

Sensitivity study & MDO results

CHYLA PROJECT WORKSHOP SOUTHAMPTON, 15TH FEBRUARY 2023

= 9%

		$\phi_{cruise} = 10\%$		$\phi_{cruise} = 9\%$	
		Piaggio E-STOL	Initiator Piaggio E-STOL	Initiator Piaggio E-STOL	
МТОМ	[tons]	12.8	12.96	12.5	
OEM (inc. battery)	[tons]	9.92	10.47	10.0	
Installed Power EM2 (all 4)	[MW]	2.0	2.39	2.30	
Installed Power GT	[MW]	1.1	1.12	1.08	
Installed Ebat	[GJ]	4.90	5.83	5.43	

Analysis should only consider relative comparison between aircraft rather than absolute numbers.

Results are highly sensitive to the battery supplied power ratio

CHYLA – CREDIBLE HYBRID ELECTRIC AIRCRAFT

Sensitivity study: approach

CHYLA – CREDIBLE HYBRID ELECTRIC AIRCRAFT

Sensitivity study: Regional

Sensitivity study: exploration in TLAR

CHYLA Workshop Southampton - http://tiny.cc/CHYLA

Sensitivity study: Power Control Parameters

Aircraft	MA flight phase	GT throttle ξ	Supplied Power Ratio Φ	Shaft Power Ratio φ	
		$\xi = \frac{P_{GT}}{P_{GTmax}}$	$\Phi = \frac{P_{bat}}{P_{bat} + P_f}$	$\varphi = \frac{P_{s2}}{P_{s1} + P_{s2}}$	$P_{\rm f}$ $P_{\rm gt}$ $P_{\rm s1}$ $P_{\rm s1}$
REG-baseline	Climb Cruise Descent	0.70-0.95 0.90-0.90 0.035-0.035			$F \rightarrow GI \rightarrow GB \rightarrow PI \leftarrow$ $\Phi \qquad P_{d} \qquad F \rightarrow GB \leftarrow P_{gb} \qquad F \rightarrow F$
REG-boostedTP	Climb Cruise Descent	0.90-0.90 0.85-0.85 0.25-0.10	0.00-0.05 TBD-TBD 0.00-0.00		$\overrightarrow{BAT}_{P_{\text{bat}}} \xrightarrow{P_{\text{bat}}} \overrightarrow{PM}$
REG-PTE-BLI	Climb Cruise Descent	0.70-0.95 TBD-TBD 0.035-0.035		0.00-0.00 0.08-0.08 0.00-0.00	$P_{e2} \xrightarrow{P_{s2}} P_{s2}$
REG-PTE-WtMP	Climb Cruise Descent	0.70-1.00 TBD-TBD 0.035-0.035		0.10-0.14 0.20-0.20 0.00-0.00	Two-way power path Energy storage source
REG-SPPH-BLI	Climb Cruise Descent	0.90-0.90 0.90-0.90 0.05-0.05	0.01-0.05 TBD-TBD 0.00-0.00	0.07-0.05 0.05-0.05 0.05-0.05	EM1Primary powertrain componenEM2Secondary powertrain compon
REG-SPPH-WtMP	Climb Cruise Descent	0.90-0.90 0.90-0.90 0.05-0.05	0.01-0.05 TBD-TBD 0.00-0.00	0.08-0.18 0.20-0.20 0.00-0.00	

Aircraft	MA flight phase	GT throttle ξ	Supplied Power Ratio Φ	Shaft Power Ratio φ
		$\xi = \frac{P_{GT}}{P_{GTmax}}$	$\Phi = \frac{P_{bat}}{P_{bat} + P_f}$	$\varphi = \frac{P_{s2}}{P_{s1} + P_{s2}}$
REG-SPPH-BLI	Climb Cruise Descent	0.90-0.90 0.90-0.90 0.05-0.05	0.01-0.05 TBD-TBD 0.00-0.00	0.07-0.05 0.05-0.05 0.05-0.05

Sensitivity study: Range exploration

CHYLA – CREDIBLE HYBRID ELECTRIC AIRCRAFT

Sensitivity study: Range exploration

CHYLA Workshop Southampton - http://tiny.cc/CHYLA

Takeaways

- ✓ Benefits of distributed propulsion at system-level are overcome by power conversion losses and mass penalties.
- ✓ Performance of battery-assisted aircraft is highly dependent on the set power control parameters selected for component sizing and energy usage.
- ✓ When used for temporary phases at high power output, battery usage has a debilitating impact on aircraft-level energy consumption, as well as on fuel consumption.
- ✓ The MTOM achieved by LH2 regional aircraft is comparable to baseline, but performance penalty caused by excess parasite drag due to lengthened fuselage and larger HT.

Outlooks

- > Can distributed propulsion provide some benefits?
- > Can a larger usage of battery energy be beneficial and what would limit the degree of hybridization ?

Sensitivity study: span limitation

Radical new aircraft within existing infrastructures

The increased MTOM of battery-powered aircraft induces a larger wingspan

How restrictive is the 36 meter-span-limit on the degree of hybridization of regional aircraft?

Interest of HEA vs full-electric:

- Approach the span-constraint impact without having to adapt the PL/range requirements from their references within the aircraft class.
- Sets a minimum DoH for the harmonic mission that can then be exceeded for less restrictive missions. (same battery capacity with lower fuel consumption)
- Any electric aircraft with a range-extender is conceptually a HEA that must be sized by its harmonic mission

Sensitivity study: TLARS & configuration

Top Level Airc	raft Requir	ements	Aircraft Design Parameters			
Pax capacity	[-]	48 @ 30'' pitch	Abreast seating	[-]	2 - 1	
Max payload	[kg]	5450	Wing aspect ratio	[-]	12	
Range at max payload	[nm]	500	Taper ratio	[-]	0,47	
Cruise Mach number	[-]	0,4	Spanwise kink location	[%]	31,5	
Cruise altitude - ISA	[ft]	23,000	Tickness-to-chord ratio	[%]	[18, 16, 13]	
Landing distance - ISA - SL	[m]	1006	[root, kink, tip]			
Takeoff distance - ISA - SL	[m]	1372	HT volume coefficient	[-]	1,00	
Diversion Mach number	[-]	0,2785	VT volume coefficient	[-]	0,08	
Diversion altitude	[ft]	4920	VT sweep	[deg]	30	
Diversion range	[nm]	100	Battery location	[-]	wing	
Time-to-climb at cruise altitude at cruise speed on full payload	[min]	22				

Sensitivity study: span limited serial regional HEA

How restrictive is the 36 meter-span-limit on the degree of hybridization of regional aircraft?

Power Control Parameters for serial powertrain

Size the GT for cruise ($\xi_{cruise} = 0.9$; ϕ_{cruise}) and adapt battery power output to other constraints.

Serial hybrid electric aircraft: high-level results

				REG-baseline	REG-serial	Δ[%]
	u S	ϕ_{cruise}	[—]	N.A.	0,30	N.A.
iqn	ctio	GT power loading $W_{TO}/P_{GT,max,SLS}$	[N/W]	0,054	0,16	+205
Jes elec aria	elecaria	Battery power loading $W_{TO}/P_{GT,max,SLS}$	[N/W]	N.A.	0,103	N.A.
	s >	Take-off wing loading W_{TO}/S_w	$[kN/m^2]$	3,18	3,18	0,0
		МТОМ	[tons]	17,07	34,71	+103
	us K	OEM	[tons]	10,27	27,95	+172
	Masses	Fuel mass	[tons]	1,35	1,30	-3,8
		Battery mass	[tons]	N.A.	11,55	N.A.
		Wing span	[m]	25,14	35,80	+42
		Wing area	$[m^2]$	52,65	106,8	+102,9
		Degree of Hybridization	[—]	N.A.	28,4	N.A.
KPIs	inal	Fuel energy consumption, $E_{\!f}$	[GJ]	38,2	29,4	-23,1
	mor miss	Electric energy consumption, E_{bat}	[GJ]	N.A.	11,7	N.A.
	<u> </u>	PREE	[-]	1,296	1,205	-7,0

Sensitivity study: increasing wing loading via LEDP

Lower the wing span by increasing the wing loading

'Serial' powertrain architecture, with Leading Edge Distributed Propulsion (LEDP)

First try, max wing loading = 5,01 kN/m2. \Rightarrow not enough wing volume for {fuel + battery}

$$b = \sqrt{AR.S}$$

$$V_{wing,available} = k \frac{S^{3/2}}{\sqrt{AR}}$$
Wing span scales with $S^{1/2}$

$$V_{wing,available} = k \frac{S^{3/2}}{\sqrt{AR}}$$
Internal wing volume scales with $S^{3/2}$

$$An \text{ increase in wing loading would decrease the wing internal volume faster than the wing span scales with $S^{3/2}$$$

Size the GT for cruise ($\xi_{cruise} = 0.9$; ϕ_{cruise}) and adapt battery power output to other constraints.

Serial hybrid electric aircraft: high-level results

Sensitivity study: span limited regional hybrid electric ai

			REG-baseline	REG-serial	Δ[%]	REG-serial- LEDP	Δ[%]
L S	ϕ_{cruise}	[-]	N.A.	0,30	N.A.	0,40	N.A.
iign ctio able	GT power loading $W_{TO}/P_{GT,max,SLS}$	[N/W]	0,054	0,16	+205	0,23	+324
Des elec aria	Battery power loading $W_{TO}/P_{GT,max,SLS}$	[N/W]	N.A.	0,103	N.A.	0,09	N.A.
_	Take-off wing loading W_{TO}/S_w	$[kN/m^2]$	3,18	3,18	0,0	3,72	+17
	мтом	[tons]	17,07	34,71	+103	39,67	+132
ns Ns	OEM	[tons]	10,27	27,95	+172	33,00	+221
es Isio	Fuel mass	[tons]	1,35	1,30	-3,8	1,23	-9,3
lass mer	Battery mass	[tons]	N.A.	11,55	N.A.	16,00	N.A.
⊇: ∑	Wing span	[m]	25,14	35,80	+42	35,44	+41
	Wing area	$[m^2]$	52,65	106,8	+102,9	104,7	+98,8
	Degree of Hybridization	[-]	N.A.	28,4	N.A.	37,4	N.A.
Is iinal sion	Fuel energy consumption, E_{f}	[<i>GJ</i>]	38,2	29,4	-23,1	25,5	-33,2
KF mor miss	Electric energy consumption, E_{bat}	[<i>GJ</i>]	N.A.	11,7	N.A.	15,3	N.A.
	PREE	[-]	1,296	1,205	-7,0	1,213	-6,4

Takeaways

- ✓ For an aircraft sized based on the same TLARs as the ATR-42, the ICAO code C 36 meters span limit is reached for a relatively low DoH ~30%.
- $\checkmark\,$ An increase in wing loading can enable a larger DoH, around 40%
- ✓ Trends indicate that a higher DoH does not necessarily induce a lower fuel consumption.
- A combination of high wing loading and of low volumetric energy density for batteries compared to jet fuel can lead to the available wing volume being too small for the required volume of the energy carriers.

	boostedTF	
∕l _{cruise}	0.7	
Dax	50	
Range	926km	

M_{cruise} 0.35 Pax 19

ovy Co