bz = 100; % Height of frontal area [m]
%% IEC class 1A
```

```
% Wind class parameters
Vref = 50; % Reference wind speed [m/s]
Iref = 0.16; % Turbulence intensity [-]
Gamma = 3.9; % Anisotropy parameter [-]
alpha =0.2; % Shear exponent [-]
Vave =0.2*Vref; %Average wind speed [m/s]
% Turbulence length scale
if H <= 60
 Lambda1 = 0.7*H;
else
 Lambda1 = 42;
end
L = 0.8*Lambda1;
% Pre-allocate vector
N = zeros(1, length(-10:0.01:10));
```

\%\% Run through all wind speeds
for $U=1: 30$
\% Rayleigh distribution
$\mathrm{fU}=$ raylpdf(U, sqrt(2/pi)*Vave);
\% Standard deviations
sigma1 $=$ Iref* (0.75*U + 5.6);
sigma_iso $=0.55^{*}$ sigma1;
sigma2 $=0.7 *$ sigma1;
sigma3 $=0.5 *$ sigma1;
\%\% Domain
\% Spatial domain
Lx = U*T; $\quad$ O Sample length in $x$-direction [m]
$\mathrm{Ly}=8 * \mathrm{~L}$; $\quad$ o Sample length in y-direction [m]
$\mathrm{Lz}=8 * \mathrm{~L}$; $\quad$ \% Sample length in z-direction [m]
$N x=2^{\wedge} 9 ; \quad$ \% Number of points in $x$-direction
Ny $=2^{\wedge} 6$; $\quad$ \% Number of points in $y$-direction
$\mathrm{Nz}=2^{\wedge} 6$; $\quad$ \% Number of points in $z$-direction
$x=\operatorname{linspace}(0, L x, N x) ; \quad$ o Position vector in $x$-direction [m]
$\mathrm{y}=\operatorname{linspace}(0, \mathrm{Ly}, \mathrm{Ny})$; \% Position vector in y -direction [m]

$d x=x(2)-x(1) ; \quad$ \% Step size in $x$-direction [m]
$d y=y(2)-y(1) ; \quad$ \% Step size in y-direction [m]
$d z=z(2)-z(1) ; \quad$ \% Step size in $z$-direction [m]
$[x, y, z]=$ meshgrid( $x, y, z)$;
\% Filter
lx $=3 * \mathrm{U}$; $\quad$ \% Gust longitudinal length scale [m]
ly $=5$; $\quad$ o Gust lateral length scale [m]
$l z=5 ; \quad$ \% Gust vertical length scale [m]
\% Non-dimensional wave numbers (the $+1 e-6$ is added to prevent a
zero wave number)
[mx, my, mz] = meshgrid(...
$-N x / 2: N x / 2-1, \ldots$

```
 -Ny/2:Ny/2-1, ...
 -Nz/2:Nz/2-1);
mx = ifftshift(mx+1e-6);
my = ifftshift (my+1e-6);
mz = ifftshift(mz+1e-6);
kx = 2*pi*mx*L/Lx;
ky = 2*pi*my*L/Ly;
kz = 2*pi*mz*L/Lz;
k = sqrt(kx.^2 + ky.^2 + kz.^2);
```

```
%% Mann model
% Non-dimensional distortion time
beta = Gamma ./ (k.^(2/3) .* sqrt(real(pfq([1/3, 17/6], 4/3, -
k.^-2))));
kz0=kz + beta.*kx;
k0 = sqrt(kx.^^2 + ky.^^2 + kz0.^2);
```

\%\% Spectrum function
\% Low pass filter
$G=\operatorname{sinc}\left(m x^{*} l x /(N x * d x)\right) \quad . * \operatorname{sinc}(m y * l y /(N y * d y))$. *
$\operatorname{sinc}\left(m z^{*} l z /(N z * d z)\right)$;
\% Non-dimensional von Kármán isotropic turbulence spectrum
$\mathrm{EO}=1.453 * \mathrm{k} . \wedge 4 . /(1+\mathrm{k} \cdot \wedge 2) .^{\wedge}(17 / 6)$;
\% Shear model parameters
$\mathrm{C} 1=\left(\mathrm{beta} \cdot{ }^{*} \mathrm{kx} \cdot{ }^{\wedge} 2 . .^{*}\left(\mathrm{kx} \cdot{ }^{\wedge} 2+\mathrm{ky} \cdot{ }^{\wedge} 2-\mathrm{kz} \cdot{ }^{\star}(\mathrm{kz}+\right.\right.$ beta.*kx$)$ ) ) ./
(k.^2 .* (kx.^2 + ky.^2) );
$\mathrm{C} 2=\left(\mathrm{ky} \cdot{ }^{*} \mathrm{k} 0 . \wedge 2\right) \cdot /(\mathrm{kx} \cdot \wedge 2+\mathrm{ky} \cdot \wedge 2) \cdot \wedge(3 / 2) \cdot *$
atan2 (real (beta.*kx.*sqrt (kx.^2 $+\mathrm{ky} .{ }^{\wedge} 2$ ) ), real(k0.^2 $-(k z+$
beta.*kx).*kx.*beta));
zeta1 $=\mathrm{c} 1-\mathrm{ky} . / \mathrm{kx}$.* C 2 ;
\% Spectral tensor u-component
Phi_uu $=$ sigma_iso^2 .* E0./( $\left.4^{*} \mathrm{pi} * \mathrm{k} 0 . \wedge 4\right)$.* (k0.^2 $-\mathrm{kx} . \wedge 2-$
$2 * k x . * k z 0 . * z e t a 1+(k x . \wedge 2+k y \cdot \wedge 2) \cdot * z e t a 1 . \wedge 2) ;$
\%\% Spectral moments
\% Zeroth order
sigma $=\operatorname{sqrt}($ real $(\operatorname{sum}(\operatorname{sum}(\operatorname{sum}(G . \wedge 2 . *$ Phi_uu) )) * (2*pi)^3*L^3/(Lx*Ly*Lz)));
\% Second order
$r_{\text {_ }} x=\operatorname{sum}\left(\operatorname{sum}\left(\operatorname{sum}\left(k x / L . * k x / L \cdot * G . \wedge 2 . * P h i \_u u\right)\right)\right){ }^{*}(2 * p i)^{\wedge} 3 * L^{\wedge} 3 /(L x * L y * L z)$;
$r_{\_} x y=\operatorname{sum}\left(\operatorname{sum}\left(\operatorname{sum}\left(k x / L . * k y / L . * G . \wedge 2 . * P h i \_u u\right)\right)\right){ }^{\wedge}(2 * p i)^{\wedge} 3 * L^{\wedge} 3 /(L x * L y * L z) ;$

$r_{\text {_yy }}=\operatorname{sum}\left(\operatorname{sum}\left(\operatorname{sum}\left(k y / L . * k y / L \cdot{ }^{*} G . \wedge 2 . * P h i \_u u\right)\right)\right) \star{ }^{*}(2 * p i)^{\wedge} 3^{*} L \wedge 3 /(L x * L y * L z)$;
$r_{\_y z}=\operatorname{sum}\left(\operatorname{sum}\left(\operatorname{sum}\left(k y / L . * k z / L . * G . \wedge 2 . * P h i \_u u\right)\right)\right) \star{ }^{*}(2 * p i)^{\wedge} 3 * L \wedge 3 /(L x * L y * L z)$;
$r \_z z=\operatorname{sum}\left(\operatorname{sum}\left(\operatorname{sum}\left(k z / L . * k z / L . * G . \wedge 2 . * P h i \_u u\right)\right)\right){ }^{\star}(2 * p i) \wedge 3 * L^{\wedge} 3 /(L x * L y * L z) ;$
Ruu $=\left[r_{\_} x x, r \_x y, \quad r_{-} x z ; \ldots\right.$
r_xy, r_yy, r_yz; ...
r_xz, r_yz, r_zz];
Ruu $=$ real(Ruu);
\%\% Expectated number of level excursions

```
128
129
 Eu = (1-normcdf(A/sigma,0,1)) + exp(-A.^2/(2*sigma^2)) .*
 ((sqrt (Ruu (1,1))*Lx + sqrt (Ruu (2,2))*By + sqrt (Ruu (3, 3))*Bz)/(2*pi*sigma) +
 ((sqrt (det (Ruu([1,2],[1,2])))*Lx*By + sqrt (det (Ruu([1, 3], [1,3])))*Lx*Bz +
 sqrt (det (Ruu([2,3],[2,3])))*By*Bz)/((2*pi)^(3/2) * sigma^2)).*(A/sigma) +
 Lx*By*Bz/((2*pi)^2 * sigma^3)*sqrt(det(Ruu)).*(A.^2/sigma^2-1));
 N = N + fU*Eu;
end
%% Plotting
A = -10:0.01:10;
figure()
plot(A, log(T./N))
xlim([2 8])
ylim(log([1, 1000*365*24*3600]))
set(gca, 'YTick', log([1, 60, 600, 3600, 24*3600, 31*24*3600, 365*24*3600,
10*365*24*3600, 50* 365*24*3600, 200*365*24*3600, 1000*365*24*3600]),
'YTickLabel', {'1 second', '1 minute', '10 minutes', '1 hour', '1 day', '1
month', '1 year', '10 years', '50 years', '200 years', '1000 years'})
ylabel('Return period')
xlabel('Non-dimensional amplitude, A/\sigma')
```


## B MATLAB FUNCTION TO GENERATE IEC-COMPATIBLE GUSTS

The Matlab function here includes part of the Mann model and requires the function $\mathrm{pfq}(\mathrm{a}, \mathrm{b}, \mathrm{z}, \mathrm{d})$, the generalized hypergeometric function, ${ }_{p} F_{q}$, which is not part of the standard MATLAB version. It can be found in the MATLAB file exchange ${ }^{23}$.

```
function[u,v,w,M0,M2] = ConstrainedIEC(x,y,z,sigma1,h,a,lx,ly,lz,x0,y0, z0)
Constrained stochastic simulation of a spatial wind gust.
[u,v,w,M0,M2] = ConstrainedIEC(x,y,z,sigmal,h,a,lx,ly,lz,x0,y0,z0)
Returns a three-dimensional turbulent velocity field with a wind gust
embedded into it. The resulting field is obtained by constraining the
randomization of the wave numbers, yielding a stochastic velocity field
that satisfies a certain input while adhering to the statistics. The
spectral properties here are defined by the Mann model described in
IEC 61400-1 Annex B.
 Remark 1: The simulated wind field is periodic in 3 directions. If the
 spatial domain is small in comparison to the gust structure, low-wave
 number components will become dominant and give unrealistic results.
 Remark 2: In Mann (1998), it is argued that the approximation for the
 correlation tensor may become poor when the dimensions of the box (in
 any direction) are less than ~ 8L, where L is the turbulent length
 scale.
 Remark 3: The Mann model is derived under the assumption of a uniform
 shear (i.e. a linear wind profile) and produces a homogeneous field of
 turbulence. Because of this, the output can quickly become unreliable
 as vertical separations become large, or if the domain is close to the
 ground level.
 INPUT:
 x,y,z (double) Position vectors as created by meshgrid [m].
 sigmal (double) Longitudinal standard deviation [m/s].
 h (double) Hub height [m] on which the turbulence scale
 parameter is based.
 a (double) Gust amplitude averaged over volume lx*ly*lz [m/s].
 lx (double) Gust longitudinal length scale [m].
 ly (double) Gust lateral length scale [m].
 lz (double) Gust vertical length scale [m].
 x0 (double) Longitudinal position of gust center [m].
 y0 (double) Lateral position of gust center [m].
 z0 (double) Vertical position of gust center [m].
 OUTPUT:
 u,v,w (double) Velocity components [m/s].
 M0 (double) Filtered zeroth-order spectral moment [m2/s '].
 M2 (double) Filtered second-order spectral moment [1/s 2}
 AUTHOR:
```

[^13]```
René Bos
R.Bos-1@tudelft.nl
Delft University of Technology
May 2014 (last updated January 2015)
LITERATURE:
- Bierbooms, Wim (2005). "Constrained Stochastic Simulation --
    Generation of Time Series around Some Specific Event in a Normal
    Process." Extremes 8 (3): pp. 207-224.
- IEC (2005). IEC 61400-1 Wind Turbines - Part 1: Design Requirements,
    3rd ed. International Electrotechnical Commission.
- Mann, Jakob (1998). "Wind Field Simulation." Probabilistic
    Engineering Mechanics 13(4), pp. 269-282.
```

```
%% Derived properties (IEC 61400-1)
```

%% Derived properties (IEC 61400-1)
sigma_iso = 0.55*sigma1;
sigma2 = 0.7*sigma1;
sigma3 = 0.5*sigma1;
Gamma = 3.9;
if h < 60
Lambda = 0.7*h;
else
Lambda = 42;
end
L = 0.8*Lambda;
%% Ensure that domain is increasing and starting from zero
flipx = false;
flipy = false;
flipz = false;
if x(end) < x(1)
flipx = true;
x = -x;
x0 = -x0;
end
if y(end) < y(1)
flipy = true;
y = -y;
y0 = -y0;
end
if z(end) < z(1)
flipz = true;
z = -z;
z0 = -z0;
end
x0 = x0 - x(1);
y0 = y0 - y(1);
z0 = z0 - z(1);
x = x - x(1);
y = y - y(1);
z = z - z(1);

```
```

%% Domain size
dx = x(1,2,1) - x(1,1,1);
dy = y(2,1,1) - y (1,1,1);
dz = z(1,1,2) - z(1,1,1);
Lx = abs(x(end) - x(1));
Ly = abs (y (end) - y(1));
Lz = abs(z(end) - z(1));
Nx = size(x,2);
Ny = size(y,1);
Nz = size(z,3);
%% Wave number discretization
[mx, my, mz] = meshgrid(...
-Nx/2:Nx/2-1, ...
-Ny/2:Ny/2-1, ...
-Nz/2:Nz/2-1);
mx = ifftshift (mx+1e-6);
my = ifftshift(my+1e-6);
mz = ifftshift(mz+1e-6);
kx = 2*pi*mx*L/Lx;
ky = 2*pi*my*L/Ly;
kz = 2*pi*mz*L/Lz;
k = sqrt(kx.^2 + ky.^2 + kz.^2);
%% Mann model
% Non-dimensional distortion time
beta = Gamma ./ (k.^(2/3) .* sqrt(real(pfq([1/3, 17/6], 4/3, -k.^-2))));
kz0 = kz + beta.*kx;
k0 = sqrt(kx.^2 + ky.^2 + kz0.^2);
% Non-dimensional von Kármán isotropic turbulence spectrum
E0 = 1.453*k0.^4 ./ (1 + k0.^2).^^(17/6);
% Shear model parameters
C1 = (beta.*kx.^2 .* (kx.^2 + ky.^2 - kz.*(kz + beta.*kx))) ./ (k.^2 .** (kx.^2

+ ky.^2));
C2 = (ky.*k0.^2) ./ (kx.^2 + ky.^2).^^(3/2) .* atan2(real(beta.*kx.*sqrt(kx.^2 +
ky.^2)), real(k0.^2 - (kz + beta.*kx).*kx.*beta));
zeta1 = c1 - ky./kx .* C2;
zeta2 = C2 + ky./kx .* C1;
B = sigma_iso * sqrt(2*pi^2 * L^3 * EO ./ (Lx*Ly*Lz * k0.^4));
% Correlation matrix
C = zeros([3,3,size(x)]);
C(1,1,:,:,:) = B .* ky.*zetal;
C(1,2,:,:,:) = B .* (kz0 - kx.*zeta1);
C(1,3,:,:,:) = B .* -ky;
C(2,1,:,:,:) = B .* (ky.*zeta2 - kz0);
C(2,2,:,:,:) = B .* -kx.*zeta2;
C(2,3,:,:,:) = B .* kx;

```
```

C(3,1,:,:,:) = B .* ky.*k0.^2./k.^2;
C(3,2,:,:,:) = B .* -kx.*k0.^2./k.^2;
% Spectral tensor u-component
Phi_uu = sigma_iso^2 .* E0./(4*pi*k0.^4) .* (k0.^2 - kx.^2 - 2*kx.*kz0.*zeta1 +
(kx.^2+ky.^2).*zeta1.^2);
%% Spectral moments
% Low pass filter
G = sinc(mx*lx/(Nx*dx)) .* sinc(my*ly/(Ny*dy)) .* sinc(mz*lz/(Nz*dz));
% Zeroth order
M0 = real(sum(sum(sum(G.^2.*Phi_uu))) * (2*pi)^3*L^3/(Lx*Ly*Lz));
% Second order
m_xx = sum(sum(sum(kx/L.*kx/L.*G.^2.*Phi_uu))) * (2*pi)^3*L^3/(Lx*Ly*Lz);
m_xy = sum(sum(sum(kx/L.*ky/L.*G.^2.*Phi_uu))) * (2*pi)^3*L^3/(Lx*Ly*Lz);
m_xz = sum(sum(sum(kx/L.*kz/L.*G.^2.*Phi_uu))) * (2*pi)^3*L^3/(Lx*Ly*Lz);
m_yy = sum(sum(sum(ky/L.*ky/L.*G.^2.*Phi_uu))) * (2*pi)^3*L^3/(Lx*Ly*Lz);
m_yz = sum(sum(sum(ky/L.*kz/L.**G.^2.*Phi_uu))) * (2*pi)^3*L^3/(Lx*Ly*Lz);
m_zz = sum(sum(sum(kz/L.*kz/L.*G.^2.*Phi_uu))) * (2*pi)^3*L^3/(Lx*Ly*Lz);
M2 = [m_xx, m_xy, m_xz; ...
m_xy, m_yy, m_yz; ...
m_xz, m_yz, m_zz];
M2 = real(M2);
%% Unconditioned velocity field
% Unconstrained stochastic variable
n = randn (3*Nx*Ny*Nz,1) + 1i*randn(3*Nx*Ny*Nz,1);
% Stochastic field
dZ = zeros([3, size(x)]);
ni = reshape(n, [3, 1, size(x)]);
Ci = reshape(C, [3, 3, size(x)]);
for n1 = 1:size(y,1)
for n2 = 1:size(x,2)
for n3 = 1:size(z,3)
dZ(:,n1,n2,n3) = Ci(:,:,n1,n2,n3) * ni(:,:,n1,n2,n3);
end
end
end
% Reconstruct time series
ui = Nx*Ny*Nz*real(ifftn(squeeze(dZ(1,:,:,:))));
vi = Nx*Ny*Nz*real(ifftn(squeeze(dZ(2,:,:,:))));
wi = Nx*NY*Nz*real(ifftn(squeeze(dZ(3,:,:,:))));
% Determine factors to correct for component variance
Ku = sigmal/std(ui(:));
Kv = sigma2/std(vi(:));
Kw = sigma3/std(wi(:));
%% Set up constraints
% Scaled amplitude constraint

```
```

uc = [a; 0; 0] ./ [Ku; Kv; Kw];
duc = [0; 0; 0];
b = [uc; duc];
% Position constraint
x0 = [x0; y0; z0];
% Reshape wave numbers to vector
mx = reshape (mx,1,[]);
my = reshape(my,1,[]);
mz = reshape(mz,1,[]);
C = reshape(C,3,[]);
% Low pass filter
G = sinc(mx*lx/(Nx*dx)) .* sinc(my*ly/(Ny*dy)) .* sinc(mz*lz/(Nz*dz));
% Complete Fourier transform matrix
A = [C .* kron(G.* exp(1i * 2*pi*(mx/Nx * x0(1)/dx + my/Ny * x0(2)/dy + mz/Nz *
x0(3)/dz)), ones(3)); ...
C(1,:) .* kron(G .* (2i*pi*mx/Lx) .* exp(1i * 2*pi*(mx/Nx * x0(1)/dx +
my/Ny * x0(2)/dy + mz/Nz * x0(3)/dz)), ones(1,3)); ...
C(1,:) .* kron(G .* (2i*pi*my/Ly) .* exp(1i * 2*pi*(mx/Nx * x0(1)/dx +
my/Ny * x0(2)/dy + mz/Nz * x0(3)/dz)), ones(1,3)); ...
C(1,:) .* kron(G .* (2i*pi*mz/Lz) .* exp(1i * 2*pi*(mx/Nx * x0(1)/dx +
my/Ny * x0(2)/dy + mz/Nz * x0(3)/dz)), ones(1,3))];
%% Conditioned velocity field
% Constrained stochastic variable
nc = n + A'/(A*A') * (b - A* n);
% Stochastic field
dZ = zeros([3, size(x)]);
nc = reshape(nc, [3, 1, size(x)]);
C = reshape(C, [3, 3, size(x)]);
for n1 = 1:size(y,1)
for n2 = 1:size(x,2)
for n3 = 1:size(z,3)
dZ(:,n1,n2,n3) = C(:,:,n1,n2,n3) * nc(:,:,n1,n2,n3);
end
end
end
% Reconstruct time series
u = Ku * Nx*Ny*Nz * real(ifftn(squeeze(dz(1,:,:,:))));
v = Kv * Nx*Ny*Nz * real(ifftn(squeeze(dz(2,:,:,:))));
w = Kw * Nx*Ny*Nz * real(ifftn(squeeze(dz(3,:,:,:))));
% If necessary, flip domains to match original input
if flipx
u = flipdim(u,2);
v = flipdim(v,2);
w = flipdim(w,2);
end
if flipy
u = flipdim(u,1);
v = flipdim(v,1);

```
```

268 w = flipdim(w,1);
269 end
if flipz
u = flipdim(u,3);
v = flipdim(v,3);
w = flipdim(w,3);
end
if sign(abs(max(u(:))) - abs(min(u(:)))) ~= sign(a)
u = -u;
end

```
```


[^0]: ${ }^{1}$ Bierbooms, W. A. A. M. (2005). "Constrained Stochastic Simulation -- Generation of Time Series around Some Specific Event in a Normal Process." Extremes 8 (3): 207-224. doi: 10.1007/s10687-006-7968-7.

[^1]: 2 Bierbooms, W. A. A. M. (2005). "Constrained Stochastic Simulation -- Generation of Time Series around Some Specific Event in a Normal Process." Extremes 8 (3): 207-224. doi: 10.1007/s10687-006-7968-7.

[^2]: 4 Therefore, the leftmost matrix, \mathbf{A}, has $3+1+1+1$ rows, which equals the number of rows on the right-hand side.

[^3]: ${ }^{5}$ Of course, different volume shapes can be addressed by using a different expression for the low-pass filter.

[^4]: ${ }^{6}$ Rice, S. O. (1944). "Mathematical Analysis of Random Noise." Bell System Technology Journal 23 (3): 282332.

[^5]: ${ }^{7}$ Adler, R. J., and J. E. Taylor (2007). Random Fields and Geometry. New York, NY: Springer. doi:10.1007/978-0-387-48116-6.

[^6]: ${ }^{8}$ The role of $\Psi(A / \sigma)$ becomes clear in the limit $A \rightarrow-\infty$, in which case the entire field is one local maximum and thus $\mathrm{E}\left[\varphi\left(Z_{A}\right)\right] \rightarrow 1$.
 ${ }^{9}$ If B is a one-dimensional domain of length L_{x}, equation (3.8) approaches (3.5):

 $$
 \mathrm{E}\left[\varphi\left(Z_{A}\right)\right]=\Psi\left(\frac{A}{\sigma}\right)+\frac{\sqrt{r_{x x}}}{2 \pi \sigma} \mathrm{e}^{-\frac{A^{2}}{2 \sigma^{2}}}
 $$

 ${ }^{10}$ Adler, R. J. (1976). "On Generalising the Notion of Upcrossings to Random Fields." Advances in Applied Probability 8 (4): 789. doi:10.2307/1425934.
 ${ }^{11}$ Adler, R. J., and A. M. Hasofer (1976). "Level Crossings for Random Fields." The Annals of Probability 4 (1):
 1-12. doi:10.1214/aop/1176996176.

[^7]: 12 Mandelbrot, B. B. (1967). "How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension", Science 156 (3775): 636-638. doi:10.1126/science.156.3775.636.
 ${ }^{13}$ Beljaars, A. C. M. (1987). "The Measurement of Gustiness at Routine Wind Stations". Technical Report WR 87-11. De Bilt, The Netherlands.

[^8]: ${ }^{14}$ NoordzeeWind (2007). "Reports \& Data". URL: www.noordzeewind.nl/en/knowledge/reportsdata/ (Accessed 26 June 2013).

[^9]: 15 Kouwenhoven, H. J. (2007). "Manual Data Files Meteo Mast NoordzeeWind". Technical Report NZW-16-S-4-R03. NoordzeeWind, IJmuiden, The Netherlands.
 16 Wagenaar, J. W., and P. J. Eecen (2010). "3D Turbulence at the Offshore Wind Farm Egmond Aan Zee". Technical Report ECN-E--10-075. Energy Research Centre of the Netherlands, Petten, The Netherlands.

[^10]: 17 Bierbooms, W. A. A. M., J. B. Dragt, and H. Cleijne (1999). "Verification of the Mean Shape of Extreme Gusts." Wind Energy 2 (3): 137-150. doi:10.1002/(SICI)1099-1824(199907/09)2:3<137::AID-WE24>3.0.CO;2-W.
 18 Eecen, P. J., and E. Branlard (2008). "The OWEZ Meteorological Mast". ECN-E--08-067. Petten, The Netherlands.

[^11]: 19 Mann, J. (1998). "Wind Field Simulation." Probabilistic Engineering Mechanics 13 (4): 269-282. doi:10.1016/S0266-8920(97)00036-2.
 ${ }^{20}$ Please note that M_{0} and \mathbf{M}_{2} are used here to denote σ^{2} and \mathbf{R} in chapter 3. This is to avoid confusion with the unfiltered longitudinal variance, σ_{1}^{2}.
 21 Jonkman, B. J. and L. Kilcher (2012). "TurbSim User's Guide (draft version)". Technical Report. National Renewable Energy Laboratory, Golden, CO, United States.

[^12]: 22 Huntley, J. (2012). "Generation of Random Variates". URL:
 www.mathworks.com/matlabcentral/fileexchange/35008-generation-of-random-variates/content/pfq.m (Accessed 27 November 2013).

[^13]: ${ }^{23}$ Huntley, J. (2012). "Generation of Random Variates". URL:
 www.mathworks.com/matlabcentral/fileexchange/35008-generation-of-random-variates/content/pfq.m (Accessed 27 November 2013).

