
Deep RL based Nonlinear Adaptive Flight Control:
on the gap between simulation and reality

Author: Adrian Beňo Supervisor: Dr. Erik-Jan van Kampen
Faculty of Aerospace Engineering, TU Delft, Netherlands

Abstract

Novel corrective algorithm bridging the gap between simulation and

reality is proposed, which online fine-tunes an offline pre-trained deep

reinforcement learning agent. The novel control architecture is inspired

by the incremental model based heuristic dynamic programming. This

novel control architecture is applied in an illustrative control environ-

ment. It was found that the corrective algorithm is able to help reach

the desired reference state in an environment governed by different

system dynamics than the system dynamics of the environment used

during the pre-training of the reinforcement learning agent.

Introduction

The need for robust flight controllers has become apparent as the systems

which must be controlled have substantially grown in complexity. More-

over, adaptability is one of the crucial properties of future flight controllers

too. The base of this research is reinforcement learning (RL), which can

handle complex control laws. A novel corrective algorithm is proposed to

tackle the problem of adaptability.

Reinforcement learning

Reinforcement learning as a sub-field of machine learning is the ”compu-

tational approach to learning from interaction” [1]. The learning phase

composes of collecting reward Rt+1 after taking action ~at, given state ~st.

The environment then propagates the agent to the next state ~st+1, at which

point these steps begin to repeat in loop. This is schematized in Figure 1.

Figure 1. The learning scheme of an RL agent. [1]

The agent tries to learn a policy π, a mapping from state ~s ∈ S to action~a ∈
A, which maximizes the future cumulative collected reward Gt =

∑T
t=t0

Rt.

The learned policy can be approximated by any function approximator,

such as a tabular method or an artificial neural network (ANN). In the latter

case, the RL agent is said to be deep RL agent.

The corrective algorithm

The corrective algorithm consists of two networks: learning actor (L) and

target actor (T). Initially, both are the same ~wL = ~wT and correspond to

the policy learned during the offline RL training. The learning actor then

online updates its policy so that the expected outcome x̂t+1 of its action ~ut

in the real world approaches the outcome x̄t+1 of the target actor’s action

ūt in the training environment. Formally, the L2 norm ea of the difference

between x̂t+1 and x̄t+1 is minimized.

This is possible to do online due to an IHDP-inspired update rule [2], which

informs the learning actor about the consequence of its actions via x̂t+1,

supplied by the incremental model. The architecture of this corrective

algorithm is given in Figure 2. The update rule of the learning actor is

given in Equation 1.

Figure 2. Corrective algorithm architecture. The training environment provides the

states which shall be visited. The incremental model predicts the states which the agent

will visit, given the current state and action. The learning actor then updates itself so

that the state which it will visit is closer to the state which it shall to visit.

EL = 1
2
e2

a

~wL ← ~wL − αL
∂EL(t + 1)

∂ ~wL(t)
(1)

∂EL(t + 1)
∂ ~wL(t)

= ∂EL(t + 1)
∂ea(t + 1)

∂ea(t + 1)
∂x̂t+1

∂x̂t+1

∂~ut

∂~ut

∂ ~wL(t)

Results

The performance of the corrective algorithm is evaluated in an illus-

trative environment - Gym’s inverted pendulum environment [3]. Ulti-

mately, we want to show that the corrective algorithm can online fine-

tune the actions of the pre-trained RL agent, so that the trajectory it

flies approaches the trajectory flown by the target actor in the training

environment.

A small constant torque, Trw = −0.6 [Nm], is added to the action cho-
sen by the learning actor to simulate aerodynamical phenomena, which

were not part of the training environment. The different trajectories are

shown in Figure 3. It is clear that the corrective algorithm was able to

almost exactly copy the target-actor-in-training-dynamics trajectory.

Figure 3. The trajectories with the actor’s policy as the background. The dotted lines

indicate the succession of two consecutive states. The dotted lines do not indicate

the taken trajectories.

References

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.

Cambridge, MA, USA: A Bradford Book, 2018, ISBN: 0262039249.

[2] Y. Zhou, E.-J. Van Kampen, and Q. Chu, “Incremental model based

heuristic dynamic programming for nonlinear adaptive flight con-

trol,”, Oct. 2016.

[3] G. Brockman et al., Openai gym, 2016. eprint: arXiv:1606.01540.

https://github.com/AdrianBeno/DRL-based-Nonlinear-Adaptive-Flight-Control Honours Programme Bachelor of the Faculty of Aerospace Engineering — Symposium 2023 A.Beno@student.tudelft.nl

arXiv:1606.01540
https://github.com/YourGithub
mailto:you@student.tudelft.nl

	References

