

CHYLA workshop

CREDIBLE HYBRID ELECTRIC AIRCRAFT

Welcome to Southampton!

Workshop Agenda

Start	End	Duration	Topic
9:00	9:15	15	Welcome
9:15	9:30	15	Introduction to workshop and agenda
9:30	10:00	30	Keynote
10:00	10:30	30	Project synopsis, baseline designs
10:30	10:45	15	Coffee Break
10:45	11:30	45	Credibility-based MDO methodology
11:30	12:30	60	Sensitvity study and MDO study results
12:30	13:30	60	Lunch
13:30	14:15	45	Regional operative scenario
14:15	14:45	30	SIENA project
14:45	15:15	30	FUTPRINT50 project
15:15	15:30	15	Coffee Break
15:30	16:30	60	Open discussion on scalability/challenges/switching points of HEP applications
16:30	17:15	45	Discussion on FUTPRINT50 roadmap and connection to SIENA/CHYLA activities
17:15	17:30	15	Concluding remarks/end of workshop
19:00			Dinner

Workshop Objectives

- Support reflection on results and studies to aid final scalability assessment
 - Review and validate sensitivity studies and optimization results
 - Integrate expert vision on solutions and challenges
 - Support both CHYLA and SIENA projects
- Showcase FUTPRINT50 roadmap and collect input
- Note: minor update can be accommodated for CHYLA, no major considerations due to project end date (Final Review on 31 May)

Feedback forms

- To collect feedback/comments/suggestions during presentations:
 - Feedback forms
 - Will be processed prior to open discussion in the afternoon & reviewed after meeting to support scalability assessment
 - Analog (distributed in the room)
 - Digitally:
 - https://forms.office.com/e/M5DtwVtyGM
 - short: http://tiny.cc/CHYLA
 - (link als on the bottom of the page, QR code in top right cor

Project synopsis

Call history, objectives and setup

Background

- JTI-CS2-2020-CFP11-THT-14:
 - Scalability and limitations of Hybrid Electric concepts up to large commercial aircraft
- Switching points:
 - Technologies better suited to one or another class (or CS23/25)
 - Influence:
 - TLAR
 - Propulsion system architecture
 - Economics
- Two parallel projects:

HEP – some challenges

HEP

Enables/ facilitates

Challenges?

Distributed Propulsion, BLI

Challenges?

- Weight & Complexity
- TRL of high-power electrical systems
- Cooling systems
- Airport infrastructure
- Safety & Certification

Quantification of the effect on:

- Propulsive efficiency
- Lift-to-drag ratio

Sustainable Aircraft Design?

Vast literature involving:

- different scales
- different technologies
- different aircraft configurations
- different design tools

- Which technologies can be applied?
- At which scales can they be applied?
- How credible are the technological assumptions?

CHYLA – Credible Hybrid Electric Aircraft

- Landscape of opportunities, challenges and limitations for application of key radical technologies in terms of scalability across different classes:
 - GA, COMMUTER, REGIONAL, SMR AND LPA
- Credibility (uncertainty) of underlying technology assumptions as explicit factor in MDO approach
- Analysis of the infrastructure, operational, & economical aspects.

Design approach

Scalability Assessment

Scalability

"FEASIBILITY OF NEXT GENERATION KEY
TECHNOLOGIES WHEN APPLIED TO
DIFFERENT VEHICLE CLASSES"

- Identification of switching points.
- Opportunities/Limitations/Challenges for different technology applications (to different scale/classes of aircraft).

Scalability Assessment – 4 stages

- 1. Qualitative expert opinion: "Matrix of Technologies"
 - Advisory board feedback
 - Literature/workshop/conference cross-checks
 - → Defines design space
- 2. Baseline designs: "Areas of Interest"
- 3. Credibility-based MDO & design sensitivities
- 4. Operations and economics
 - → Cross-vehicle class scalability assessment

Per vehicle class; all designs/optimizations are manually analysed for performance and compared to references

Per vehicle class; all designs/optimizations are manually analysed for performance and compared to references

reference aircrafts (conventional)		Long Range (~A350-900) CS-25	Medium Range (~ A320-NEO) CS-25	Regional (~ ATR72-600) CS-25	Commuter CS-23	General Aviation CS-23
mission requirements	pax	315	150	70	19	4
	payload [t]	53,5	20	7,5	2,3	0,35
	range [nm / km]	5 830 / 10 800	2 560 / 4 555	500 / 926	270 / 500	230 / 426,5
	cruise Mach	0,85	0,78	0,4	0,316 (200 kt)	0,187 (125 kt)
	cruise alt [ft / m]	40 000 / 12 192	37 000 / 11 278	23 000 / 7 010	12 000 / 3657	8 000 / 2 438

mission requirements / energy storage source / powertrain architecture / propulsion layout

Fuel (Jet-A)

Fuel (H₂)

battery

(H₂ + Fuel Cell)

3. Serial

5. Partial turboelectric

2. Turboelectric

4. Parallel

6. Serial/parallel partial hybrid

	Conventional H2 direct burn	Partial Turbo Electric	Parallel	Serial Parallel Partial Hybrid	Serial	Full-electric
Fuel (H2 or JetA1)						
Fuel (JetA1) + Battery						
Battery						

Conclusions from earlier studies

- If field performance is limiting: enhance <u>low-speed performance</u> (e.g. LEDP)
- For long-range aircraft: aero-propulsive benefit of propulsion systems which enhance <u>cruise performance</u>
- Expand turboelectric "regional prop" market to longer ranges
- Leading-edge distributed propulsion for high speed application (M> 0.6)
- Serial, fully-electric, or fully-turboelectric powertrains for SMR, LPA

	Conventional H2 direct burn	Partial Turbo Electric	Parallel	Serial Parallel Partial Hybrid	Serial	Full-electric
Fuel (H2 or JetA1)	P1: TF. P2: NA LPA; SMR	P1: TF. P2: BLI-fan LPA; SMR				
	P1: TP. P2: NA Reg	P1: TP. P2: BLI-fan Reg				
		P1: TP. P2: WtipMP Reg				
			P1: boosted TF. P2: NA SMR	P1: TP. P2: BLI-fan Reg	P1: NA. P2: WtipMP Com	
Fuel (JetA1) +				P1: TP. P2: WtipMP Reg		
Battery			P1: boosted TP. P2: NA Reg	P1: TP. P2: LEDP Com	P1: NA. P2: LEDP Com	
_						P1: WMP. P2: WtipMP GA
Battery 						P1: P2: LEDP Com; GA

Baseline designs

Scalability assessment stage 2

Per vehicle class; all designs/optimizations are manually analysed for performance and compared to references

General aviation

- Candidate for full electric powertrain
- Combined with LEDP

- LEDP enables higher wing loading
 - Smaller wing per unit weight
- Equivalent PREE to reference
 - Despite MTOM penalty
 - ~900kg battery required for equivalent 33kg fuel
 - Benefits from high EM efficiency
- Scalable to commuter class

Commuter aircraft - summary

- Full-e LEDP
- Serial LEDP & WTMP
- SPPH (main + LEDP)

- Hybrids within CS-23
- Full-e exceeds CS-23 (150%)
- Serial WTMP can achieve FM benefit at similar PREE
- Significant increase in masses and dimensions

Commuter - detail

Serial LEDP

- At CS-23 limit
- Battery power supply increases GT powerloading
- Increased wingloading (33%)
- PREE decrease
- Power conversion losses and battery mass penalize cruise L/D improvement

Serial WTMP

- Within CS-23
- Battery power supply increases GT powerloading
- High aero-prop efficiency
- Equivalent PREE and fuel burn reduction
- Potential for more improvement sizing battery for energy

Commuter - detail

Full-E LEDP

- CS-23 MTOM exceeded
- Increased wingloading (17,5%, serial LEDP at 33%)
- Significant PREE improvement

SPPH-LEDP

- Within CS-23
- Battery power supply increases GT powerloading
- Design wingloading sensitive to φ (supplied power ratio)
- PREE decrease, FM increase

Supplementary studies

Liquid Hydrogen Tank integration

Long-range

MTOM

Effects of LH2 fuel tank integration

- Integral vs non-integral tank: (a)
 - Benefits increase aircraft category
- Aft-and-forward rather vs aft tank layout (b)
 - SMR & LPA; improved specific energy consumption, worse OEM/MTOM
- Increasing fuselage diameter by adding one seat abreast (c)
 - SMR suffers most due to extra aisle
 - LPA smallest penalty
 - Reg rather unaffected
- Double-deck cabin beneficial for LPA, without large performance degradation (80x80m box)

(b) Aft & fwd rather than aft layout

Published in CEAS Aeronautical Journal, September 2022, DOI 10.1007/s13272-022-00601-6

Regional aircraft - summary

- Largest design space exploration
- LH2 combustion
- WTMP, BLI or LEDP

- LH2 most FM reduction
- LEDP offers potential when gatesize constrained
 - Battery volume (in wing) becomes constraining
- Sensitivity studies indicate potential for FM benefits
- Mass penalty must be carefully overcome by power-control parameter selection
- Power conversion losses can be penalizing

Short/medium range aircraft

- Boosted turbofan
- BLI fan
- LH2 combustion

- Only LH2 combustion shows potential to lower FM
 - Fuselage length/mass penalize PREE
- Boosted turbofan suffers from debilitating mass penalties, even at low supplied power
- BLI fan sensitive to OEM increases

Large passenger aircraft

- BLI fan
- LH2 combustion

 No possibility to scale up boosted turbofan from SMR

- Effects from SMR scale up directly
- Extreme fuselage length increase for LH2
 - Challenge to fit in 80x80m box
 - Double deck configuration may be of interest
- BLI fan shows similar effects to SMR, potentially better at LPA

Scalability assessment stage 2 - summary

- Full-e up to 19 pax commuter, if CS-23 limit ignored
- LEDP enables HEP spanconstraint regional or large commuter aircraft to fit within gate limits
 - FM reduction possible
 - Wing volume becomes constraining
- WTMP seems better suited to commuter aircraft

- Serial power train for commuter/regional, SPPH for dual powertrain suffers from power conversion losses
- Beyond regional, only LH2 combustion
- Hybridization up to SMR, boosted turbofan

Per vehicle class; all designs/optimizations are manually analysed for performance and compared to references

Scalability Assessment Stage 3 & 4

- Stage 3:
 - Selected aircraft for credibility-based MDO; with higher fidelity analysis
 - Supported by additional sensitivity studies with state-of-the-art conceptual aircraft design methods
- Stage 4:
 - Regional Airline Network
 - Airport integration

CHYLA advancements beyond SotA

Development of:

- Credibility-based MDO method
- (Hybrid) Electric Energy Network
- Regional airline network
- Scope for next presentations
- Provide key exploitable results beyond CHYLA project

Credible HYbrid eLectric Aircraft

Thank You

This project has Received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 101007715.

