
Description of aero.m 
 
Determination of the aerodynamic forces, moments and power by means of the blade element 
method; for known mean wind speed, induction factor etc. 
Simplifications: 

• uniform flow (i.e. wind speed constant over rotor plane; no yawed flow, windshear or 
tower shadow) 

• no wake rotation (i.e. no tangential induction factor) 
• no blade tip loss factor 

 
 

 
 

Figure: Aerofoil forces and velocities at a blade section 
 
Vt: tangential velocity component 
Vp: perpendicular velocity component 
W: resultant velocity 
α: angle of attack 
θ: pitch angle 
φ: angle of inflow 
 
L: lift force (per definition perpendicular to W) 
D: drag force (per definition parallel to W) 
R: resultant force 
Dax: axial force 
Mr: rotor torque 
Mβ: aerodynamic flap moment 
 

 
For each blade section (with length dr and chord c) the lift- and drag force equal: 
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with ρ the airdensity 
and Cl and Cd the lift and drag coefficient resp. of the particular aerofoil; they are both 
functions of the angle of attack α. 
 
The aerodynamic forces depend on the velocities as seen by the rotating blade, so not only the 
the wind speed is taken into account but also the blade rotation and the velocities due to 
flexibility of the wind turbine. In our case (see description of dynmod) we have to consider the 
flapping motion of the rotor blade and the motion of the tower top. 
 

tV r= Ω  
with Ω the rotational speed of the wind turbine 
and r the radial position of the blade section 
 

(1 )pV V a r xβ= − − −& &  
with V the undisturbed wind velocity 
a the induction factor 
β the flapping angle of the blade 
x the tower top displacement 
 
 
For the total forces, moments on a rotor blade the forces over all blade sections have to be 
add. To obtain the forces and moments on the total rotor the forces, moments over all blades 
are added. 
 
The (aerodynamic) power equals the product of rotational speed and rotor torque: 

rP M=Ω  
By definition the thrust and power coefficient equal: 
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Description of bem.m / fun_bem 
 
Determintion of the aerodynamic forces, moments and power by means of the blade element - 
momentum method (BEM); for known wind speed, pitch angle, etc. 
Simplifications: 

• uniform flow (i.e. wind speed constant over rotor plane; no yawed flow, windshear or 
tower shadow) 

• no wake rotation (i.e. no tangential induction factor) 
• no blade tip loss factor 
• just one annular section (the total rotor plane) 

 
The main problem of rotor aerodynamics is that on one hand the aerodynamic forces depend 
on the induction factor and on the other hand the induction factor depend on the aerodynamic 
forces. In order to overcome this problem a combination of two methods are used: blade 
element method (see aero.m) and momentum theory (see fun_bem.m). According to 
momentum theory the thrust coefficient equals: 

4 (1 )
axDC a a= −  with a the induction factor 

For values values of the induction factor larger than 0.5 (partial) flow reversal occur so 
momentum theory no longer can be applied; instead some empiral relation is used. Generally 
the rotor disc is divided into several angular sections (annuli; in the figure below 3 angular 
sections are shown), each with its own induction factor. 

 
For simplicity in fun_bem the rotor disc is treated as just 1 angular section. 
 
In text books BEM is usually explained by an iteration loop for the calculation of the 
induction factor: 

• Choose an initial value for a 
• Calculate CDax with the aid of blade element theory 
• From CDax follows a new value for a, by application of momentum theory (see 

equation above) 
• Continue until a reaches a constant value 

In bem.m and fun_bem.m this iteration loop is not directly visible since use is made of the 
standard Matlab routine fzero in order to determine the induction factor, for which the thrust 
coefficient according to blade element theory equals the thrust coefficient according to 
momentum theory. The difference in thrust coefficient is calculated in fun_bem, so when fzero 
determines the value for the induction factor which makes the output of fun_bem equal to 
zero, the required induction factor is obtained. 



Description of dynmod.m 
 
Equations of motion of wind turbine (dynamic model): time derivatives of the states and  
outputs of the wind turbine as function of the states and inputs. 

Fig.: Dynamic model wind turbine 
 
The following degrees of freedom are considered (see also the figures). 
Flap angle β 
Tower top displacement x 
Rotor angular velocity Ω (ωr) 
Torsion angle transmission ε 
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Fig.: Dynamic model rotor blade 
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Fig.: Dynamic model tower 
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Fig.: Dynamic model transmission; the 2-shaft system is reduced to an equivalent 1-shaft 
system (low speed shaft). 

 
Applying several simplifications (e.g. flap angle is small, so sin β≈β and cosβ≈1, gravity is 
neglected) the dynamics of all subsystem are reduced to ‘mass-spring-damper’ systems: 
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The equations for the transmission are obtained via reducing the 2-shaft system to an 
equivalent 1-shaft system (low speed shaft); in doing so the values for the generator angular 



velocity, generator torque and generator inertia should be properly corrected (depending on 
the transmission ratio ν). 
 
In dynmod the above 2nd order differential equations are rewritten as two 1st order differential 
equations. In total 7 differential equations are obtained, defining the 7 the states of the wind 
turbine: 

Flap angle of rotor blade β 
Flap angular velocity of rotor blade β&  
Tower top displacement x 
Tower top speed x&  
Rotor angular velocity Ω 
Torsion angle transmission ε 
Torsion angular velocity transmission ε&  

 
The dynamics of the generator and power electronics is much faster than the dynamics of the 
mechanical part of the wind turbine. This implies that it is justified to model the generator by 
means of a static ‘torque-rotational speed’ relation; see gener.m. 



Description of transfer.m 
 
Determination of the transfer function of the wind turbine. The transfer function H(s) relates 
all wind turbine inputs to all wind turbine outputs 
                  NUM(s) 
        H(s) = -------- 
                  DEN(s) 
 
inputs of wind turbine: 
   1) blade pitch angle theta [degrees] 
    2) undisturbed wind speed V [m/s] 
outputs of wind turbine: 
    1) axial force Dax [N] 
    2) aerodynamic flap moment Mbeta [Nm] 
    3) aerodynamic rotor torque Mr [Nm] 
    4) generator power Pg [W] 
    5) blade pitch angle theta [degrees] 
    6) undisturbed wind speed V [m/s] 
 

 
 
The response of a linear system to a harmonic input is again harmonic (with the same 
frequency). The relation between the output signal and the input signal, for each frequency, is 
given by H, which is in general a complex number. The absolute value of H is the ratio 
between the amplitudes of the output and the input; the phase of H is the phase difference 
between the output and the input. E.g. the transfer function of a second order systeem 
(eigenfrequency ωn and critical damping ς) is: 
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Note: generally the transfer function is expressed as function of the Laplace parameter s=jω 
rather than ω. 
 
 
The transfer function of the wind turbine is determined by linearising the equations of motion 
as given in dynmod.m. This linearisation could be done analytically by use of Taylor 
expansion of the equations. In transfer.m it is done numerically by disturbing the inputs and 
states by a small amount and considering the resulting change in the outputs. The obtained 
linearised equations can be put in standard form (so-called state space format): 

System 
H(s) 

input output 



x A x B u
y C x Du
= +
= +

&
 

with x the states of the wind turbine: 
1) Flap angle of rotor blade β 
2) Flap angular velocity of rotor blade β&  
3) Tower top displacement x 
4) Tower top speed x&  
5) Rotor angular velocity Ω 
6) Torsion angle transmission ε 
7) Torsion angular velocity transmission ε&  

and y, u the outputs and inputs of the wind turbine (see above) 
 
Finally the standard Matlab commands ss.m and tf.m are used to obtain the transfer function. 
 
Note: numerical linearisation is outside the scope of the wind energy course, so it is not 
necessary that the listing of transfer.m is totally understood.  



Description of gener.m 
 
Torque-rpm characteristics of a synchronous generator with AC/DC/AC converter. 
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Fig.: Per phase equivalent circuit diagram (bottom) of variable speed conversion system with 

synchronous generator and back-to-back (AC/DC/AC) converter (top). 
 
In the figure the equivalent circuit is shown of the generator including the power electronics. 
The values for the resistance and reactances are usually expressed in per unit (pu); these are 
the dimensionless values based on the nominal condition: 
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The inductions equal: 

s
s
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ω

=  stator induction 

mXM
ω

=  stator induction 

with 
gpω ω= the electrical angular velocity, p the number of pole pairs and ωg the generator shaft 

angular velocity. 
 



From M and the field current If the field induced voltage can be determined: 

2f f
ME Iω=  

 
A main assumption we made is that we assume no phase difference between V1 and I1, i.e. cos 
φ=1 (realised by means of the power electronics); see also the phasor diagram below. 
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The terminal voltage and stator current are now described by 2 equations: 
2 2 2

1 1 1( ) ( )f s sE V I R L Iω= + +  from the phasor diagram, and 

1 13gP V I= the electrical power 
Elimination of V1 leads to a quadratic equation in I1

2 which can thus easily be solved (see 
listing gener). 
Note: in order that the equations have a solution the field current should have some minimum 
value; this is checked in the routine gener.m. 
 
The mechanical power of the generator (equal to the aerodynamic rotor power) is: 

mech g gP M ω=  
The electrical power equals the mechanical power minus the losses dissipated in the resistor: 

2
13g mech sP P I R= −  

The efficiency of the generator can now be expressed as: 
g
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The efficiency ηc of the power electronics can not be deduced from the equivalent circuit; 
instead some value should be assumed. The overall efficiency of the electrical system equals 
the product ηg and ηc. 
 
 
Note on Pref (one of the inputs of gener.m) 
The relation between torque and rotor speed of a synchronous generator depends on the 
specific configuration of the generator. A generator in combination with an AC/DC/AC 
converter, however, can practically be given any desired torque – rotor speed relation. One of 
the inputs of gener.m is therefore a reference (set point) generator power; it is assumed that 
the power electronics are able to adjust the terminal voltage and stator current in such a way 
that the reference power is realised (i.e.: 1 13g refP V I P= = ). 
In partial load conditions maximum energy is extracted by the wind turbine in case the tip 
speed ratio equals the optimal tip speed ratio (for which the power coefficient is maximum). 



This implies that the rotor speed and thus also the generator speed should be proportional with 
the wind speed. Since the power coefficient is constant (and equal to the maximum value) the 
aerodynamic power is proportional to the 3rd power of the wind speed (and rotor speed). To 
conclude, for maximum energy extraction at partial load, the reference power should be taken 
proportional to the 3rd power of generator speed. This is already taken into account in the 
function call of gener.m in dynmod.m.



Description of equi.m / fun_equi.m / fun_power.m 
 
Determination of the operating point of the wind turbine for known wind speed; this is the 
steady state after equilibrium between all acting forces on the wind turbine. 
Partial load conditions (V<=Vn): blade pitch angle θ=θn (subscript n stands for nominal 
conditions). Note: it is not assumed that the wind turbine automatically operates at optimal 
tip speed ratio. 
Full load conditions (V>Vn): rotor rotational speed Ω=Ωn; blade pitch θ such that power 
equals nominal power. 
 
During steady wind conditions any transient response will be damped out so the wind turbine 
will go to some equilibrium condition (specified by the rotor speed, blade flap angle, etc.), 
also called operating point. The equilibrium condition is determined by equilibrium of all 
forces and moments acting on the wind turbine; in general this will depend on the mean wind 
speed. In partial load there will be an equilibrium between the aerodynamic rotor torque and 
generator torque. So it would be possible to calculate the rotor speed at equilibrium via an 
iteration loop during which the rotor speed is varied until the aerodynamic rotor torque equals 
the generator torque. In equi.m this is again done using the standard routine fzero in 
combination with fun_equi.m; in the latter the difference between the aerodynamic rotor 
torque and the generator torque is calculated for given rotor speed. 
At full load conditions the pitch angle is changed such that the power equals nominal power. 
It is assumed that the pitch control is such that the blade is rotated towards the wind (i.e. 
towards zero-lift conditions). This time fzero is used in combination with fun_power.m; the 
latter calculates the difference between the aerodynamic power, for given pitch angle, and 
nominal power. 
 
 
The equilibrium states of the degrees of freedom (i.e. blade flap angle, tower top 
displacement, torsion angle transmission) are given by the equations of motion (see 
dynmod.m) in which all terms which are time dependent (i.e. time derivatives) are omitted. 


