

CHYLA workshop

CREDIBLE HYBRID ELECTRIC AIRCRAFT

Workshop Agenda

Start	End	Duration	Topic
9:00	9:15	15	Welcome
9:15	9:30	15	Introduction to workshop and agenda
9:30	10:00	30	Keynote
10:00	10:30	30	Project synopsis, baseline designs
10:30	10:45	15	Coffee Break
10:45	11:30	45	Credibility-based MDO methodology
11:30	12:30	60	Sensitvity study and MDO study results
12:30	13:30	60	Lunch
13:30	14:15	45	Regional operative scenario
14:15	14:45	30	SIENA project
14:45	15:15	30	FUTPRINT50 project
15:15	15:30	15	Coffee Break
15:30	16:30	60	Open discussion on scalability/challenges/switching points of HEP applications
16:30	17:15	45	Discussion on FUTPRINT50 roadmap and connection to SIENA/CHYLA activities
17:15	17:30	15	Concluding remarks/end of workshop
19:00			Dinner

Feedback forms

- To collect feedback/comments/suggestions during presentations:
 - Feedback forms
 - Will be processed prior to open discussion in the afternoon & reviewed after meeting to support scalability assessment
 - Analog (distributed in the room)
 - Digitally:
 - https://forms.office.com/e/M5DtwVtyGM
 - short: http://tiny.cc/CHYLA
 - (link als on the bottom of the page, QR code in top right corner)

Open discussion

Scalability/challenges/switching points of HEP applications

CS-23 MTOM limits

• 19 or less pax: 8618kg (19000lbs)

- @270nmi (500km) design range
- 1. Hybrid, within limit?
- 2. Full-e, ~9 pax, within limit?
- 3. Full-e 19 seats > limit
- 4. Lower range?

Span limits/gate constraints

- Hybrid electric regional may exceed Type-C gate constraints
- Distributed LE propulsion may allow larger DoH for spanlimited designs → added complexity
- TLAR will be adapted to keep complexity low (range, payload)
- Is Type-B gate limit of interest for HEP?
- REG at 36m span → relaxed runway length?

Credibility-based MDO

- Credibility vs. Performance
- What is an acceptable level of credibility/risk?

E.g. Piaggio E-STOL ~65% average credibility?

Operational challenges

- 1. Hydrogen handling
- 2. Battery charging facilities vs battery swapping
- 3. Airport infrastructure (storage facilities)
- 4. Charging time
- 5. Battery cycle life vs. Battery discharge rate
- 6. Battery handling
- 7. Gate constraints
- 8. Mass increase (runway, tire wear, etc)
- 9. Electricity demand

Requirements, Certification, Risks and Operational Challenges – Where do we stand?

OPERATIONAL CHALLENGES

 Charging time (and its effect on turnaround time)

RISKS/HAZARDS

- Battery thermal runway
- Firefighting of infrastructures
- Ramp safety

CERTIFICATION SPECIFICATIONS

AIRPORT CHALLENGES

- Additional space for battery storage
- Additional space for charging stations
- New equipment

OTHER

- Battery life
- Utilities requirements in terms of electricity demand
- Possibilty of parallelizing battery swapping and passenger (de-)boarding

Battery volume constraints

 LEDP can increase wingloading and relieve span constraint, but this may decrease available wing volume

Aspect ratio reduction?

– aero/struc -/+

• Thickness increase?

- aero/struc -/+

• Pods?

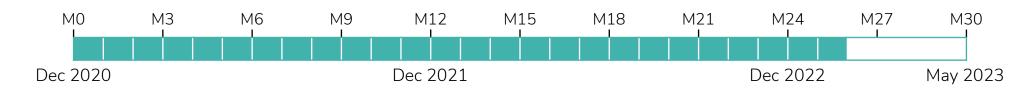
- aero/struc -/-

• Fuselage mounted?

– aero/struc ~/-

• Battery swapping?

- ops/struc -/-


80x80m box

• Will hydrogen integration (combustion) for long range airlines revamp the double-deck aircraft design?

- 80m length may be violated and airports will adapt
- Business case for A380-type aircraft

Credible HYbrid eLectric Aircraft

Thank You

This project has Received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 101007715.

