Influence of Bismuth Oxide as a Sintering Aid on the Densification of Cold Sintering of Zirconia

Nikhil Bhootpur¹, Hans Brouwer¹, Yinglu Tang¹*

Research question

Zircornia (ZrO_2) is a functional ceramic widely used in aerospace, automotive, and medical industries. In the past, 1200°C is the ideal sintering temperature for high quality densification.

- Pros: high density (relative density higher than 80%) and high hardness
- Cons: high energy consumption during synthesis how to reduce it?

Research goal Reducing sintering temperature while maintaining high density and high hardness of sintered ZrO₂

Approach #1: cold sintering with solvents

 Liquid phase (solvent) dissolves solid ceramic particulate at low temperature

Pros:

- ✓ particle rearrangement enhanced by wetting
- ✓ Kinetic: Mass transport enhanced by diffusion of solute ions;
- ✓ Thermodynamic: Solvent phase evaporates upon heating, yielding a supersaturated solution for precipitation [1]

Cons:

× low density, thus requiring further annealing/sintering step

Approach #2: liquid phase sintering

- Sintering aid melts at a certain temperature and becomes liquid that fills in between the solid powder particles Pros:
 - ✓ particle rearrangement enhanced by wetting
 - ✓ due to nonzero solubility of solid powder in the liquid phase, mass transport enhanced by diffusion of solute ions;

Cons:

- × sintering T needs to be higher than melting T of sintering aid;
- × sintering aid remains in the system, which could alter stoichiometry and affect various properties

This work:

Combined cold sintering through in-situ conversion of $Zr(OH)_4$ to ZrO_2 and H_2O at $400^{\circ}C$ and liquid phase sintering aided by Bi_2O_3 in the temperature range of 817 $^{\circ}C$ - 900 $^{\circ}C$

Experimental methods

Material: 4 different powder system (a) Pure $Zr(OH)_4$, (b) pure ZrO_2 , (c) Pure $Zr(OH)_4$ - Bi_2O_3 , and (d) ZrO_2 - Bi_2O_3 . Bi_2O_3 weight percentage varies from 5%, 10% and 15%.

Mixing:

Powders mixed in a planetary ball mill with 2-propanol as a dispenser and ball mass: powder mass ration as 4:1. Milling time: 3h at 300-rpm. Slurry was dried overnight in the fume hood under atmosphere.

Densification:

Spark plasma sintering (SPS) of these mixed ceramic powders was performed using the FCT System Gmbh. Dies made of either (i) Graphite or (ii) Stainless steel, or (iii) Tungsten carbide-Cobalt with maximum mechanical loading 50MPa, 150MPa, and 300MPa respectively, were used depending on the dwell piston pressure of the sintering cycle. Sintering temperature varies between 400°C and 1200°C.

Characterisation:

- DSC, TGA, mass spectrometry for insitu conversation observation
- XRD, SEM for phase purity check
- density, hardness measurements

Conclusion:

1. A density of 87% successfully achieved with a sintering temperature as low as 900 °C in a 'single sintering step' from pure $Zr(OH)_4$ at 300MPa [2]. 2. The 5wt% Bi_2O_3 - $Zr(OH)_4$ system achieved the highest relative density (99%) when sintered at 1200 °C and 50MPa. 3. The 10wt% Bi_2O_3 - $Zr(OH)_4$ system sintered at 900 °C - 50MPa dwell conditions had the highest hardness of value of 6.6 Gpa at a relative density of 72% [2].

References:

- [1] Guo et al., J. Am. Ceram. Soc., vol. 99, no. 11, pp. 3489–3507, 2016, doi: 10.1111/jace.14554.
- [2] C. Elissalde et al., Scr. Mater., vol. 168, pp. 134–138, 2019, doi: https://doi.org/10.1016/j.scriptamat.2019.04.037.
- Email: y.tang-5@tudelft.nl
- This work is published on https://doi.org/10.1016/j.ceramint.2023.07.207

