Data-Driven Epidemic Modelling in Public Transport Networks A case study on Washington DC metro network

Panchamy Krishnakumari, 6 October 2020

Opinion sharply divided about using an

Photo: Depositphotos.com

There is sharply divided support for a coronavirus tracing app among the Dutch and only one third say they would download it without question, according to research carried out by Delft, Maastricht and the VU universities.

Contact graphs

Hypothesis

Contact graphs of public transport can be derived from smart card data and hence we can model the virus spread within the public transport!

Public transport contact graphs

Four potential points of contact

- At the origin station
- Inside the train
- At transfer stations
- At the destination station

Public transport contact graphs

Given inferred passenger trajectory, tap-in location and time, tap-out location and time

Model parameters

- 1. Incubation period 5 days
- 2. Quarantine period 21 days
- Six possible states for a passenger:
- Susceptible -> Exposed -> Infected -> Infected and traveling ->Infected and quarantining -> Immune and traveling

- 2. Probability of proximity to an infected person P(B)

1. Probability of infection based on proximity to infected person P(A/B)

Depends on the number of passengers and the train/platform dimensions

1. Probability of infection based on proximity to infected person P(A/B)

1. Probability of infection based on proximity to infected person P(A/B)

2. Probability of proximity to an infected person **P(B)**

Depends on the number of passengers and the number of infected passengers

Data

Average ridership per day 600 000

Average ridership in a train at a given time

133

337 million personperson interactions during 5am - 12pm for 270 000 travelers

703 —> 1m 312 —> 1.5m 176 —> 2m

red implies an infected person has traversed the link

Simulation day: 1

3 people are infected

Questions?

More info: https://www.linkedin.com/pulse/virus-spreading-public-transport-networks-alarming-usual-krishnan/

