Exploring Biological Neuronal Correlations with Quantum Generative Models

Eliska Greplova and Vinicius Hernandes

"Understanding how biological neural networks process information is one of the biggest open scientific questions of our time."

"How do brains process information?"

"Exceptional efficiency of biological systems?"

"New models for computation?"

Modeling biological neuronal systems

	II	I	1111	111	11	I	
	Λ	$\mathbf{\Lambda}$	ΜМ	М	M		
-			п		I	1	
-			Δ				
-			/		Λ	Λ	

Machine Learning Models

 $y = f_{\theta}(x)$

Machine Learning Models

 $y = f_{\theta}(x)$

Machine Learning Models

einstein

girl with pearl earring

<u>Output</u> einstein

 $y = f_{\theta}(x)$

Generative Learning Models

Generative Learning Models

einstein + girl with pearl earring

QML

Pennylane AI https://pennylane.ai/qml/demos/tutorial_quantum_natural_gradient

- expressivity
- interpretability reduced number of parameters

Exploring Biological Neuronal Correlations with Quantum Generative Models

Design a quantum generative model that produces neuronal activity indistinguishable from the real biological data!

Hernandes, V., & Greplova, E. (2024). Exploring Biological Neuronal Correlations with Quantum Generative Models. arXiv preprint arXiv:2409.09125.

Hernandes, V., & Greplova, E. (2023, September). Modeling Neuronal Activity with Quantum Generative Adversarial Networks. In 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) (Vol. 2, pp. 330-331). IEEE.

Quantum Generative Adversarial Model: SpiQGAN

Hernandes, V., & Greplova, E. (2024). Exploring Biological Neuronal Correlations with Quantum Generative Models. arXiv preprint arXiv:2409.09125.

Hernandes, V., & Greplova, E. (2023, September). Modeling Neuronal Activity with Quantum Generative Adversarial Networks. In 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) (Vol. 2, pp. 330-331). IEEE.

Our model reproduces both spacial and temporal correlations in neuronal activity with linear number of trainable parameters!

Our model reproduces both spacial and temporal correlations in neuronal activity with linear number of trainable parameters!

Hernandes, V., & Greplova, E. (2024). Exploring Biological Neuronal Correlations with Quantum Generative Models. arXiv preprint arXiv:2409.09125.

• QML: Many open Q's

- Interesting applications?
- to train
- Let's explore QML for compact, more energetically efficient models!

• Challenging neuroscience task: QML is successful and cheaper

