Quantum correlations for energy systems

FRANCISCO FERREIRA DA SILVA

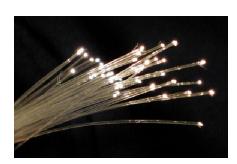
l	I	1	1	/	/	/	1	1	1	1	1	1	1	-	-	-	-						
/	/	/	/	/	1	1	1	1	1	1	1	1	1	-	-	-	-						
1	1	1	1	1	1	1	1	1	1	1	1	1	1	/	-	-	-						
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	/	-						
/	/	/	/	/	/	/	/	/	/	1	/	/	1	1	1	-	-						
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-						
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	/						
		-	-	-	-	-	-	-	-	-	-	-	-	-	/	/	1						
		_	_		-	-	-	-	-	-	-	-	/	/	1	1	1						

Quantum correlations?

Quantum internet: infrastructure to distribute remote entanglement

Entanglement

Making entanglement



Physical connection needed!

Using entanglement

0,1,0,0...

1,1,0,0...

Consume instantaneously

Non-local games

Alice's input: o_A

Win condition $g(d_A, d_B) = f(o_A, o_B)$

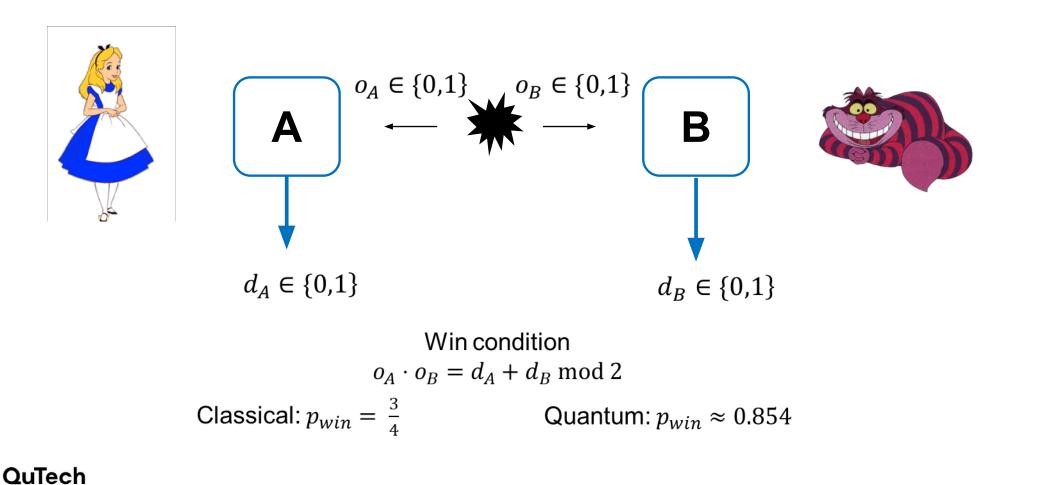
Bob's input: o_B

Alice's output: d_A

Bob's output: d_B

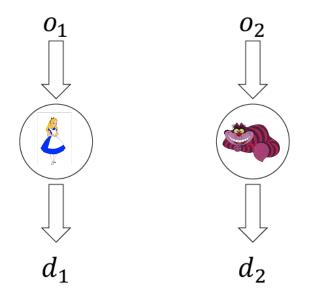
For some win conditions, Alice and Bob win more with entanglement!

Example: CHSH game



Latency tacit coordination problems

Observations



Decisions

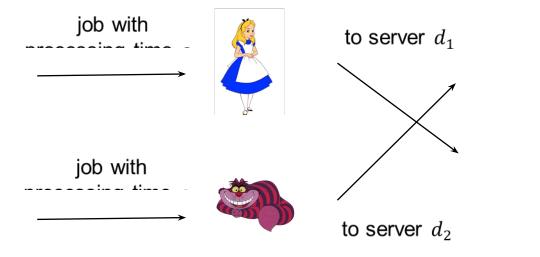
A **tacit coordination** problem involves **multiple parties** that each make an **observation** followed by a **decision** to optimize a global **utility**.

A latency tacit coordination problem involves multiple parties that each make an observation followed by a decision to optimize a global utility. The parties do not have enough time to communicate before making a decision.

Load balancing as latency tacit coordination problem

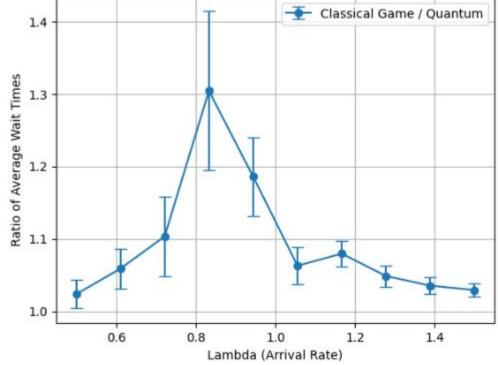
Observations: processing time of computing jobs

Utility: (inverse of) average wait time threshold-dependent wait time

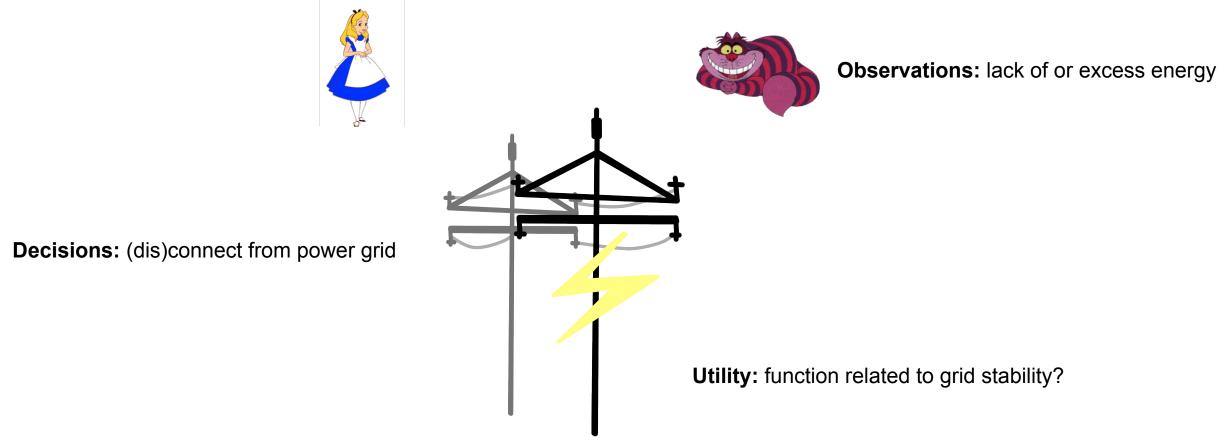


Decisions: server to send job

Ratio of Average Wait Times: Classical Game to Quantum



Latency tacit coordination problems in energy systems



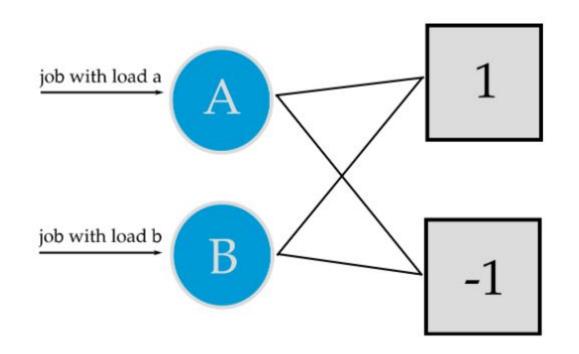
Latency tacit coordination problems in energy systems – design process

- What are their observations?
- What are their decisions?
- What is the **utility**? How does it relate to a **win condition** with a **quantum advantage**?

Conclusion

- Latency tacit coordination problems are potential near-term application of quantum (communications)
- There are known (academic) examples of such problems with quantum advantage
- Coming up with more & developing use cases is challenging but not impossible

Load sharing with costs for distribution



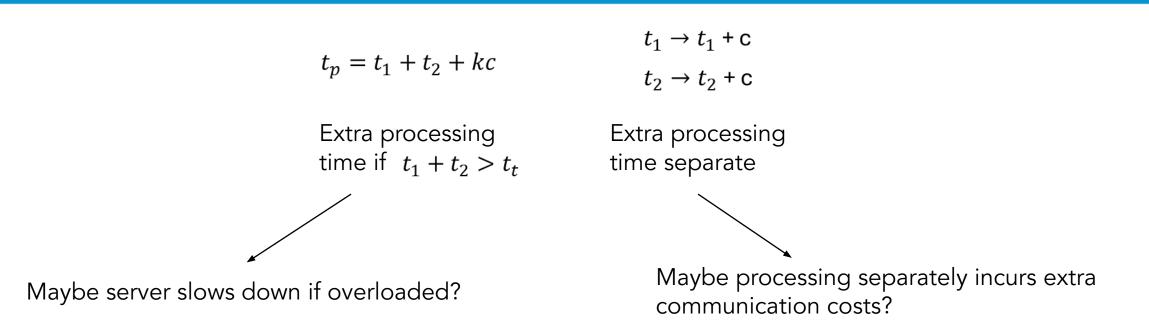
- Jobs arrive simultaneously following Poisson
- Processing time following exponential
- Equal processing-rate servers

$$t_p = t_1 + t_2 + kc$$

 $t_1 \rightarrow t_1 + c$ $t_2 \rightarrow t_2 + c$

Extra processing time if $t_1 + t_2 > t_t$ Extra processing time separate

Load sharing with costs for distribution – why?



More importantly: matches non-local game with known quantum advantage!

Continuous input non-local game

A and B respectively have inputs:

and outputs:

 $a \in [0,m]$ $b \in [0,m]$

 $o_a \in \{1, -1\} \ o_b \in \{1, -1\}$

Win condition:

$$o_a \cdot o_b = \begin{cases} +1, & a+b < m \\ -1, & a+b \ge m \end{cases}$$

Classical win probability: 75% Quantum win probability: 81.8%

Mapping the game to load sharing

A and B are sources where jobs appear simultaneously with processing times distributed in

They must choose to which of two servers to send their jobs

 $t_a \in [0,m] \ t_b \in [0,m]$

 $o_a \in \{1, -1\} o_b \in \{1, -1\}$

If the load is below a given threshold, the jobs should be processed together (i.e., correlated outputs); otherwise, apart:

$$o_a \cdot o_b = \begin{cases} +1, & a+b < t_t = m/2 \\ -1, & a+b \ge t_t = m/2 \end{cases}$$

Classical win probability: 75% Quantum win probability: 81.8%

