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Abstract

The lattice Boltzmannmethod (LBM) is an alternative approach to computational fluid

dynamics based on a fully discrete kinetic equation and fluid populations. The clas-

sical LBM scheme is ’weakly compressible’. It was also (LBGK) plagued by numerical

instabilities in highly turbulent flows unless a more extensive domain or smaller time

scale was used to increase resolution. Several improvements of LBM attempted to

negate this issue. In particular, the multiple relaxation-times methods (MRT) take ad-

vantage of the additional degrees of freedom in the LBM kinetic system to stabilize

the solution and improve accuracy. However, the MRT scheme introduced tuneable

constants unique to each physical system, thus not a general solution for stability.

With the introduction of ELBM (Entropic Lattice Boltzmann) that mimics Boltzmann’s

H theorem in discrete time, simulations of highly turbulent and thermal flows were

possible. However, ELBM introduces varied viscosity over the domain, which can be

negative. The smoke simulations and high turbulence flows require a stable scheme

and preserved fine-grid details. As mentioned, for regular LBM to solve these sys-

tems, resolutions need to be increased further. Work by Wen[1] has tackled this

problem by checking local flow properties at each point and artificially adding a de-

crease in these properties back to mesh. Although this solution works with three

non-coupled meshes, it still does not tackle the stability problem but only solves the

preservation problem. This report aims to solve the problem of creating a lattice

method that, while preserving vorticity, tackles the stability issue with an ELBM and

uses lower resolutions.

LB Method

The discrete Lattice Boltzmann equation is 1, which consists of a collision step and a

streaming step. In1 left-hand side is streaming, and the right-hand side is the collision.

Parameter β defines the rate of relaxation. here mirror state is fmirr
i = αf eq

i − fi LB

models are differentiated by their selection of parameterα, Lattice Bhatnar-Gross-Krook
(LBGK) model [2] picks α = 2.

fi(x + ∆tvi, t + ∆t) = (1 − β)fi(x, t) + βfmirr
i (x, t) (1)

Here f eq is the local equilibrium found from the discretization of local Maxwellian distri-

bution depends only on locally conserved quantities, f eq
i (v, t) = f eq

i (ρ(x, t), jalpha(x, t)),
the first and second order of the populations. Because Maxwellian distribution is the

minima for the H function, collision steps take populations to a point closer to equilib-

rium at each step function.

f eq
i = ωρ(x, t)

[
1 + u

c2
s

+ (u · vi)2 − c2
s(u · u)

2c4
s

]
(2)

Taking Navier-Stokes equations as the target in hydrodynamic limit and using Chapman-

Enskog expansion, the kinematic viscosity is related to the relaxation coefficient as:

ν = c2
s(

1
αβ

− 1
2
)∆t (3)

This also requires c2
s = 1

3c2 and p = 1
3ρc2. Together these constitute a discrete velocity

set as

Figure 1. D1Q3 and D2Q9 velocity sets
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As stated, LBGK uses α = 2 and over-relaxes populations toward equilibrium at a rate
determined by relaxation coefficient β. While good for well-resolved grids, the BGK
model has a narrow area of applicability and stability [3]. Especially for under-resolved

high Reynolds flows, the LBGK model rapidly becomes unstable. To ensure stability

under high vorticity smoke simulations KBC (Karlin, Bösch, and Chikatamarla) model

will be used. In this model, the populations fi are defined as a sum over kinematic (ki),

shear (si) and higher-order contributions (hi):

fi = ki + si + hi (5)

Because moments of the populations are just linear transformations of the

populations, inversely, populations can be constructed from moments. KBC is a

two-relaxation-time model that relaxes all higher-order moment contributions hi

toward their equilibria with the same relaxation rate γ. In contrast, the shear moments
si are over-relaxed according to the kinematic viscosity (α = 2). Therefore, in the KBC
formulation, the mirror state can be defined as :

fmirr
i = ki + (αseq

i − si) + [(1 − γ)hi + γheq
i ] (6)

The parameter γ is determined at each lattice node and time step so that the H
function post-collision of a population is minimized given s moments over relax

(α = 2). This guarantees viscosity of shear moments cannot be negative, improving
stability and giving improved control over the dissipation of vorticity. γ in a closed
form can be found to be [5]:

γi = 1
β

−
(

2 − 1
β

)
< ∆s|∆h >

< ∆h|∆h >
(7)

Where < X|Y > designates the entropic dot product defined as < X|Y >=
∑Q

i=0
XiYi

f eq
i
.

Also, ∆si = si − seq
i . The moment basis is:

ki = ki(Π0, Πx, P iy) = ρ, ρux, ρuy; si = si(Πxy, Πxx, Πyy); hi = hi(Πxxy, Πxyy, Πxxyy)
(8)

This construction can be visualized with the figure 2

Figure 2. Entropy levelized map

In the future, a population that tracks vorticity will be added using D2Q5 scheme;

since vorticity in the 2D domain is scalar, the governing equation for transportation of

vorticity will be advection-diffusion

gi (x + ci∆t, t + ∆t) − gi(x, t) = 1
τ

(geq
i (x, t) − gi(x, t)) + wi

ci · Fω

c2
s

(9)

where Fω is the extra force to be added on the grid as an external force to recover

vorticity and is a function of the gradient of it.

geq
i = wiω

[
1 + viu

c2
s

]
(10)

Where vorticity can be tracked from

ω
∑

i

gi (11)

Results

Validation is done by comparing the analytical solution to Taylor- Green vortex and

the computational solution with L2 norm error. It can be observed the scheme does

converge to an analytical solution, and it is faster with higher resolution.

Figure 3. L2 Error with diffusive scaling

To inspect the vorticity field and the response of KBC to highly turbulent flow fields,

the operator is tested with a doubly periodic shear layer. 4 Shows the established

domain of stability as a function of U0) and ν, found using L=128. It is evident that
KBC extends the stability range of under-resolved simulations with sharp velocity

gradients. It allows using lower values of ν for the same values of U0), as well as
higher values of U0) for the same ν than the LBGK.

(a) (b)

Figure 4. (a)-stability domain LBGK, (b)-stability domain KBC

5(a) shows a snapshot of the vorticity field on a fine grid L = 512 at a time t =
tc, and 5(b) spatial distribution of γ. Moreover, the values of γ are not necessarily
confined to the [0,2] and can take both positive and negative values [4]. Due to the

self-adaptation of γ to the flow domain, its spatial distribution resembles the vortex
pattern. In locations with no large velocity gradients γ ≈ 2, the KBC coincides with
LBGK. Where γ > 2, it introduces additional dissipation, and where γ < 2, it reduces
dissipation, and this adaptation of γ helps to represent low-order statistics and allows
the numerical scheme to model physical dissipation correctly.

Figure 5. Entropic Stabilizer
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