IMM Estimator in Multisensor Multitarget Tracking
for Air Traffic Control and Autonomous Driving

Henk A. P. Blom, Fellow, IEEE, Kaipei Yang, Member, IEEE, and Yaakov Bar-Shalom, Life Fellow, IEEE

Abstract—This short paper provides an overview of the devel-
opment of the Interacting Multiple Model (IMM) estimator and
its application in multi-sensor multi-target tracking applications
in air traffic control and in autonomous driving.
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I. IMM ESTIMATOR

Many dynamical systems undergo switches in their dynam-
ical configuration, shortly referred to as mode switching. For
example an observed aircraft or car switches from uniform mo-
tion to a maneuver mode, or switches back from a maneuver
mode to uniform motion. In nonlinear filtering, the simplest
model of this type is a Markov jump linear Gaussian process
x,; satisfying

Ty = A(Qt)l't_l + B(Gt)wt (1)

where 0; is a hidden Markov chain, that switches per time
step with probability II;; from 7 to j in the set of models
{1,...,N}.

The problem is to estimate x; from the noisy observation

Yt = F(gt)fbt + G(Qt)'l)t (2)

where y, is the R™-valued observation of the R™-valued
system state xz,. Matrices A , B, F' and G depend on 6,,
and w; and v, are independent white Gaussian noises.

The optimal non-linear estimator involves a number of
Kalman filters that increases exponentially with time t. The
IMM estimator [1,2] involves N Kalman filters only, one
for each possible mode. To compensate for the reduction
in number of filters, at the start of each estimation cycle,
there is a controlled interaction/mixing between the estimates
from the N Kalman filters. [1] has formally proven that these
interaction/mixing equations are exact, not an approximation.
At the end of each estimation cycle; the IMM estimator
calculates the filter weights (mode probabilities), as well as the
overall mean and covariance. Bar-Shalom et al. [3] give an in-
depth explanation of the IMM estimator and its application in
tracking and navigation. Kalman filters for kinematic models
[3] are low-pass filters. With small noise gain B in (1) they
have a low bandwidth, suitable for nearly constant velocity
motion. With large B, they have a higher bandwidth and are
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suitable for maneuvering targets. The IMM with such models
is an adaptive bandwidth estimator.

In case of no mode switching, II is the identity matrix and
IMM reduces to the well-known MM estimator. As explained
by [4], the success of the IMM estimator can be attributed to
its simplicity in extending the MM estimator with the exact
interaction equations at the beginning of each estimation cycle,
which makes IMM the natural approximation of the optimal
estimator for mode-switching systems.

II. IMM IN AIR TRAFFIC CONTROL

In Air Traffic Control (ATC), Multisensor Multitarget Track-
ing (MTT) is a basic functionality in fusing observation data
reports from various sensors into a reliable and accurate real-
time air traffic situation. One of the problems to be handled by
MTT are to track a sudden maneuver start and stop for aircraft.
Additional problems are that sensor reports may include outlier
and false measurements, both of which can be mistaken for a
maneuver. Another problem is that a data report typically does
not include the identity of the aircraft source, or may include
an erroneous identity.

In the eighties, the first author had the opportunity to inves-
tigate this problem at Netherlands Aerospace Laboratory NLR.
The novel approach was to study the problem within the theory
of nonlinear filtering of a jump-diffusion that evolves in a
hybrid state space. This resulted in a characterization of IMM’s
interaction in a continuous-time setting [5]. Subsequently,
this interaction was developed for a discrete-time version of
the IMM estimator [1]. Initially, at NLR, this research was
judged to be esoteric, rather than of practical use. However,
this view completely changed when for an IMM based track
maintenance algorithm remarkably good performance was
demonstrated on simulated and live data from primary radar
observations of air traffic [6]. The modes of flight modelled
in this research are uniform motion, speed change, right turn
and left turn, while outliers, false measurements and missing
identities were covered by Probabilistic Data Association
(PDA). In the follow-on phase, the research was widened to
the development of a Bayesian MMT design for ATC [7].

The remarkable tracking results obtained by NLR motivated
EUROCONTROL to start the development of its multisensor
multitarget tracking system ARTAS (Air traffic management
suRveillance Tracker and Server). The first ARTAS version
fused data reports from multiple primary and secondary radars,
and its tracking architecture was largely based on the IMM
inspired design of [7]. Halfway the ninetees, ARTAS started its
ATC operational use in a steadily increasing number of EURO-
CONTROL member states. The use of ARTAS by a steadily



increasing number of ATC centres, has also stimulated further
development. One important development is the replacement
of PDA by a Joint PDA approach that avoids coalescence
of neighbouring tracks [8]. Other important developments
concern the fusion of data reports from new sensor types, such
as Mode S, Automatic Dependent Surveillance (ADS), Wide
Area Multilateration (WAM) and Surface Movement Radar
(SMR) [9]. So far, all these extensions have shown to fit well
within the IMM centered design of [7].

Today, ARTAS is operational for Air Traffic Control in 43
member states of EUROCONTROL, as well as in several other
states, including USA. In parallel, its further development is
ongoing, such as fusing new sensor types for the tracking of
an increasing number of drones.

III. IMM IN AUTONOMOUS DRIVING

An advanced driver assistance system (ADAS) or au-
tonomous driving (AD) system must be capable of estimating
1) the ego vehicle’s (the driving agent) motion, orientation,
behavior, and trajectory, as well as 2) the perception of
surrounding objects such as other vehicles, bicycles, and
pedestrians, to ensure the safety (one of the primary concerns)
and efficiency of autonomous vehicles.

An IMM estimator is a powerful tool because it can handle
the uncertainty and noise in sensor data and adapt quickly
to changes in complex driving environments such as sudden
turns, and unexpected obstacles. It employs several representa-
tive dynamic models that account for the kinematic physics of
nearby objects and, as a result, contribute to a comprehensive
description and understanding of the overall driving scenario.

In an autonomous driving system, different sensors and
sources of information provide different types of data, such as
LiDAR [10], radar, cameras, GPS, IMU and so on. Each sensor
has its strengths and weaknesses, and none of them alone
can provide a complete picture of the vehicle’s environment.
For example, LiDAR can provide high-resolution 3D point
cloud data, but it can be affected by weather conditions such
as rain and snow. On the other hand, radar can penetrate
some weather conditions but provides lower-resolution data.
By using IMM, the autonomous driving system can combine
data from different sources and sensors, and rely on multiple
models of the vehicle’s environment to make more accurate
and reliable decisions in real time. Each model is designed to
capture a specific aspect of the environment, such as object
detection, motion estimation (which is subject to different
behavior modes), or localization. These multiple models are
then used to generate a more accurate and reliable estimate of
the vehicle’s surroundings [11].

In a variety of autonomous driving scenarios, IMM estima-
tion has demonstrated significant efficiency, robustness, and
reliability in integrating onboard vehicle sensors in Multi-
object Tracking (MOT) and vehicle localization. These are
used for applications such as estimating road conditions and
predicting drivers’ turning intentions at urban intersections,
i.e., can handle different behavior modes [12]. Compared to
single-model-based tracking, IMM has been shown in practice
to improve the accuracy of motion estimation and overall,

MOT performance with less track segmentation, less object
ID switching, and higher recall.

Being a model-based approach that incorporates prior
knowledge, IMM fills a gap between autonomous driving
and data-driven algorithms because the latter solely relies on
patterns in data and may not be able to capture the full range of
driving scenarios. Optimal performance of autonomous driving
can be achieved by using a combination of model-based
algorithms and data-driven approaches, with IMM delivering
robust and reliable tracking results and machine learning (ML)
and neural networks (NN) capturing more subtle patterns in
the sensor data and providing additional insights. Overall, the
IMM estimator will continue to be critical in the advancement
of autonomous driving technology.

IV. LOOKING AHEAD

In this short paper, two specific IMM applications in mul-
tisensor multitarget tracking have been highlighted: i) for air
traffic in ATC and for road traffic in AD. From these highlights
it has become clear that by their objectives, these application
always involve very large sets of live data streams. From
this perspective, MTT has been decades ahead of the current
era of large data research. This also means that the results
obtained from MTT research can provide novel insight in
large data research. To speak in IMM terms, this defines great
opportunities for Interaction between research in Bayesian
estimation and in large data.
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