
Python’s wind turbine

design package manual

Author: Dennis van Dommelen

September 2013

Supervisor: Dr. ir. W.A.A.M Bierbooms

Contents

Nomenclature iv

1 Introduction 1

2 Descriptions 2
2.1 Description of aero.py . 2
2.2 Description of bem.py & fun bem.py . 3
2.3 Description of dynmod.py . 4
2.4 Description of transfer.py . 7
2.5 Description of gen.py . 8
2.6 Description of equi.py, fun equi.py, fun power.py . 9

3 How to use the program 10
3.1 Program overview . 10
3.2 Demo . 11

3.2.1 Cp-lambda demo . 11
3.2.2 Powercurve demo . 11
3.2.3 BEM demo . 11

3.3 Plots . 11
3.4 Simulation . 12

4 Wind turbine input file 14
4.1 The writing command . 14
4.2 The aerodynamic parameters P1 . 14
4.3 Turbine parameters P2 . 14
4.4 Blade geometry P3 . 15
4.5 Nominal values P4 . 15
4.6 Creating the txt file . 15

Bibliography 17

A Required packages and installation 18
A.1 Required packages . 18
A.2 Installation manual . 18

A.2.1 Standard Python libraries . 18
A.2.2 Slicot . 18
A.2.3 Download . 18
A.2.4 Installation notes . 19

B Example of a wind turbine input file 20

C Explanation for MATLAB users 23
C.1 Difference in code . 23

C.1.1 Numbering and loops . 23
C.1.2 Variables . 23
C.1.3 Lists and Arrays . 23
C.1.4 Semicolon . 23
C.1.5 Packages . 23
C.1.6 Functions and m-files . 23
C.1.7 Extiension .pyc . 24

C.2 Difference in usage . 24
C.3 Weibull distribution . 25

ii

Nomenclature

Latin Symbols

Symbol Explanation Unit

a Induction factor [−]
C Coefficient [−]
c Chord length [m]
D (Drag) force [N]
d Damping coefficient N · s/m
J Inertia [kg ·m2]
k Stiffness [N/m]
L Lift force [N]
M Torque/moment [N ·m]
m Mass [kg]
P Power [W]

R Resultant force (~L+ ~D) [N]
R Blade total radius [m]
r Blade local radius [m]
s Laplace parameter [−]
V Wind speed [m/s]
W Resultant velocity [m/s]
x Tower top displacement [m]

Greek Symbols

Symbol Explanation Unit

α Angle of attack [·]
β Flapping angle [·]
ε Torsion angle transmission [−]
ζ Damping coefficient N · s/m
η Efficiency [−]
θ Pitch angle [·]
λ Tip speed ratio [−]
ρ Air density [kg/m3]
υ Transmission ratio [−]
ϕ Angle of inflow [·]
Ω Rotor angular velocity [rad/s]
ω Frequency [rad/s]

iii

0 CONTENTS 0.0 CONTENTS

Subscripts

Subscript Explanation

ax Axial direction
b Flap direction
β flap direction
d drag (2D)
g generator
l lift (2D)
n Natural (eigen)/nominal
p perpendicular
r rotor/radial direction
sh Shaft
t tangential
tot total

Abbreviations

NACA National Advisory Committee for Aeronautics

iv

Chapter 1

Introduction

This is the manual which is explaining the Python package for modeling wind turbines. It explains
the important files in chapter 2, chapter 3 is explaining how to use the program. The last chapter,
chapter 4 shows how an input wind turbine file would look like. The program was originally written
in MATLAB, therefor for the MATLAB users appendix C is created, in which the biggest differences
between MATLAB and Python is explained. The descriptions given in chapter 2 are copied from the
original description file [1] and modified to the Python program.

1

Chapter 2

Descriptions

In this chapter descriptions of aero.py, bem.py & fun bem.py, dynmod.py, transfer.py, gener.py and
equi.py & fun equi.py & fun power.py are given. The other files are self explanatory, this is done
by the command lines. The descriptions in this chapter help understand the calculation behind the
program.

2.1 Description of aero.py

Determination of the aerodynamic forces, moments and power by means of the blade element method;
for known mean wind speed, induction factor etc.
Simplifications:

• uniform flow (i.e. wind speed constant over rotor plane; no yawed flow, windshear or tower
shadow)

• no wake rotation (i.e. no tangential induction factor)

• no blade tip loss factor

Figure 2.1: Aerofoil forces and velocities at a blade section

Vt: tangential velocity component
Vp: perpendicular velocity component
W: resultant velocity
α: angle of attack
θ: pitch angle
ϕ: angle of inflow
L: lift force (per definition perpendicular to W)
D: drag force (per definition parallel to W)

2

2 Descriptions 2.2 Description of bem.py & fun bem.py

R: resultant force
Dax: axial force
Mr: rotor torque
Mβ: aerodynamic flap moment

For each blade section (with length dr and chord c) the lift- and drag force equal:

L = Cl
1

2
ρW 2cdr (2.1)

D = Cd
1

2
ρW 2cdr (2.2)

with ρ the air density
and Cl and Cd the lift and drag coefficient resp. of the particular aerofoil; they are both functions of
the angle of attack α.

The aerodynamic forces depend on the velocities as seen by the rotating blade, so not only the the
wind speed is taken into account but also the blade rotation and the velocities due to flexibility of the
wind turbine. In our case (see description of dynmod) we have to consider the flapping motion of the
rotor blade and the motion of the tower top.

Vt = Ωr (2.3)

with Ω the rotational speed of the wind turbine
and r the radial position of the blade section

Vp = V (1− a)− β̇r − ẋ (2.4)

with V the undisturbed wind velocity
a the induction factor
β the flapping angle of the blade
x the tower top displacement
For the total forces, moments on a rotor blade the forces over all blade sections have to be add. To
obtain the forces and moments on the total rotor the forces, moments over all blades are added.

The (aerodynamic) power equals the product of rotational speed and rotor torque:

P = ΩMr (2.5)

By definition the thrust and power coefficient equal:

Cdax =
Dax

1
2ρπR

2V 2
(2.6)

CP =
P

1
2ρπR

2V 3
(2.7)

2.2 Description of bem.py & fun bem.py

Determintion of the aerodynamic forces, moments and power by means of the blade element - mo-
mentum method (BEM); for known wind speed, pitch angle, etc.
Simplifications:

• uniform flow (i.e. wind speed constant over rotor plane; no yawed flow, windshear or tower
shadow)

• no wake rotation (i.e. no tangential induction factor)

3

2 Descriptions 2.3 Description of dynmod.py

• no blade tip loss factor

• just one annular section (the total rotor plane)

The main problem of rotor aerodynamics is that on one hand the aerodynamic forces depend on
the induction factor and on the other hand the induction factor depend on the aerodynamic forces.
In order to overcome this problem a combination of two methods are used: blade element method
(see aero.py) and momentum theory (see fun bem.py). According to momentum theory the thrust
coefficient equals:

CDax = 4a(1− a) (2.8)

with a the induction factor
For values values of the induction factor larger than 0.5 (partial) flow reversal occur so momentum
theory no longer can be applied; instead some empiral relation is used. Generally the rotor disc is
divided into several angular sections (annuli; in the figure below 3 angular sections are shown), each
with its own induction factor.

Figure 2.2: Aerofoil forces and velocities at a blade section

For simplicity in fun bem the rotor disc is treated as just 1 angular section.

In text books BEM is usually explained by an iteration loop for the calculation of the induction factor:

• Choose an initial value for a

• Calculate CDax with the aid of blade element theory

• From CDax follows a new value for a, by application of momentum theory (see equation above)

• Continue until a reaches a constant value

In bem.py and fun bem.py this iteration loop is not directly visible since use is made of the standard
scipy.optimize routine fsolve in order to determine the induction factor, for which the thrust coefficient
according to blade element theory equals the thrust coefficient according to momentum theory. The
difference in thrust coefficient is calculated in fun bem, so when fsolve determines the value for the
induction factor which makes the output of fun bem equal to zero, the required induction factor is
obtained.

2.3 Description of dynmod.py

Equations of motion of wind turbine (dynamic model): time derivatives of the states and outputs of
the wind turbine as function of the states and inputs.
The following degrees of freedom are considered (see also the figures).
Flap angle β
Tower top displacement x

4

2 Descriptions 2.3 Description of dynmod.py

Figure 2.3: Dynamic model wind turbine

Rotor angular velocity Ω(ωr)
Torsion angle transmission ε

Figure 2.4: Dynamic model rotor blade

Applying several simplifications (e.g. flap angle is small, so sinβ ≈ β and cosβ ≈ 1, gravity is
neglected) the dynamics of all subsystem are reduced to ‘mass-spring-damper’ systems:

Jbβ̈ + (kb + JbΩ
2)β = Mβ (2.9)

mtẍ+ dtẋ+ ktx = Dax (2.10)

JrΩ̇ + dr ε̇+ krε = Mr (2.11)

Jtotε̈+ dr ε̇+ krε =
Jtot
Jr

Mr +
Jtot
υ2Jg

υMg (2.12)

with

Jtot =
υ2JrJg
Jr + υ2Jg

(2.13)

The equations for the transmission are obtained via reducing the 2-shaft system to an equivalent
1-shaft system (low speed shaft); in doing so the values for the generator angular velocity, generator

5

2 Descriptions 2.4 Description of dynmod.py

Figure 2.5: Dynamic model tower

Figure 2.6: Dynamic model transmission; the 2-shaft system is reduced to an equivalent 1-shaft system
(low speed shaft)

torque and generator inertia should be properly corrected (depending on the transmission ratio υ).

In dynmod the above 2nd order differential equations are rewritten as two 1st order differential equa-
tions. In total 7 differential equations are obtained, defining the 7 the states of the wind turbine:

• Flap angle of rotor blade β

• Flap angular velocity of rotor blade β̇

• Tower top displacement x

• Tower top speed ẋ

• Rotor angular velocity Ω

• Torsion angle transmission ε

• Torsion angular velocity transmission ε̇

The dynamics of the generator and power electronics is much faster than the dynamics of the mechan-
ical part of the wind turbine. This implies that it is justified to model the generator by means of a
static ‘torque-rotational speed’ relation; see gener.py.

6

2 Descriptions 2.4 Description of transfer.py

2.4 Description of transfer.py

Determination of the transfer function of the wind turbine. The transfer function H(s) relates all wind
turbine inputs to all wind turbine outputs

H(s) =
NUM(S)

DEN(S)
(2.14)

inputs of wind turbine:

1. blade pitch angle theta [degrees]

2. undisturbed wind speed V [m/s]

outputs of wind turbine:

1. axial force Dax [N]

2. aerodynamic flap moment Mbeta [Nm]

3. aerodynamic rotor torque Mr [Nm]

4. generator power Pg [W]

5. blade pitch angle theta [degrees]

6. undisturbed wind speed V [m/s]

Figure 2.7: Schematic overview of transfer system

The response of a linear system to a harmonic input is again harmonic (with the same frequency).
The relation between the output signal and the input signal, for each frequency, is given by H, which
is in general a complex number. The absolute value of H is the ratio between the amplitudes of the
output and the input; the phase of H is the phase difference between the output and the input. E.g.
the transfer function of a second order systeem (eigenfrequency ωn and critical damping ζ) is:

H(ω) =
1

ω2
n − ω2 + j2ζωωn

(2.15)

Note: generally the transfer function is expressed as function of the Laplace parameter s = jω rather
than ω.

The transfer function of the wind turbine is determined by linearising the equations of motion as
given in dynmod.py. This linearisation could be done analytically by use of Taylor expansion of the

7

2 Descriptions 2.6 Description of gen.py

equations. In transfer.py it is done numerically by disturbing the inputs and states by a small amount
and considering the resulting change in the outputs. The obtained linearised equations can be put in
standard form (so-called state space format):

ẋ = Ax+Bu (2.16)

y = Cx+Du (2.17)

with x the states of the wind turbine:

• Flap angle of rotor blade β

• Flap angular velocity of rotor blade β̇

• Tower top displacement x

• Tower top speed ẋ

• Rotor angular velocity Ω

• Torsion angle transmission ε

• Torsion angular velocity transmission ε̇

and y, u the outputs and inputs of the wind turbine (see above)

Finally the control.matlab module commands ss and tf are used to obtain the transfer function.

Note: numerical linearisation is outside the scope of the wind energy course, so it is not necessary
that the listing of transfer.m is totally understood.

2.5 Description of gen.py

Determintion of the generator parameters, torque and power.
Simplifications:

• For a constant lambda, the shaft power is proportional to the rotational velocity to the power 3

The nominal generator velocity is calculated according to the next formula:

ωn = ν ∗ λn ∗ Vn/R (2.18)

In this equation, ν is the transmission ratio, λn is the nominal tip speed ratio, Vn is the nominal wind
speed and R is the rotor radius.
The mechanical shaft power is proportional to the rotational velocity to the 3rd power:

Psh = (
ω

ωn
)3 ∗ Pn

η
(2.19)

Here Pn is the nominal power and η is the generator efficiency.
The electrical generator power is:

Pg = (
ω

ωn
)3 ∗ Pn = Psh ∗ η (2.20)

The torque is simply the mechanical relation between power and torque:

Mg =
Psh
ω

(2.21)

8

2 Descriptions 2.6 Description of equi.py, fun equi.py, fun power.py

2.6 Description of equi.py, fun equi.py, fun power.py

Determination of the operating point of the wind turbine for known wind speed; this is the steady
state after equilibrium between all acting forces on the wind turbine.
Partial load conditions (V ≤ Vn): blade pitch angle θ = θn (subscript n stands for nominal conditions).
Note: it is not assumed that the wind turbine automatically operates at optimal tip speed ratio.
Full load conditions (V > Vn): rotor rotational speed Ω = Ωn; blade pitch θ such that power equals
nominal power.

During steady wind conditions any transient response will be damped out so the wind turbine will go
to some equilibrium condition (specified by the rotor speed, blade flap angle, etc.), also called operat-
ing point. The equilibrium condition is determined by equilibrium of all forces and moments acting
on the wind turbine; in general this will depend on the mean wind speed. In partial load there will be
an equilibrium between the aerodynamic rotor torque and generator torque. So it would be possible
to calculate the rotor speed at equilibrium via an iteration loop during which the rotor speed is varied
until the aerodynamic rotor torque equals the generator torque. In equi.py this is again done using
the routine from scipy.optimize fsolve in combination with fun equi.py; in the latter the difference
between the aerodynamic rotor torque and the generator torque is calculated for given rotor speed.
At full load conditions the pitch angle is changed such that the power equals nominal power. It is
assumed that the pitch control is such that the blade is rotated towards the wind (i.e. towards zero-
lift conditions). This time fsolve is used in combination with fun power.py; the latter calculates the
difference between the aerodynamic power, for given pitch angle, and nominal power.

The equilibrium states of the degrees of freedom (i.e. blade flap angle, tower top displacement, rotor
angular velocity, torsion angle transmission) are given by the equations of motion (see dynmod.py) in
which all terms which are time dependent (i.e. time derivatives) are omitted.

9

Chapter 3

How to use the program

To use this program, all python files has to be in the same folder. This is because each part of the
program is dependent on another part. To make use of the program and generate plots and calculate
the wind turbine parameters some demos are created. These demos can help to understand how the
program should be used. Also time simulation and responses to different inputs can be created using
this program. The use of the program and how to create the simulations is explained in this chapter.
This Python program needs some certain extension packages. These packages and an installation
manual are found in Appendix A.

3.1 Program overview

When you are using the program for the first time, the amount of files can be vary disturbing. Therefor
an overview of the files is given below.

File Short explanation

aero.py Determination of the aerodynamic forces, moments and power
bem.py Determination of the induction factor, aerodynamic forces, moments and power
cplambda.py Determination of Cdax, Cp and induction factor with lambda
drag.py Drag curve of applied blade aerofoil
dynmod.py Dynamic model wind turbine
equi.py Determination of the operating point of the wind turbine for known wind speed
fun bem.py Used in bem.py to calculate the induction factor
fun equi.py Used in equi.py to calculate omr0 or theta
fun power.py Used in powercurve1 to calculate theta
gen.py Ideal torque-rpm characteristic of a generator including converter
gust1.py Smooth wind gust
gust2.py Wind gust with the shape of a sine
lift.py Lift curve of applied blade aerofoil
powercurve1.py Determination of the characteristics of a variable speed regulated wind turbine
powercurve2.py Determination of the characteristics of a constant speed wind turbine
transfer.py Determination of the transfer function of the wind turbine

Resulting files

plots.py Generation of all relevant graphs of a wind turbine
simulation.py Generation of plots for a time simulation

Wind turbine files

NREL 5MW.py NREL 5MW wind turbine parameters
NREL 5mw.txt txt file generated by NREL 5MW.py
S88.py S88 wind turbine parameters
S88.txt txt file generated by S88.py
V90.py V90 wind turbine parameters
V90.txt txt file generated by V90.py
V902.py Modified V90 turbine with resonance at V equal to 8 m/s
V902.txt txt file generated by V902.py

10

3 How to use the program 3.4 Demo

Demo files

demo windsim.py The demo main file
cplambda demo.py Explanation on how to create plots with lambda on the x-axis
powercurve demo.py Explanation on how to create plots with the wind speed on the x-axis
BEM demo.py Explanation of the calculation of the induction factor

3.2 Demo

The program includes a demo, to run this demo start demo windsim.py. Then the program gives you
3 options. To select one of the options press the number and after that enter. Option 1 will start the
Cp-lambda demo, 2 the powercurve demo and 3 the BEM demo. If one demo has ended, the menu
shows again. To exit press 4 or press the cross in the top right corner. In each demo, to proceed press
enter or close the plotting window.

3.2.1 Cp-lambda demo

The Cp-lambda demo explains how a plot can be created with lambda on the x-axis. This is done in
an interactive way, at first the input parameters of the cplambda function is shown. Then it explains
how the list containing all lambda numbers is created, after which you can choose the wind turbine for
which the demo has to run. When the wind turbine is chosen, press enter and the plots will appear.
Then the demo will explain how to use simple plot commandos to improve the plot.

3.2.2 Powercurve demo

The powercurve demo is quite similar to the cp-lambda demo, except that now the powercurve1
function is used, a list containing all wind speeds is created and with that the power versus wind
speed graph is plotted. Also a comparison is made between a fixed speed and a variable speed wind
turbine. The fixed wind speed turbine is calculated using the powercurve2 function. It compares the
power, axial force and power coefficient for both turbines.

3.2.3 BEM demo

The BEM demo is there to explain the BEM and the methods used for obtaining the induction factor.
At first, the input parameters of the function aero are given. Then a wind turbine can be chosen, for
which the induction factor will be calculated. Then some input parameters are given, after which ’a’ is
calculated using the cross section between the thrust coefficient calculated by the BEM method, and
the thrust coefficient calculated by the momentum theorem. At first it is visualized in the plot, then
it is calculated by the program itself. Note: for some turbines the converging points method cannot
be graphically plotted, as the program fails when imaginary numbers are obtained. However a result
is given by the calculation method.

3.3 Plots

To plot graphs, a plotting file has been made available. This is plots.py, to use this program, open
it in idle and run the program. Then use the command ’plots(’Windturbine’,True)’, with replacing
Windturbine with the name of the wind turbine it has to plot. The True can also be replaced by False,
this is for plotting multiple thetas (True) or just the nominal theta (False). After pressing enter the
program will create the plots, and store these in the folder plots/Windturbine. It is therefor important
to create a folder of the wind turbine you want to plot in advance in the plots folder. Otherwise errors
will appear! This program might take a minute to create the plots. When the plots are all made, a
text message will appear for conformation.
This program plots the parameters as given in the following table:

11

3 How to use the program 3.4 Simulation

Input Parameter Output Parameter

λ CDax

λ Cp
λ a
V Dax

V Mβ

V Mr

V P
V CDax

V Cp
V a
V θ
V ωr

3.4 Simulation

The program is also able to simulate the wind turbines response over time to a simple gust, a sinusoidal
gust and a step input. Gust 1 is a smooth wind gust which starts after 5 seconds and has amplitude 1.
Gust 2 is wind gust with the shape of a sine; the frequency equals the rotor angular velocity (1P). The
simulation is already in the package, simulation.py. This program is built using the python command
cm.lsim. This is part of the control.matlab package. The simulation looks at 7 different time responses
of the system:

• flap angle [rad]

• flap angular velocity [rad/s]

• tower top displacement [m]

• tower top speed [m/s]

• rotor angular velocity [rad/s]

• torsion angle transmission [rad]

• torsion angular velocity transmission [rad/s]

To use the program simply run it. Then use the following command simulation(windturbine, V,
gust=0, time=100, flap=False, tower=False, rotor=False, torsion=False).
The command needs some parameters. Some are set but can also be changed if needed. The following
table shows how to use these parameters.
So to plot the complete tower response to a simple gust (gust 1) for a nominal wind speed of 12 and
duration of 80 seconds, for the V90 windturbine use the following command: simulation(’V90’, 12,
gust=1, time=80, flap=True, tower=True, rotor=True, torsion=True).

12

3 How to use the program 3.4 Simulation

Parameter Example Form Explanation

windturbine ’V90’ string This is the wind turbine for which the simulation should be
done

V 8 integer Wind speed
gust gust=1 integer Type of gust for which the simulation should be done.

choose 1 for gust 1, choose 2 for gust 2, other values result
in a step input

time time=100 integer Time in seconds for the duration of the simulation
flap flap=True boolean If True; plot the response of the flap angle and flap angular

velocity
tower tower=True boolean If True; plot the response of the tower displacement and

velocity
rotor rotor=True boolean If True; plot the response of the rotor angular velocity
torsion torsion=True boolean If True; plot the response of the torsion angle transmission

and the torsion angular velocity transmission

13

Chapter 4

Wind turbine input file

A wind turbine file is consisting of a matrix, consisting of 4 arrays of different sizes. How a wind
turbine file is build up is discussed in this file.

4.1 The writing command

In the beginning of a wind turbine file a document is being opened. This is done by the command:

• document = open(’V90.txt’, ’w’)

Even when the txt file does not exist yet, this command has to be there. The w in the command is
important as in the end of the script, the code will be written in the txt file. This txt file should be
there, as there is ’easy’ support of the data in the program otherwise.
At the end of the wind turbine file, the complete matrix is put together in a string and the writing
command is given. After the writing command the closing command is given, the complete code at
the end of the wind turbine file looks like:

• text=str(P1)+’,’+str(P2)+’,’+str(P3)+’,’+str(P4)

• document.write(text)

• document.close()

The arrays P1, P2, P3 and P4 are elaborated in the following sections.

4.2 The aerodynamic parameters P1

The array for the aerodynamic parameters should consist of:

Name Symbol in Python unit

Air density ρ rho [kg/m3]
Power loss factor kp kp [-]

This power loss factor is there for the simplifications in BEM.py.

4.3 Turbine parameters P2

The turbine parameters array should consist of the following elements:

14

4 Wind turbine input file 4.6 Blade geometry P3

Name Symbol in Python unit

Rotor radius R R [m]
Number of blades Nb Nb [-]
Inertia of the blade (w.r.t. flapping hinge) Jb Jb [kgm2]
Stiffness flap spring kb kb [Nm/rad]
Equivalent mass tower mt mt [kg]
Damping tower dt dt [N/(m/s)]
Stiffness tower kt kt [N/m]
Transmission ratio ν nu [-]
Inertia rotor Jr Jr [kgm2]
Damping transmission dr dr [Nm/(rad/s)]
Stiffness transmission kr kr [N/rad]
Inertia generator Jg Jg kgm2

Nominal (electrical) generator power Pn Pn W
Efficiency generator η eta [-]

4.4 Blade geometry P3

The blade geometry array is an array which contains 3 other arrays. These 3 other arrays are:

List name symbol in Python Unit

Radial positions r r [m]
Chord c c [m]
Twist θt thetat [deg]

The radial positions, chord and twist arrays must have the same size. The values at the blade are
given at the borders, thus the size equals the number of blade element sections + 1. To check whether
the arrays contain the right amount of elements the following check is used:

• if (len(r) != Ns+1):

• print ’number of radial positions not correct’

• if (len(c) != Ns+1):

• print ’number of chord values not correct’

• if (len(thetat) != Ns+1):

• print ’number of twist values not correct’

4.5 Nominal values P4

The nominal values array consists of the following parameters:

Name Symbol in Python unit

Nominal wind speed Vn Vn [m/s]
Nominal tip speed ratio λn lambdan [-]
Nominal blade pitch angle θn thetan [deg]

4.6 Creating the txt file

When running the script, automatically a txt file is generated. This file is used by the wind turbine
program and simply contains all the arrays and numbers, for example:

15

4 Wind turbine input file 4.6 Creating the txt file

[1.25, 0.9], [45.0, 3.0, 3900000.0, 128943750.0, 160000.0, 7360.0, 846399.9999999999, 98.0,
11700000.0, 596553.57071587991, 180000000.0, 60.0, 3000000, 0.9], [[4, 6.6, 10.6, 18.5, 30.4,

41, 45], [3.1, 3.9, 3.9, 3.1, 2.1, 1.3, 0.03], [13, 13, 11, 7.8, 3.3, 0.3, 0]], [12.0, 7.8,−1.5]]

An example of a complete script is given in Appendix B.

16

References

[1] Dr. ir. W.A.A.M Bierbooms. descriptions, November 2004.

[2] Inc. company Dice Holdings. Control matlab installation. http://sourceforge.net/p/

python-control/wiki/Download/. [Online; accessed 03-01-2014].

[3] Python Software Foundation. Python. http://python.org. [Online; accessed 15-10-2013].

17

http://sourceforge.net/p/python-control/wiki/Download/
http://sourceforge.net/p/python-control/wiki/Download/
http://python.org

Appendix A

Required packages and installation

In this appendix the required packages and installation manual are given. The program is written in
Python 2.7.5, thus the packages are all compatible with this version. For newer versions of Python it
is advised to look if the packages are compatible.

A.1 Required packages

• SciPy/Numpy

• Matplotlib

• Control Matlab

For the basic calculations (array calculations, square roots) the scipy and numpy packages is required.
Matplotlib is the package which will enable plotting. The simulation requires the control.matlab
package.

A.2 Installation manual

The SciPy/Numpy and matplotlib packages are easy to install using a windows installer. For the
Control Matlab it is more difficult. Therefor an installation manual is given below. [2]

A.2.1 Standard Python libraries

In order to run control-python, you must first install some standard python packages:

• SciPy - Open source library of scientific tools: http://www.scipy.org

• Matplotlib - Plotting library for python: matplotlib.sourceforge.net

• ipython (optional) - interactive python shell: http://ipython.scipy.org

A.2.2 Slicot

Some of the underlying functions in python−control are carried out using the [http://www.slicot.
org/SLICOT] software library. The python−control library uses the [http://github.com/avventi/
Slycotslycot] python wrapper developed by Enrico Avventi at KTH.
Slycot is only required for functions that make use of SLICOT routines (eg, linear quadratic regula-
tors, Kalman filtering, H ∞ control)
The slycot library is currently under development and the Application Program Interface (API) is not
yet fixed. Some errors may occur if the version of slycot and python−control are incompatible

A.2.3 Download

The python-control package can be downloaded from SourceForge https://sourceforge.net/projects/
python-control/files

The files are distributed as compressed tar files. To unpack and installed, run the following from the
command line:

18

http://www.scipy.org
matplotlib.sourceforge.net
http://ipython.scipy.org
http://www.slicot.org/ SLICOT
http://www.slicot.org/ SLICOT
http://github.com/avventi/Slycot slycot
http://github.com/avventi/Slycot slycot
https://sourceforge.net/projects/python-control/files
https://sourceforge.net/projects/python-control/files

A Required packages and installation A.2 Installation manual

• tar xzf control-N.mx.tar.gz

• cd control-N.mx

• python setup.py install

where N-mx is the latest release (eg, 0.3c).

To see if things are working, you can run the script [http://www.cds.caltech.edu/~murray/software/
python-control/examples/secord-matlab.pysecord-matlab.py] (using either python or ipython
-pylab). It should generate a step response, Bode plot and Nyquist plot for a simple second order
linear system.

A.2.4 Installation notes

slycot

To compile for 64 bit architecture on OS X, edit setup.py to include the lines

• extra link args=[’−arch x86 64’]

and then run setup.py as

python setup.py config fc –arch=”-arch x86 64” build

19

http://www.cds.caltech.edu/~murray/software/python-control/examples/secord-matlab.py secord-matlab.py
http://www.cds.caltech.edu/~murray/software/python-control/examples/secord-matlab.py secord-matlab.py

Appendix B

Example of a wind turbine input file

This appendix contains an example of a wind turbine file, it shows exactly how it is build op, as
explained in chapter 4.

20

B Example of a wind turbine input file B.0

21

B Example of a wind turbine input file B.0

22

Appendix C

Explanation for MATLAB users

There are some differences between Python and MATLAB. Of course, the biggest difference is that
Python is an open source program and therefor available for free [3], while MATLAB is a very expensive
tool. In this appendix the differences between the code and usage is explained in further details.

C.1 Difference in code

C.1.1 Numbering and loops

The first main difference in code is the numbering, in MATLAB every list starts at 1, where in Python
it starts at 0. Also the end of the list is not included in Python. For example: for i in range(0,11,1).
This range starts at 0, and contains every number up and including 10.

C.1.2 Variables

All variables in Python are globals. Therefor when using a variable it will keep it’s value for the whole
program, until it is changed later in the script

C.1.3 Lists and Arrays

The biggest difference between MATLAB and Python is the usage in arrays and lists. If you need for
example a calculation with lists or arrays, in MATLAB you are able to use the dot-calculation where
in Python you have to use a for loop, see figure C.1. The .calculation multiplies, divides, adds or
subtracts the value on the (i,j)th location with the value at the same position in another array.

This also results in a shorter code in MATLAB, it automatically realizes that the outcome variable
will be a list or array, therefor it is not necessary to call the variable name in the code before, where
this is needed in Python.

C.1.4 Semicolon

The semicolon is not used in Python to suppress the display of the variable in the ’Python shell’. To
display a variable the command ’print’ is used, or when using a function the command ’return’.

C.1.5 Packages

In Python there are packages which need to be imported at the beginning of the script. A good
example is the Numpy module, where for example the square root function can be called, or the
exponent e. In MATLAB these functions are already included. Another example of a package which
is used in Python is the control.matlab module. In this module the MATLAB functions for state-space
systems, transfer functions and simulations are included.
The benefit of these packages is that you are able to create a complete program or function yourself,
this way you are able to tune your Python in the way you want, where in MATLAB you need to pay
for each of this package, for Python (most of) these modules are available for free.

C.1.6 Functions and m-files

As mentioned in C.1.5, in Python you are able to create your own functions and import these in
another script. If you create multiple functions in one file it becomes a nice module. Of course, in

23

C Explanation for MATLAB users C.2 Difference in usage

Figure C.1: Python vs Matlab for the creation of a Weibull distribution

MATLAB you are also able to create your own functions by using the m-files. An example of how
these packages can be imported in Python is given in figure C.2.

C.1.7 Extiension .pyc

This is a compiled python script. It is automatically created when the original .py file is used in
another .py file and this second file is being ran. The python program than uses the data from the
.pyc file to run the script.

Figure C.2: Importation of packages in Python

C.2 Difference in usage

Python itself does not have a lot of extensions, it is just the language, but through the packages
Python can be made as extensive as you like. MATLAB already includes a lot of these packages. For
example with plotting, in Python, you first have to import the matplotlib.pyplot module (see also
figure C.2, where MATLAB automatically knows when the plot command is used. The same is valid
for all mathematical expressions in Python and MATLAB, MATLAB automatically recognizes the
function, where in Python you can import different packages, like Scipy, Numpy or the math module
itself.

24

C Explanation for MATLAB users C.3 Weibull distribution

Another difference in usage is the demo function in MATLAB, Python does not have this function,
so it can either be imported or created in for example Pygame. Pygame is an graphical extension of
Python, it can be used to do simulations, to create games or for example to create this demo.
When creating your own package, you can use it in another file with the following command:
from FILENAME import function1, function2, function3....
This is not needed in MATLAB, where it automatically uses all m-files in the same directory. When
running this script, a FILENAME.pyc file is generated, this is used as the m-file in MATLAB.

C.3 Weibull distribution

In figure C.1 the Weibull function are compared to each other for both Python and MATLAB. These
scripts are given in figure C.3 for the Python version, and C.4 and C.5 for the MATLAB versions.

25

C Explanation for MATLAB users C.3 Weibull distribution

Figure C.3: Python Weibull distributions

Figure C.4: The weibull distribution function as m file, weibullfunction.m

26

C Explanation for MATLAB users C.3 Weibull distribution

Figure C.5: The MATLAB script which uses the weibullfunction.m file

27

	Nomenclature
	Introduction
	Descriptions
	Description of aero.py
	Description of bem.py & fun_bem.py
	Description of dynmod.py
	Description of transfer.py
	Description of gen.py
	Description of equi.py, fun_equi.py, fun_power.py

	How to use the program
	Program overview
	Demo
	Cp-lambda demo
	Powercurve demo
	BEM demo

	Plots
	Simulation

	Wind turbine input file
	The writing command
	The aerodynamic parameters P1
	Turbine parameters P2
	Blade geometry P3
	Nominal values P4
	Creating the txt file

	Bibliography
	Required packages and installation
	Required packages
	Installation manual
	Standard Python libraries
	Slicot
	Download
	Installation notes

	Example of a wind turbine input file
	Explanation for MATLAB users
	Difference in code
	Numbering and loops
	Variables
	Lists and Arrays
	Semicolon
	Packages
	Functions and m-files
	Extiension .pyc

	Difference in usage
	Weibull distribution

