

The post-lockdown society: challenges of social and <u>mathematical</u> predictions

Robert Kooij

Fac. of Electrical Engineering, Mathematics & Computer Science
Dept. of Quantum & Computer Engineering
Section Network Architectures & Services
19 May 2020

Do you know who this is?

- Prof. Neil Ferguson
 - Mathematical epidemiologist at Imperial College London
 - Scientific Advisor to UK Government

Imperial College COVID-19 Response Team

Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand

Neil M Ferguson, Daniel Laydon, Gemma Nedjati-Gilani, Natsuko Imai, Kylie Ainslie, Marc Baguelin, Sangeeta Bhatia, Adhiratha Boonyasiri, Zulma Cucunubá, Gina Cuomo-Dannenburg, Amy Dighe, Ilaria Dorigatti, Han Fu, Katy Gaythorpe, Will Green, Arran Hamlet, Wes Hinsley, Lucy C Okell, Sabine van Elsland, Hayley Thompson, Robert Verity, Erik Volz, Haowei Wang, Yuanrong Wang, Patrick GT Walker, Caroline Walters, Peter Winskill, Charles Whittaker, Christl A Donnelly, Steven Riley, Azra C Ghani.

Prediction: based upon mathematical models

No action taken

500.000 deaths in UK!

exponential growth

 R_0

moving averages

flattening the curve

the R-number

Underlying basic principles

- Two modelling approaches
 - Agent based

Equation based

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dt} = \beta SI - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

Some cool simulators: agent based

Paul van Gent: post-doc at Faculty of CiTG https://github.com/paulvangentcom/python-corona-simulation

Some cool simulators: equation based

https://ncase.me/covid-19/

4th May 2020

Imperial College COVID-19 Response Team

Report 20: Using mobility to estimate the transmission intensity of COVID-19 in Italy: A subnational analysis with future scenarios

occur, the number of deaths are ted is likely to be considerably lower in both scenarios. It should be noted that a our model we do not account for cross-region movement, which, given increased mobility, is likely to increase infections and subsequently deaths, in regions not experiencing major epidemics.

NIPA = Network Inference-based Prediction Algorithm

Apply NIPA to evaluate Exit Strategies

Exit Strategies

- Relaxation of measures post-lockdown
 - public gatherings
 - school closures
 - social distancing
 - mobility restrictions
 - case-based measures
- Exit Strategy is combination of
 - Which measures?
 - When?
 - Where?
 - For whom?

Analysis Exit Strategies: uncertainty

- Availability and quality of data
- Duration immunity
- Seasonal variation
- Undetected cases
- Human mobility
- Adherence to post-lockdown measures

Analysis Exit Strategies: uncertainty

4 May 2020

Mobility held constant III Increased mobility: 40% return to pre-lockdown level

Analysis Exit Strategies: uncertainty

Virus spreading in public transport networks: the alarming consequences of the business as usual scenario

Published on April 30, 2020

1 article

Following

Panchamy Krishnakumari and Oded Cats, Dittlab | SmartPTLab, TU Delft

- Pre-corona demand:
 - 3 infectious travelers infect 55% of all travelers in 20 days

Analysis Exit strategies

dr. Tina Comes

