

Co-simulation for model coupling

Milos Cvetkovic m.cvetkovic@tudelft.nl

16th April 2019 Symposium on Multi Modelling TU Delft

Outline

- A few examples of problems
- Co-simulation as methodology
- Examples of IEPG projects
- Open challenges

Example #1: Technical grid studies of interconnected power systems

- COBRAcable HVDC connection: 325 km, 320 kV, 700 MW
- Stability and reliability studies must be completed before deployment
- Tennet uses PowerFactory
- Energinet.dk uses PSS/E

Options:

- Model migration
- **Co-simulation**

http://www.cobracable.eu/

Figure: www.prysmiangroup.com

Example #2: Proprietary technologies

The technology providers are not always open to disclose details of the implementation

Options:

- Controller 're-implementation'
- Encryption
- Share Dynamic Link Library (DLL)
- Co-simulation

When do we @IEPG use co-simulation?

- Technical studies of interconnected systems
- Inclusion of proprietary (controller) models
- Verification of controllers with ICT
- Modeling of multi-energy systems
- Validation of impact of cyber-attacks
- Digital twin in the control room
- Interconnection of laboratories
- Improving performance of co-simulation solutions

Time scales

ŤUDelft

Examples of co-simulations for power systems

Grid and ICT:

- EPOCHS, OpenDSS & OMNet+, Adevs & NS-2, GECO, PowerNet, VPNET, INSPIRE, OpenDSS & NS-2, TASSCS, etc.
- Summary in P. Palensky et. al, "Co-simulation of intelligent power systems", IEEE Industrial Electronics Magazine, 2016.

EMT + RMS:

- V. Jalili-Marandi et al. "Interfacing Techniques for Transient Stability and Electromagnetic Transient Programs", IEEE Tran on Power Delivery, 24 (4), Oct 2009.
- M. O. Faruque et al. "Interfacing Issues in Multi-Domain Simulation Tools", IEEE Tran on Power Delivery, 27 (1), Jan 2012.

Hardware in the Loop:

• W. Ren et. al, "Improve the Stability and the Accuracy of Power Hardware-in-the-Loop Simulation by Selecting Appropriate Interface Algorithms," 2007 IEEE/IAS Industrial & Commercial Power Systems Technical Conference, 2007.

Other big initiatives:

- EriGrid consortium, Real-time super lab, etc.
- DOE's Grid Modernization initiative (HELICS, GridSpice, FNCS, OpenHybridSim, etc.)

TUDelft

When is co-simulation useful in general?

- For interconnecting models encapsulated within domain-specific tools
- For overcoming privacy concerns
- For interconnection of more domains (heat, electricity, governance, etc.)
- For interconnection across spatial scales and time-scales
- For interconnection of continuous and discrete models (grid and ICT)
- For validation of algorithms
- For scalability, transparency, flexibility of the simulation environment

Co-simulation development in action

- Co-simulation a methodology for coupling of two or more software packages or models whose execution depends on each other
- The models, their solvers and software packages are typically assumed as given

- The methodology focuses on:
 - Development (deployment) of master algorithm for coupling
 - Interface development
 - Performance improvement
- Skills needed: programming, computer science, signal processing, numerical mathematics
- EE4655 Co-simulation of energy systems (course at EWI)

Master algorithm

A software code which manages synchronization and message exchange

Co-simulation master

Delft

C. D. Lopez, A. V. D. Meer, M. Cvetkovic, P. Palensky, "A Variable Rate Co-simulation Environment for the Dynamic Analysis of Multi-area Power Systems", IEEE Power & Energy Society PowerTech, Manchester, UK, June 2017.

Co-simulation synchronization

TUDelft

Handling asynchronous events?

Choice of the co-simulation master

- 1. One simulator as a master
 - All simulators synchronize to internal clock of one simulator
 - Examples: OMNET++, RTDS
 - Synchronization points and sequence are implicitly defined in this tool
- 2. Top-down approach (strongly coupled simulators)
 - One tool orchestrates the whole co-simulation
 - Example: Mosaik
 - Synchronization points and sequence are explicitly defined in the master code
- 3. Bottom-up approach (loosely coupled simulators)
 - Each simulator decides on its synchronization method
 - Example: HLA
 - Synchronization points and sequence are explicitly defined by communication points and synchronization requests of each simulator

TUDelft

Mosaik vs. HLA

Steinbrink, C.; van der Meer, A.A.; Cvetkovic, M.; Babazadeh, D.; Rohjans, S.; Palensky, P.; Lehnhoff, S. Smart grid co-simulation with MOSAIK and HLA : A comparison study. In: Computer Science - Research and Development, Vol. 33, No. 1-2, 2018, p. 135-14313

Interface model

- Interface model is a representation of the second simulator/model as seen from the interface of the first simulator/model
- Interface model could be taught of as a surrogate model whose purpose is to improve stability and/or speed of the co-simulation

Some interface options for circuit models:

- Ideal transformer (voltage/current) source
- Thevenin/Norton equivalent
- Partial Circuit Duplication
- Damping Impedance Method

Functional Mockup Interface (FMI) standard

- Open standard for co-simulation of differential equation-based models
- The models are packaged inside Functional Mockup Units (FMUs)
- Provides the possibility to evaluate the model and its Jacobian
- Provides options for initializing, starting, stepping and stopping the model, etc.

Performance considerations

- Co-simulation has a high overhead if the message exchange is of relatively high frequency while the internal model computations are relatively fast
- Grid simulations often fall in this category
- Improving speed, accuracy and/or scalability by smart choice of interface

Improving grid co-simulation performance Claudio Lopez

• Q: Can we speed up co-simulations by selectively decoupling predictable states without significant loss of accuracy?

- Methodology: Find a trajectory function that predicts simulator inputs. Decouple and recouple simulators based on the evaluation of this function.
- Implemented using Python and ZeroMQ. PowerFactory to come.

Co-simulation projects at IEPG

- Modeling of multi-energy systems
- Validation of impact of cyber-attacks
- Digital twin in the control room
- Interconnection of laboratories

Modeling of multi-energy systems

HapSISH Heat and Power Systems at Industrial Sites and Harbours

- Q: Can we develop a multi-energy system simulation tool based on existing open source models?
- Methodology: Use Modelica as a base due to a large number of existing libraries and models. Package models as FMUs. Co-simulate FMUs in Python.

Modelica:

- Non-proprietary modeling language
- Multi-domain physics modeling
- Equation-based and object-oriented
- FMI/FMU compatible

FMUworld

- Python based tool that connects multi-domain models packaged as FMUs
- Supported Modelica libraries:
 - OpenIPSL benchmark power system models (iTesla project, KTH, RTE)
 - ThermoSysPro thermal systems library (EDF France)
 - AixLib thermal system library (IDEAS project, RWTH Aachen)
- In progress: PyPSA
 Applications:
 Testing aggregator actions and microgrid operation
 Testing control and coordination strategies
 - Sensitivity analysis
 - Quick reconfiguration

Flexibility analysis with FMUworld

D. Gusain, M. Cvetkovic, P. Palensky, "Energy Flexibility Analysis using FMUWorld", Powertech 2019.

60.00

59.99

59.98

59.9

59.96

59.95

59.94

59.93

1000

Frequency (Hz

Validation of impact of cyber-attacks

Kaikai Pan

- Q: Validate the impact assessment of cyber-attacks using accurate ۲ numerical simulation tools.
- Methodology: co-simulation of PowerFactory (grid), OMNeT++ (attack ۲ model) and Matlab (state estimation)

Challenge: customized scheduler in OMNeT++

> K. Pan, A. Teixeira, M. Cvetkovic and P. Palensky, "Cyber Risk Analysis of Combined Data Attacks Against Power System State Estimation," in IEEE Transactions on Smart Grid. doi: 10.1109/TSG.2018.2817387

120

120

Generation Profile of Generator 1 on Bus 1

60

60

Time/s

Time/s

80

80

Attacks on Router 4

Attacks on Router

100

Attacks on Router 4

Attacks on Router

100

2.4

Digital twin in the control room

Arun Joseph

- Q: Can we implement a digital twin of power system for predictive control?
- Methodology: evaluate performance of simulation tools. Develop detection, model validation and prediction algorithms.

Digital twin:

- RTDS for power system emulation
- PowerFactory as the digital twin
- Master in Python, spawning replicas for evaluation of control solutions

A. Joseph, M. Cvetković, and P. Palensky, "Predictive Mitigation of Short Term Voltage Instability Using a Faster Than Real-Time Digital Replica," in *IEEE PES ISGT-Europe*, 2018, pp. 1–6.

EriGrid project

Rishabh Bhandia, Arjen van der Meer, Vetrivel Rajkumar

- Focus: develop co-simulation methodologies further. Deploy co-simulation for experimentation and testing.
- Targets: adaptation of FMI to power tools, improvement of co-simulation master algorithms, etc.

Latest test case:

- PowerFactory: IEEE 9 bus with a wind farm
- Matlab: FRT and converter controller
- FMI++ for interfacing
- Python script as a master

Multisite co-simulation

Rishabh Bhandia, Vetrivel Rajkumar, Arjen van der Meer

- Q: Can we perform a geographically distributed real time co-simulation in order to perform join experimentation?
- Challenges: design of the Interface Algorithm (IA) to ensure simulation fidelity (accuracy, degree of similarity to the monolithic)
- Tools: RTDS, Villas framework (RTWH and PoliTo)

RTDS-lab of TU Delft - virtual control room

Additionally: - Protection - HIL

In future: - control HIL

Projects:

- Migrate
- Promotion
- EriGrid
- Easy-Res
- TSO2020

Open challenges

- Consolidation of time scales short step operational models and long term decision making models
- The tradeoff between model fidelity vs. model/parameter/data uncertainty
- Accuracy vs. speed in relation to interface/surrogate models
- Guarantees on the performance (accuracy and speed) based on external limitations of the tools/models

